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Abstract. A new quadrature formula has 

been proposed which uses weight functions 

derived using a probabilistic approach, and a 

rather-ingenious ‘Fusion’ of two dual 

perspectives. Unlike the complicatedly 

structured quadrature formulae of Gauss, 

Hermite and others of similar type, the 

proposed quadrature formula only needs the 

values of integrand at user-defined 

equidistant points in the interval of 

integration. The weights are functions of the 

impugned variable in the integrand, and are 

not mere constants. The quadrature formula 

has been compared empirically with the 

simple classical method of numerical 

integration using the well-known “Bernstein 

Operator”. The percentage absolute relative 

errors for the proposed quadrature formula 

and that with the “Bernstein Operator” have 

been computed for certain selected functions 

and with different number of node points in 

the interval of integration. It has been 

observed that the proposed quadrature 

formula produces significantly better results. 
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1.   Introduction. Classically ([1], and 

[2]), even the celebrated Bernstein 

polynomial approximation operator has been 

used for numerical integration. In a rather 

simple set-up, such similar quadrature 

methods were of the form 
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Where xi’s are equally spaced nodes & wi’s 

are the respective weights. For example: 

• Trapezoid:  ∫
b

a

dxxf ).(  ≈ [(b – a)/2]*f (a) 

+  [(b – a)/2]*f (b). 

• Simpson:   ∫
b

a

dxxf ).(  ≈ [(b – a)/6]*f (a) 

+ [2(b − a)/3]*f ((a + b)/2) + [(b – a)/6]*f 

(b).  

• Similarly, for higher order polynomial, 

Newton-Cotes rules. 

We note here one known thing already from 

interpolation that the equally-spaced nodes 

result in wiggle. 

What other choice do we have?  We might do 

well here to recall how we fix wiggle in 

interpolation: by moving the location of the 

nodes. Therefore, we might do better, 

possibly, by:  

● Freeing ourselves from equally spaced 

nodes.  

● Combining selection of the nodes and 

selection of the weights into one quadrature 

rule.   
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Gaussian quadrature chooses the points for 

evaluation in an optimal, rather than the 

equally- spaced way. The nodes x1, x2, . . ., xn 

in the interval [a, b] and coefficients c1, c2, . . 

., cn are chosen to minimize the expected 

error in :    

∫ ∑
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ni

i

ii xfcdxxf
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This equation needs ‘n’ parameters. The class 

of polynomials of degree n-1 has n 

parameters, so for this class of polynomials 

we could expect our formula to be exact.  

For example, we want to determine c1, c2, x1, 

and x2 so that the formula ~ 

∫
−

1

1

).( dxxf  ≈ c1.f(x1) + c2.f(x2). 

gives the exact result whenever f(x) is a 

polynomial of degree 3. We can substitute 1, 

x, x2, x3 for f(x). This gives the following 

equations: c1 + c2 = ∫
−

1

1

).( dxxf  = 2; c1.x1 + 

c2.x2 =  ∫
−

1

1

).( dxxf  = 0; c1.(x1)
2 + c2.(x2)

2  =  

∫
−

1

1

2 .dxx  = 2/3, & c1.(x1)
3 + c2.(x2)

3  =  ∫
−

1

1

3.dxx  

= 0. This has unique solution: c1 = c2 = 1, 

x1= −√3/3, x2= − x1; meaning that→ 

∫
−

1

1

).( dxxf  ≈ f (−√3/3) + f (√3/3). 

It is interesting that this formula is exact for 

every polynomial of degree 3 or less. This 

technique can be used to determine 

parameters for higher n, but there is an easier 

method using the Legendre polynomials. 

