
Lyrics Generation using Recurrent Neural
Networks

Thendral Pyualnithi1 , Murugeswari Kandavel2
Dept. of Computer Science and Engineering

Kalasalingam Academy of research and Education, Srivilliputtur, India
1thendral.p@klu.ac.in, 2 murugeswari.k@klu.ac.in

Rajvardhan Dixit
School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India

Abstract— It's a neural network that has been trained on Kanye West's (very famous American singer
and music producer) discography, and can use any lyrics you feed it and write a new song word by word
that rhymes and has a flow (to an extent). It is basically a markov chain will look at the lyrics you entered
and generate new lines. Then, it feeds this to a recurrent neural net that will generate a sequence of tuples
in the format of: (Desired rhyme, desired count of syllables). The program will then sift through the lines
the markov chain generated, and match the lines to their corresponding tuples. The result is the rap.
(Abstract)

Keywords- Recurrent Neural Network, Machine Learning, Rhyme generation

I. INTRODUCTION

Neural Network is an information processing paradigm that is inspired by the way biological nervous
systems, such as the brain, process information. The key element of this paradigm is the novel structure of the
information processing system. It is composed of a large number of highly interconnected processing elements
(neurones) working in unison to solve specific problems. It learns by example.

The history of neural networks that was described above can be divided into several periods. There were
some initial simulations using formal logic. McCulloch and Pitts (1943) developed models of neural networks
based on their understanding of neurology. These models made several assumptions about how neurons worked.
Their networks were based on simple neurons which were considered to be binary devices with fixed thresholds.
The results of their model were simple logic functions such as "a or b" and "a and b". Significant progress has
been made in the field of neural networks-enough to attract a great deal of attention and fund further research.
Advancement beyond current commercial applications appears to be possible, and research is advancing the field
on many fronts. Neurally based chips are emerging and applications to complex problems developing. Clearly,
today is a period of transition for neural network technology.

To design a neural network that has been trained on by songs of any artist by feeding lyrics and produce a
new song word by word that rhymes and has a flow. This is a new way of applying machine learning attributes to
a new region of people’s interest. Having a system that comes up with new songs which is similar to your liking
boosts up a person’s mood. Having machines serve as composers actually opens the music world up to a “new
creativity” that isn’t possible otherwise. Latest researches are going on to write and publish new albums which
give tough competitions to old hits by learning the lyrics of those songs. One of them is carried out by Sony CSL
known as Flow Machines.

II. LITERATURE REVIEW

Paper Methodology Conclusion

Text based
LSTM
networks for
Automatic
Music
Composition
[1]

 The proposed method includes two LSTM
layers and the Keras deep learning
framework.

 The proposed network is designed to learn
relation- ships within text documents that
represent chord progressions and drum
tracks in two case studies.

 The proposed system can be used for fully
automatic composition or as semi- automatic
systems that help humans to compose music
by controlling a diversity parameter of the
model.

They introduced an algorithm of text-
based LSTM networks for automatic
composition and reported results for
generating chord progressions and rock
drum tracks. Word-RNNs showed good
results in both cases while char-RNNs
only successfully learned chord
progressions. The experiments show
LSTM provides a way to learn the
sequence of musical events even when
the data is given as text.

e-ISSN : 0975-3397 Thendral Pyualnithi et al. / International Journal on Computer Science and Engineering (IJCSE)

p-ISSN : 2229-5631 Vol. 12 No. 01 Jan-Jun 2020 31

Lyric
Generation
using artificial
intelligence [2]

 Lyric Generator is application that can be
used to generate lyrics automatically i.e. all
by itself.

 Here the user only needs to describe the
scenario of the lyric that is the mood,
relationship, character description, rhyming,
similarities, and inspirations for the lyrics.

 These are certain criteria by which the
computer or the application understands
about what exactly we want it to write for
us.

 It is very essential that we provide lot of
knowledge to the system prior to the
creation of the application.