Nevertheless, in the context of our 

proposition, we can note here an important 

fact that “√3/3” is an irrational number, and 

hence the exact calibration of the value of “f 

(√3/3)” is not feasible. That value, therefore, 

would be subject to some degree of 

approximation. This leads us to the following 

remark, in the context of our proposition, 

“Unlike complicatedly structured 

quadrature formulae of Gauss, Hermite 

and others of similar type, the proposed 

quadrature formula only needs the values 

of integrand at user-defined equidistant 

points in the interval of integration”.  

The preceding fact motivated us to ponder-n-

wonder as to whether or not we would be able 

to retain the simplicity of “equidistant 

points in the interval of integration” in our 

proposed quadrature formula, and still 

aspire successfully for its optimality.  In fact 

we were successful. The next section details 

the ‘How’ part of it.  

And the section following that numerically 

illustrates that the potential of this new/ 

proposed operator was so profound as to 

make it almost the ‘Optimal’ one, inasmuch 

as it excelled over the well-known powerful 

“Gaussian Quadrature”, besides being 

exceedingly superior to the famous 

“Bernstein Operator Quadrature”. The 

“Bernstein Operator” happened to be the 

foundational structure for the build-up of the 

proposed one, with the used weight-functions 
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therein derived pursuing a probabilistic 

approach, and a rather-ingenious ‘Fusion’ 

of two dual perspectives. We are going to 

detail this in following section. 

2.  The Proposed Probabilistically 

Weighted Qudrature Operator.  

The problem of approximation arises in many 

contexts of ‘Numerical Analysis and 

Computing’, and ‘Quadrature’ is one such. 

Weierstrass (1885) proved his celebrated 

approximation theorem: if f ε C [a, b]; for 

every δ > 0; there is a polynomial ‘p’ such 

that 

‖f - p‖ < δ.  

In other words, the result established the 

existence of an algebraic polynomial, in the 

relevant variable, capable of approximating 

the unknown function in that variable, as 

closely as we please! This result was a big 

beginning of the mathematicians’ interest in 

‘Polynomial Approximation’ of an unknown 

function using its values generated 

experimentally or known otherwise at certain 

chosen ‘Knots’ of the domain of the relevant 

variable, as of interest to the scientist 

concerned. The Great Russian mathematician 

S. N. Bernstein proved the Weierstrass’ 

theorem in a manner which was very 

stimulating and interesting in many ways.  

He first noted a simple but important fact that 

if the Weierstrass’ theorem holds for C [0, 1], 

it also holds for C [a, b] and holds conversely. 

Essentially C [0, 1] and C [a, b] are identical, 

for all practical purposes; as they are linearly 

isometric as normed spaces, order isomorphic 

as algebras (rings). Most important 

contribution in the Bernstein’s proof of this 

theorem consisted in the fact that Bernstein 

actually displayed a sequence of polynomials 

that approximate a given function f(x) ε C [0, 

1]. If f (x) is any bounded function on C [0, 

1], the sequence of Bernstein’s Polynomials 

for f (x) is defined by: 

(Bn (f)) (x) =      

(2.1) 

Wherein, =  are the 

respective weights for the values ‘  of 

the function at the knots”  [k = 0 (1) n]. 

Thus if we assume that, without any loss of 

generality [subject to the change of origin-

and-scale of the impugned-variable, if 

necessary], our interest is that in developing 

the “Quadrature Operator” for the 

numerical integration of the definite 

integral ;                 (2.2) 

“f (x)” being a bounded unknown function 

with known/ knowable values at equi-distant 

knots ”  [k = 0 (1) n]. Hence, one 

straightforward “Quadrature” using the 

Bernstein’s Operator: 

=                 

(2.3)                                                 Now, we 

are set to, first, launch the “probabilistic 
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perspective” seminal to the proposition of our 

novel ‘Quadrature Operator” in the same 

“Equi-Distant Knots” ‘Set-Up’ of Bernstein’s 

Operator, in what follows. 

Consider the fact that f (x) is bounded 

unknown function in its domain C [0, 1]. 