 Updating the database of lyrics is also
important. The database may vary from one
language to the other but the concept
remains the same.

In this paper, a creation technique has
been proposed which can be used to
create a lyric by using the ten prominent
features of the lyrics. These Features
have a pattern and we can create various
patterns using appropriate algorithms. It
is important to specify the meaning and
usage of a word in a computer database.
This application can be used to generate
lyrics to any language provided the
database has been loaded correctly.
Future work includes techniques for
finding similes and metaphors.

A survey on
intelligent
poetry
Generation –
Languages,
Features,
Techniques,
Reutilization
and Evaluation
[3]

 Poetry generation is becoming popular
among researchers of Natural Language
Generation, Computational Creativity and,
broadly, Artificial Intelligence.

 To produce text that may be regarded as
poetry, computational systems are typically
knowledge- intensive and deal with several
levels of language.

 This paper surveys intelligent poetry
generators around a set of relevant axis –
target language, form and con- tent features,
applied techniques, reutilisation of material,
and evaluation – and aims to organise work
developed on this topic so far.

Intelligent poetry generators were
surveyed in this paper, around a set of
relevant axis where alternative
approaches have been explored. Poetry
has been automatically generated in
different languages and forms,
considering different sets of features, and
through significantly different
approaches. Poetry generators have been
developed with different goals and
intents, each with their stronger and
weaker points, which adds to the
subjectivity involved in the evaluation of
poetry, even for humans.

Algorithmic
Song Writing
with ALYSIA
[4]

 This paper introduces ALYSIA: Automated
Lyrical Song- writing Application.

 ALYSIA is based on a machine learning
model using Random Forests, and we
discuss its success at pitch and rhythm
prediction.

 Next, it is shown how ALYSIA was used to
create original pop songs that were
subsequently recorded and produced.

 Finally, vision for the future of Automated
Song writing for both co-creative and
autonomous systems has been discussed.

Algorithmic song writing offers intriguing
challenges as both an autonomous and a
co-creative system. An autonomous song
writing system producing works on par
with those of expert human songwriters
would mark a significant achievement.

e-ISSN : 0975-3397 Thendral Pyualnithi et al. / International Journal on Computer Science and Engineering (IJCSE)

p-ISSN : 2229-5631 Vol. 12 No. 01 Jan-Jun 2020 32

Automatically
Generating
Rhythmic
Verse with
Neural
Networks [5]

 Two novel methodologies for the automatic
generation of rhythmic poetry in a variety of
forms have been proposed.

 The first approach uses a neural language
model trained on a phonetic encoding to
learn an implicit representation of both the
form and content of English poetry.

 This model can effectively learn common
poetic de-vices such as rhyme, rhythm and
alliteration.

 The second approach considers poetry
generation as a constraint satisfaction
problem where a generative neural language
model is tasked with learning a
representation of content, and a
discriminative weighted finite state machine
con- strains it on the basis of form.

First, they developed a neural language
model trained on a phonetic
transliteration of poetic form and content.
Although example output looked
promising, this model was limited by its
inability to generalise to novel forms of
verse. They then proposed a more robust
model trained on unformed poetic text,
whose output form is constrained at
sample time. This approach offers greater
control over the style of the generated
poetry than the earlier method, and
facilitates themes and poetic devices.

Automated
Composition
 of
Lyrical Songs
[6]

 They address the challenging task of
automatically com- posing lyrical songs
with matching musical and lyrical features,
and present the first prototype to accomplish
the task.

 The focus of this paper is especially on
generation of art songs.

 The proposed approach writes lyrics first
and then composes music to match the
lyrics.

 Some example songs composed by M.U.
Sicus have been proposed, first steps towards
a general system combining both music
composition and writing of lyrics have been
outlined.

They have proposed the task of
generating lyrical songs as a research
topic of computational creativity. This
topic has received only little attention in
the past although both music
composition and poetry/lyrics generation
have been studied on their own. An
automatic generation procedure of lyrical
and musical content also offers
interesting possibilities for
medicalization of data

Automatic
Generation of
Poetry inspired
by Twitter
Trends [7]

 This paper revisits PoeTryMe, a poetry
generation platform, and presents it’s most
recent instantiation for producing poetry
inspired by trends in the Twitter social
network.

 The presented system searches for tweets
that mention a given topic, extracts the most
frequent words in those tweets, and uses
them as seeds for the generation of new
poems.

 Generation is performed by the classic
PoeTryMe system, based on a semantic
network and a grammar, with a previously
used generate &test strategy.

 Illustrative results are presented using
different seed expansion settings.

A new instantiation of PoeTryMe, a
poetry generation platform, was
presented. The singular feature of the
presented system is that its poetry is
inspired by Twitter trends, more
precisely, words that are associated with
those.

e-ISSN : 0975-3397 Thendral Pyualnithi et al. / International Journal on Computer Science and Engineering (IJCSE)

p-ISSN : 2229-5631 Vol. 12 No. 01 Jan-Jun 2020 33

GhostWriter:
Using an
LSTM for
Automatic
Rap Lyric
Generation [8]

 This paper demonstrates the effectiveness of
a Long Short-Term Memory language
model in our initial efforts to generate un-
constrained rap lyrics.

 The goal of this model is to generate lyrics
that are similar in style to that of a given
rapper, but not identical to existing lyrics:
this is the task of ghostwriting.

 Unlike previous work, which defines
explicit templates for lyric generation, this
model defines its own rhyme scheme, line
length, and verse length.

 The experiments show that a Long Short-
Term Memory language model produces
better “ghost- written” lyrics than a baseline
model.

The performance of the LSTM model has
been compared to a much simpler
system: an n-gram model. The results of
our experiments show that, as an
unsupervised, non-template model, the
LSTM model is better able to produce
novel lyrics that also reflect the rhyming
style of the target artist. In future work,
we plan to use more data to train our
model, making it easier for our system to
actually identify rhyming pairs and use
them in new con- texts.

Automatic
Generation of
Lyrics in Bob
Dylan’s Style
[8]

 It is interesting to see if machine could learn
Bob Dylan’s poetic style by looking at his
lyrics.

 In this Paper, N-grams and Recurrent Neural
Network (RNN) with Long Short Term
Memory (LSTM) have been used to model
Dylan’s lyrics, and eventually use the
algorithms to generate samples of lyrics in
Bob Dylan’s style.

Fot N-he training perplexity decreases as
N increases because larger N leads to
fewer choices of the next word, hence
higher probability to select the right
word. Character-level RNN seems good
at capturing the grammar of the
sentences, but may be weak in generating
text that makes sense in the context.

SMUG:
Scientific
Music
Generator [9]

 Music is based on the real world.
Composers use their day-to-day lives as
inspiration to create rhythm and lyrics.

 Procedural music generators are capable of
creating good quality pieces, and while
some already use the world as inspiration,
there is still much to be explored in this.

 A system has been described to generate
lyrics and melodies from real-world data, in
particular from academic papers.

 Through this they want to create a playful
experience and establish a novel way of
generating content.

 For melody generation, they present an
approach to Markov chains evolution and
briefly discuss the advantages and
disadvantages of this approach.

They have presented a method for
creating melody and lyrics using real-
world data. To do so, they developed a
musical generator that evolves Markov
chains to create melodies, and a lyric
generator, that extracts content from
academic papers and transforms them
into songs. Hence there is fully
functional system that completes tasks,
taking an academic paper in PDF format
and outputting a melody and the
according lyrics. The generator seems to
produce interesting music/lyrics
combinations, but they still have to
conduct further studies to prove their
interestingness.