Let us, call this impugned interval-line by 

O1- O2; “O1” and “O2” being the two end-

points of this original-line C [0, 1]. Now 

consider the line vis-à-vis the [0, 2], the 

double of the original interval-line; say call it 

by O1- O3, so that O2 is the middle point 

of this double-of-the-impugned-interval-

line. Consider a random-point ‘x’ sitting 

on this double-line. This point x [0 ≤ x ≤ 1] 

divides the double-line in two parts of 

lengths (1- x): (1+ x) :: O1 → x: x→ O3. 

This random-point [rational or irrational] 

is such that k/n ≤ x ≤ (k+1)/n. Now, 

probabilistically, the probability of k 

points/ knots being on the left of 1- x, and n 

– k being on its right could easily be seen to 

be: 

* ≡  

≡ 

 

[As  = 1].         

(2.4) 

Reverting back to the original-interval C [0, 

1] from the present double-interval C [0, 2] is 

simply accomplished by a division by 2: [(1-

x) + (1+x)]/2 ≈ 1 ≈ (1-x)/2 + (1+x)/2~ Say, 

Pw1 (x; k, n) = 

= .  (2.5)                    

It is worth noting here that these ‘Primal 

Probability-Weights’  “Pw1(x; k, n)” are 

the typical coefficients of θn in the 

expansion of the identity involving 

binomials-product:  

[(1 + θ)n*(1-x)/2] *[(1 + θ)n*(1+x)/2] = (1+θ)n 

Therefore, equating these coeffients, on both 

sides of this identity, and equating we get the 

following equation: [As  = 1] 

=

=1.            

(2.6)                 

Similarly, but in a “dual” sense, we could 

have a visualization wherein this point x [0 

≤ x ≤ 1] divides the double-line in two parts 

of lengths (1+ x): (1- x):: O1→ x: x→ O3.  

Now, similarly-n-analogously-

probabilistically, the probability of k 

points/ knots being on the left of 1+ x, and 

n – k being on its right could easily be seen 

to be: 

* =

 

As  = 1.         

(2.7) 

Reverting back to the original-interval C [0, 

1] from the present double-interval is simply 
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accomplished by a division by 2: [(1-x) + 

(1+x)]/2 ≈ 1 ≈ (1+x)/2 + (1-x)/2~ Say, Pw2 

(x; k, n) = 

=       

(2.8)                     

It is worth noting here that these ‘Dual 

Probability-Weights’  “Pw2(x; k, n)” are 

typical coefficients of θn in the expansion of 

the binomials-product:  

[(1 + θ)n*(1+x)/2] *[(1 + θ)n*(1-x)/2] = (1 + θ)n  

Therefore, equating these coeffients, on both 

sides of this identity, and equating we get the 

following equation: [As  = 1], 

∑
=

=

nk

k
nkxPw

0
)],;(2[ = 

= =1.            

(2.9)                 

Both‘ , 

dual to each-other, define ‘Probability 

Distribution’ each with the ‘n+1’ knots 

‘k/n’ [k = 0 (1) n] being its support in C [0, 

1].  

As such, now,  we define our ‘Optimal 

Weights’; Say ‘Wopt (x; k, n)’ through a 

simple ‘Fusion’ of the two ‘Probability 

Distributions’ above in (2.6), and in (2.9) 

by taking their respective arithmetic mean. 

Therefore, we have: 

Wopt (x; k, n) = 

{  

+ }/2        

(2 .10) 

Thence, we propose a ‘new quadrature 

formula’ which uses weight-functions 

derived using a probabilistic approach, and 

a rather-ingenious ‘Fusion’ of two dual 

perspectives, as above. This ‘New Optimal 

Probabilistic Quadrature Operator’ 

happens to be as below. 

Say; (On (f)) (x) = 

   

(2.11)         

Wherein, “Wopt (x; k, n)” is as defined in 

(2.10).  