III. PROPOSED ARCHITECTURE AND FRAMEWORK

A. Recurrent Neural Networks

The basic feed forward network, there is a single direction in which the information flows: from input to
output. But in a recurrent neural network, this direction constraint does not exist. There are a lot of possible
networks that can be classified as recurrent, but we will focus on one of the simplest and most practical.

Basically, what we can do is take the output of each hidden layer, and feed it back to itself as an additional
input. Each node of the hidden layer receives both the list of inputs from the previous layer and the list of outputs
of the current layer in the last time step as shown in Fig. 1. This, after unwrapping along the time axis looks like
as shown in Fig. 2.

e-ISSN : 0975-3397 Thendral Pyualnithi et al. / International Journal on Computer Science and Engineering (IJCSE)

p-ISSN : 2229-5631 Vol. 12 No. 01 Jan-Jun 2020 34

In this representation, each horizontal line of layers is the network running at a single time step. Each hidden
layer receives both input from the previous layer and input from itself one time step in the past. The power of this
is that it enables the network to have a simple version of memory, with very minimal overhead. This opens up the
possibility of variable length input and output: we can feed in inputs one- at-a-time, and let the network combine
them using the state passed from each time step.

One problem with this is that the memory is very short-term. Any value that is output in one time step
becomes input in the next, but unless that same value is output again, it is lost at the next tick. To solve this, we
can use a Long Short-Term Memory (LSTM) node instead of a normal node. This introduces a “memory cell”
value that is passed down for multiple time steps, and which can be added to or subtracted from at each tick.other
font). To create multileveled equations, it may be necessary to treat the equation as a graphic and insert it into the
text after your paper is styled.

B. Proposed System

First of all the dataset is cleaned using Natural Language Processing Tool Kit. We have two datasets of
positive words and negative words, which are compared with each line in the dataset. According to the calculated
score of each word, negative sentences are removed from the dataset. This new filtered dataset is given to the
neural network for computation. Stemmer function is a part of nltk library suit and it is import as the
LensesterStreamer in the code, this function removes all the grammatical changes of the words and convert all the
words into a root word. Tokenize function is used to tokenize the words in the sentences that is making an array of
the words from the sentence.

Figure 1. Recurent Neural Network

Figure 2. Recurrent Neural Network after unwrapping along time axis

A Markov chain is a stochastic model describing a sequence of possible events in which the probability of each
event depends only on the state attained in the previous event. Thus the working of the model through Markov
chain is through the states of lyrics obtained from numerous songs collected. This being said, the probability of
every word occurring in a specified pattern is calculated, the rhyming words are played after certain time with
huge probability and the lyrics are composed. The example is shown in Fig. 3.

Therefore, we see that according to data collected from numerous lyrics of the genre “rap” of the same singer,
there is a high probability of getting two rhyming words separated by sentences, rather than having both words
said one after the other.

The probability of “Bore” being joined with “adore” = P (Adore->Bore) = 0.1. The probability of “Bore”
being joined with a sentence first = P (Adore->”some sentence” ->Bore) = 0.81.

Clearly the Markov chain helps to follow the specific rules of rap music, following the sequence of pattern
regular rap music follows and the way a composer would write down the lyrics for it to rhyme.

e-ISSN : 0975-3397 Thendral Pyualnithi et al. / International Journal on Computer Science and Engineering (IJCSE)

p-ISSN : 2229-5631 Vol. 12 No. 01 Jan-Jun 2020 35

Figure 3. Example showing the conversion of word to rhyme using probability

IV. IMPLEMENTATION

A. Steps involved in the Proposed System

• Data Preparation – This stage involves collecting, compiling and cleaning the lyrics we want to feed
into the neural networks.

• Training – Train the network with the fed lyrics.

• Generating Lyrics - from the already trained network.

• Making Music – Producing songs by using a text-to-speech conversion over a beat.

We used Python Anaconda Navigator interface and various python libraries for implementing the proposed
system such as

 Keras library, is a deep learning and high level neural networks library in Python with various models.

 Markovify library which uses Markov chains to generate random semi-plausible sentences based on an
existing text.

 pyttsx is a Python package supporting common text-to-speech engines.

Implementation of the proposed system begins with training a recurrent neural network on a very tough task
of language modeling. We implement this on a set of lyrics by a rap artist, namely, Kanye West. We take his
discography as a text file which becomes the input of the program.

The final aim is to fit a probabilistic model whose task would be to assign probabilities to the sentence and
we use a markov chain model for that. Now this will be carried out by predicting the next words of the lyrics
given the whole input of the discography of lyrics which will be used to learn i.e. use as a history of previous
words.

The core of this model will be made of five LSTM cells. LSMT being the most widely used RNN and they
are way better at capturing the dependencies, in this case from the set of lyrics inputted as the training set. These
LSTM cells will invite words and then help predict the outcome of the next word by using the probabilities.

Now, by the method of design the outputs from the LSTM cells or in RNN in general are dependent on the
set of random inputs. Although this makes back propagation difficult but in our case five epochs are done. One
epoch will occur after one forward pass of the words followed by a step of back propagation to take the error into
account and reduce it. That means, one epoch will occur after one forward and one backward pass as in Fig.4.

One sentence of
the lyrics
ending

0.9 Next sentence
without

0.1

The word
“Bore”

rhyming with

0.9

e-ISSN : 0975-3397 Thendral Pyualnithi et al. / International Journal on Computer Science and Engineering (IJCSE)

p-ISSN : 2229-5631 Vol. 12 No. 01 Jan-Jun 2020 36

Figure 4. Architecture of RNN using LSTM

After a sequence of tuples is generated this will be in the form of (desired rhyme, desired count of syllable).
The program will then sift through the lines the markov chain generated, and match the lines to their corresponding
tuples.

B. Implementation Explanation

We take a set of lyrics or a set of text as an input which we eventually feed to the Recursive Net.

The code is designed in a way that it takes the lyrics that we have entered and a Markov Chain looks at it and
generates new lines.

Further, this will be fed to a Recursive Neural Network which will create tuples in the form of (desired
rhyme, desired count of syllable)

For desired syllable

The neural net generates all the sets of syllables in the input set. To perform this task it takes the following
steps:

1. It strips out all the punctuations from the input set to avoid any discrepancy.

2. It then takes the set of all the vowels and picks out words with different vowel-vowel or a vowel-
consonant or a consonant-consonant combination in them.

3. It ignores those rhyming syllables which are not a combination of a pair-pair syllable rhyme. For
example: It will not match the syllable sound of “e” with the syllable sound of “le” even though they
have the same sound because they are not in accordance with a pair-pair syllable match scenario.

For desired rhyme

A rhyme scheme is the pattern of rhymes that is being used, whenever we are constructing a musical flow.

We need to understand how the genre of rap music is based on rhyming lyrics, be it words or syllables. The
better the rhymes the better the lyrics.

So we basically desire a combination of rhymes in a sentence to be able to create a rap song. To do just that,
we take the following steps:

1. We decide how many maximum syllables we want in a single line. This is important as this will in
turn determine how many rhyming syllables we will have in our lines.

2. It will then find out all the rhyming syllables in the set of generated syllables and identify them
to be used in the, to be generated rap song.

3. The Recursive Neural Network will go through five Epochs to minimize the loss in each cycle
and in turn find out the best combinations for the, to be generated rap song.

All these rhymes will be then saved in a .rhyme type file and be later used in the program. To understand this
better let us take a verse and try and match all the pair-pair syllable sounds in it; that is, a two pair syllable sound.

e-ISSN : 0975-3397 Thendral Pyualnithi et al. / International Journal on Computer Science and Engineering (IJCSE)

p-ISSN : 2229-5631 Vol. 12 No. 01 Jan-Jun 2020 37

Penitentiary chances, the devil dances/ 12,—2/

and eventually answers, to the call of Autumn/ -12,—–3/

all of them fallin’, for the love of ballin’/ 33—-3/

got caught with 30 rocks the cop look like Alec Baldwin/ —4, 4–3/

We can see here that this piece of lyrics contain 2 consecutive multi-syllable rhymes in the beginning and
then ending them with a rhyme that contains the same number of syllable as the previous of the same rhyme.