At this point, we note that original interval C 

[0, 1] is the domain of the impugned bounded 

function ‘f (x)’. Also, we note that the 

intervals [ ] & [ ] are two 

sub-intervals of this domain.  It is 

significant to observe that, with x ε [0, 1], 

whereas the former sub-interval will grow 

to become [0, ] for x=1, the later sub-

interval will grow to become [ ] for 

x=1. On the other hand, for x=0, both of 

them will degenerate to the point “ ”! In a 

sense, the two intervals are not only 

complimentary to each-other, but are dual 

to each-other.  

It is interesting to note that if we use n [n 

being a positive integer] points/ knots, 

beside ‘0’ on C [0, 1], our proposed 

operator “(On (f)) (x)” has ‘Zero-Error’ 
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for the “Quadrature of f (x) = xm ”,  m 

  

Another point of curiosity would be to 

discover as to how our proposed operator 

“(On (f)) (x)” performs vis-à-vis the well-

known ‘Gaussian Quadrature Operator’. 

To accomplish that, and as an example of 

important applications we take to the 

“Quadrature Problem” in the context of 

‘Normal Distribution’s Area’ calculations. 

As the Normal/ Gaussian distribution is a 

‘Symmetric’ one, it suffices to consider 

only the right-tale probability-areas, say, 

for ‘Standard Normal Distribution ~ N (0, 

1).  

Let us consider the calculation of area 

under the right-tail up to 2.5 (say ‘p = 

2.5’): 

)] dx = 

(1/2) . { 

)] dx}.  

(2.12) 

While we would target the evaluation of 

the left-hand-side expression in (2.12) 

above for using our proposed operator 

“(On (f)) (x)”, we would use the well-

known ‘Gaussian Quadrature Operator’ 

for the evaluation of the right-hand-side 

expression in (2.12), above. 

We did so using ‘Maple 12 Evaluation-

Version’ ([3]) for n = 2, 3, 4, and 5, 

respectively for both of these operators.  

The actual value of the relevant quadrature/ 

numerical definite integral in (2.12) was 

found to be “0.4937903345”. Results 

[Quadrature ‘Estimated Values’ using ‘n’ 

points for the operators [our operator 

“(On (f)) (x)” & that for Gaussian 

Quadrature ”(Gn (f)) (x)”, and their 

respective ‘Percentage Relative Errors’ ~ 

Say; “EstValue (On (f)) (x)” & “EstValue 

(Gn (f)) (x)”/ “PRError (On (f)) (x)” & 

“PRError (Gn (f)) (x)” for the n-values] 

are reported in the following table. 

 

Table 2.1 [Vis-à-vis ‘Actual value: “0.4937903345”]. 

Quantity-Name  n = 2 n = 3 n = 4 n = 5 

EstValue (On (f)) (x) 0.4149387746 0.5079701874 0.4910622648 0.4945175189 

EstValue (Gn (f)) (x) 0.3519329982 0.5282411175 0.4874191154 0.4947504974 

PRError (On (f)) (x) 15.968631700 2.871634358 0.5524753138 0.1472658230 

PRError (Gn (f)) (x) 28.728252940 6.976803836 1.2902680860 0.1944474877 
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3.          Numerical Study 

This section is also of prime interest, as herein 

we try to illustrate the potential of our proposed 

probabilistic operator “(On (f)) (x)”. As 

apparent in the second section, as a prelude to 

our proposed operator, the mother-operators 

are “Bernstein’s Polynomials for f (x) (Bn 

(f)) (x)” in (2.1). As such, we could not have 

an idea about their relative supremacy in terms 

of better estimation potential; we have to 

discover their relative supremacy of efficient 

estimation only via a ‘Numerical Study’, as 

attempted in what follows in this section. In 

this simulated numerical study we have 

chosen four illustrative example-functions: 

exp (x), sin (2+x), 10x, and ln (2+x). For 

simplicity of the numerical illustration we have 

confined to only three chosen illustrative n-

values to be 3, 6, and 9.  