V. CONCLUSIONS

The following limitations were encountered.

1. If the dataset is small, the machine will not be able to learn anything from it, because the idea of a
data set is to train the machine, so a large data set is needed. Even if the machine does learn anything, it
will over fit or there will be a certain outlier condition and the answer won’t be in accordance to our
design.

2. Our model’s predictions are accurate, but often recycled. It’s important to note that many of our
predicted lines turned out to be nearly identical to lines Logic has actually written, i.e. half of a line from
one verse/song combined with half of a line from another verse/song. This is to be expected, as using
bigrams yields less variability in predicted words due to basing predictions off the previous two words
instead of the one most recent, resulting in sequences of three or more words coming from the same Logic
lyric. To put it simply, using bigrams instead of single words increases readability and similarity to
Logic’s style, but decreases creativity.

3. Our model is slower and generates less output. The unigram model runs faster because the dictionary
object representing its Markov Chain has far fewer keys. Our model has so many more keys because it
has to process tuples of two words. Furthermore, as mentioned before, there were times when we received
very little to no output, and generally we received less than we did from the unigram implementation.
This can be attributed to the smaller number of possibilities for the next word when we’re basing it off the
previous two words.

The range of algorithms available for ML problem solving is astounding. Random forests, support vector
machines, neural networks, and Bayesian estimation methods – the list goes on (and on, and on). The question of
what algorithm is best for a given ML problem, however, is often less impactful than we might think.

It’s true that some approaches, on some questions, will work better than others. In some cases, this difference
can even be quite distinct. However, in my experience it’s been quite rare that one modelling approach will
strictly dominate all other options in answering a given ML question.

Therefore we also have faced cons of applying the markov model here.

REFERENCES

AUTHORS PROFILE

Dr.Thendral Puyalnithi, Associate Professor in Kalasalingam Academy of Research and Education has
completed Bachelor of Engineering in PSG Tech, Coimbatore in 2005 in Electrical and Electronics Engineering
, then completed his Master of Engineering(ME) in BITS Pilani in Software Systems and he has completed PhD
in Computer Science in VIT University Vellore. He has previous worked in software companies such as Infosys
and Samsung India with designation of Senior Software Engineer for 3 years and he was an Assistant Professor
Senior in VIT University, Vellore for 9 years. His area of interest includes Computational Intelligence and
Algorithm Design analysis and Programming languages and he has publications in these domains.

Murugeswari Kandavel received her Bachelor of Engineering in Computer Science and Engineering, Master of
Technology in Information Technology and Ph.D in Information Communication Engineering in 1996, 2003
and 2018, respectively, from Madurai Kamaraj University, University of Punjab and Anna University vice
versa. She started her carrier as a Lecturer in 1997 and continues her service in teaching field. She worked in
various Engineering Institutions for the past 22 years and had several publications in National and International
level journals. Currently, she is working as an Associate Professor in Kalasalingam Academy of Research and
Education. Her research interests include Information Security, Steganalysis and Soft Computing techniques.

e-ISSN : 0975-3397 Thendral Pyualnithi et al. / International Journal on Computer Science and Engineering (IJCSE)

p-ISSN : 2229-5631 Vol. 12 No. 01 Jan-Jun 2020 38

	Lyrics Generation using Recurrent NeuralNetworks
	Abstract
	Keywords
	I. INTRODUCTION
	II. LITERATURE REVIEW
	III. PROPOSED ARCHITECTURE AND FRAMEWORK
	IV. IMPLEMENTATION
	V. CONCLUSIONS
	REFERENCES
	AUTHORS PROFILE