We have considered numerical values (per the 

illustrative numerical study) of the 

“Percentage Relative Absolute Errors” in 

using the relevant operators by the evaluation 

of the expressions: namely, say, “PRAbsErr 

(●) (In %)” for  

“(On (f)) (x)”; & for “(Bn (f)) (x)”, 

respectively���� 

[ ∫∫ −
1

0

1

0
)();( dxxfxfOn

 
x 100]/ [ ∫

1

0
)( dxxf ] = 

=PRAbsErr (On); Say. And 

[ ∫∫ −
1

0

1

0
)();( dxxfxfBn

 
x 100]/ [ ∫

1

0
)( dxxf ] = 

=PRAbsErr (Bn); Say.  

These “Percentage Relative Absolute 

Errors” [~ “PRAbsErr (●) (In %)”], 

calculated using the “MAPLE 12[Evaluation-

Version]” code, are tabulated in the following 

tables in the “APPENDIX”. This illustration 

has amply supported the fact that the 

“Percentage Absolute Errors’ Numerical-

Values” for our proposed probabilistic 

operator “(On (f)) (x)” are significantly 

lower than those for “Bernstein’s 

Polynomials for f (x); (Bn (f)) (x)” in (2.1).  

 

References: 

[1]. E. W. Cheney and A. Sharma, Bernstein 

power series, Canad.  J. Maths. 16 (1964), 

241- 252. 

[2]. P. P. Korovkin, Linear Operators And 

Approximation Theory. Hindustan 

Publishing, Delhi, 1960. 

[3]. 

http://www.maplesoft.com/contact/webforms/ 

maple_evaluation.aspx ~ Maple 12 

Evaluation-Version. 

ISSN : 0975-4024



Ashok Sahai & Sameer Verma / International Journal of Engineering and Technology Vol.1(1), 2009, 1-9 

 

8 

APPENDIX. 

Table 3.1. 

Percentage Relative Absolute Error [~ “PRAbsErr (●) (In %)] of the Operators (In %) for 

Example-Function: f(x) = exp(x). 

Operator↓ For n = 3↓ For n = 6↓ For n = 9↓ 

PRAbsErr (On) 0.01503391328000000 4.65581365600*10^(-7) 

 

0.00000000000000000 

PRAbsErr (Bn) 2.74257954800000000 1.369416740000000000 0.91234061520000000 

 

 

Table 3.2. 

Percentage Relative Absolute Error [~ “PRAbsErr (●) (In %)] of the Operators (In %) for 

Example-Function: f(x) = 10x.  

Operator↓ For n = 3↓ For n = 6↓ For n = 9↓ 

PRAbsErr (On) 0.3801436230000000 0.00004244431855000 0.9123406152*10^(-7) 

 

PRAbsErr (Bn) 13.824606900000000 6.86560988700000000 4.56173511600000000 

 

 

Table 3.3. 

Percentage Relative Absolute Error [~ “PRAbsErr (●) (In %)] of the Operators (In %) for 

Example-Function: f(x) = sin (2+x). 

Operator↓ For n = 3↓ For n = 6↓ For n = 9↓ 

PRAbsErr (On) 0.015850934550000000 3.485257690*10^(-8) 0.0000010804298840 

 

PRAbsErr (Bn) 2.814637353000000000 

 

1.4093066240000000 0.9401730422000000 
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Table 3.4. 

Percentage Relative Absolute Error [~ “PRAbsErr (●) (In %)] of the Operators (In %) for 

Example-Function: f(x) = ln (2+x). 

Operator↓ For n = 3↓ For n = 6↓ For n = 9↓ 

PRAbsErr (On) 0.002738167797000000 0.000001044481147000 0.000001429289991000 

 

PRAbsErr (Bn) 0.002738167797000000 0.250934066800000000 0.167179157600000000 
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