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Abstract: A Public-Key System secure against simulation studies, taking into account the purpose of the 
attacker and the model used. Among the goals there are indistinguished IND and semantic goal. The study 
considered as strong and concretizing for ideal security is IND-CCA, for the IBE we talk about IND-ID-CCA 
also: semantics-ID-CPA, semantics-ID-CCA, IND-ID-CPA .This IND-ID-CCA (as well as the others) belongs 
to a full domain whose identity to attack is declared in the challenge.. It is proved that the transition from 
selective ID to a complete domain requires a multiplication by N. The first is a HIBE based on the problem and 
under the Commutative Blinding approach it is known by BB1. While the second is an IBE Under the 
Exponent-Inversion approach named BB2, it is based on Dq-BDHIP. By combining the idea of the inverse used 
in BB2 and remaining in the Commutative Blinding approach, In this paper we will propose our New IBE 
scheme which will be efficient than BB1 and BB2. 

keywords: Identity Based Encryption (IBE),Decisional of Diffie and Hellman Problem (DBDHP ), Decisional 
q- Invertible of Bilinear Diffie and Hellman Problem (Dq- BDHIP),CCA,CPA,IND-ID-CPA,IND-ID-CCA  . 

1 Introduction 

1.1 Selective  Identification  (selective-ID)  for  IBE  / HIBE 

The operation of selective-ID is according to the algorithms declared below, here we give the CPA version, 
without using the extraction of the requests of the decryption in Phase 1. We give the definition in the case of an 
IBE and it is easy to generalize it for an HIBE. 

Init: An opponent A takes up the challenge: the identity ID.  
Setup : The challenger derives the Setup algorithm. It gives the opponent the system of parametres resulting in 
the params and it keeps the master key. 
Phase 1 : The adversary resulting from the requests q1, q2, q3, .....qm with qi is: 
Request the private key for an< IDi > such as:IDi ≠ ID∗  And, IDi  is not The prefix of ID∗ . The challenger 
responds with the KeyGen algorithm (or Extract see Chapter 1) to generate the private key di corresponding to 
the public key of < IDi >. He sends di the opponent. 
Challenge : Once the opponent decides to finish Phase 1,  he takes out two plaintexts  m0, m1  ∈ M  of  the same 
length. The challenger selects an arbitrary bit b ∈ {0, 1}, and it Calculates the ciphertext c = Encrypt(params, 
ID∗, mb). Then he sends it as a challenge to the opponent. 
Phase 2 :  As Phase 1 

Guess : Finally, the opponent makes a guess (estimation) b0 ∈ {0, 1} . He wins if b = b0 

We refer A as an IND-sID-CPA, its advantage to attack a scheme is 
Advξ,A =| pr [b = b0] − 1  | it is a probability of a win bit constructed arbitrarily between the challenger and 
the opponent. 
We say that an IBE (for the HIBE of level k, the ID∗ refers to: ID1∗, ID2∗, ....IDk∗) of a system E is (t, qID, ε) 
selective-identity and adaptively secures, if , For each IND-sIDCPA Opponent A which takes place in a time t, 
which makes at least qID requests of private keys that it chooses, one has: 
Advξ,A =| pr [b = b0] − ½ |< ε ———— (1) 

1.2 Estimation of some bilinear problems of Diffie Hell- man 

Setting the parameters G1, G2 and GT  ; As well as ȇ , such as: 
G1, G2 and GT  of the first order cyclic groups p. g is a generator of G1 or G2 ȇ : Gi × Gi → GT  or i ε{1, 2} ,A bilinear application in pairing form. 
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Definition 1 : 

Decisional Bilinear Diffie-Hellman Problem (DBDHP) 

Let g be a generator of G1. The   DBDHP   in < G1, GT , ȇ > is then: 
Given < g, ga, gb, gc, Z > for a,b,c ∈ Zq and T ∈ GT . We say that an algorithm A advantage ∈ to solve the 
BDHP decision in GT if: 
| 

2

[ , , ,....
kx x xpr g g g g pr  [g, ga, gb, gc, ȇ (g, g)abc] - | pr  [g, ga, gb, gc, T] > ε 

This probability is after an arbitrary choice of: a generator g in G1, (a;b;c) ∈  Zq X Zq X Zq , T ∈ GT an arbitrary 
bit chosen by A. The distribution on the right is referenced by PBDHP while that on the left is refreshed by RBDHP. 

Definition 2 : 
Decisional k-Bilinear Diffie Hellman Inversion Problem (Dk-BDHIP)  Is g ∈ G2∗ (or in G1∗).  Can we 
achieve the following inequality : 
| 

2

[ , , ,....
kx x xpr g g g g ȇ  

1

( , ) ]xg g  - | 
2

[ , , ,.... ]
kx x xpr g g g g T > ε 

For a 
2 kx x xg, g , g ,....g and T  given ( Where  T is in GT ) 

2 Proposed New IBE Schema 

As we have pointed out, the selective ID model is a weak option. The reader can refer to [7] for a larger idea of 
the weight of this model. It is also usual that the scheme BB1 traced under this model is more complex, which 
loses the efficiency for this scheme. In the work [5], we have thought of a reduced scheme under selective ID, to 
do so we have combined the inverse principle used in the extract Of the BB2 and the approach of the 
commutative blinding of where it is built BB1. 
First scheme: new IBE scheme 
Setup : Setting a security parameter t. Let (G1;GT ) be two bilinear groups 
Choose a generator g ∈ G1 and let Ppub1 = gl ∈ G1* 
Calculate:e(g,g)=x and e(g,g)a=xa=y (Where e represents the pairing) 
 
The public parameters are:  

11{ , , , , }pk T pubM G G P x y= . 

The master key is { , }.skM l a=    

The message space is:{0,1} .n   

The ciphertext space is:  *
1 {0,1} .nG ×  

Extract : Given an identity {0,1}n
AID ∈  of  an Entity pkM  and skM   

Select one 
AID qr Z∈  then return  

A

ID tA

a ID

r
g

+

 = 

a
ID Ar AIDA

r ID

tg

′+

= 
ta r IDI

t
D AA

g
′+

 

Then: 
AIDd  = ( , )

A

ID tA

A

a ID

r

IDr g

+

 = ( , )
AID Ar d  

Encrypt : Given m ∈  M   and kp
M   , follow the steps: 

1. Choose an arbitrary s in qZ  

2. Calculate:  ( )( , ) ( ) .A As ID a ID se g g x y+ =  

The ciphertext is: 
1

( )( , . ( , ) ) ( , )As ID als s
pubC g P m e g g u v+= = =   

Decrypt : Given the ciphertext C= (u,v), AID , Ad   and .pkM    
The decryption of C is given by: 

Calculate ( , ( , )
A

A A A

a ID

rID rID rIDe u e u g
+

  then output the  m=

( , )
A

A A

a ID

rID rID

v

e u g
+  

Note 1: The safety parameter t must satisfy the recommendations of NIST, ECRYPT or others. Filling the 
desired level requires attention to the largest parameter which constructs the factorization of the order of the 
curve adapted to the calculation of the pairing  e. 
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Accuracy Since : ( , )
A

A A

a ID

rID rIDe u g
+

 = ( , )
A

A A

a ID

lsrID rIDe g g
+

 = ( )( , ) As ID ae g g +  
  
 The new IBE scheme is then correct. 
 
3  Proof of security under the selective ID model of the new IBE Scheme 

Before demonstrating the security of the new IBE scheme, we note that Dk-BDHIP means that, in the sense of 
Definition 1.2, any k > 0 is used, the latter parameter is not related to the number of users as with Dk-BDHIP 
(2), it is rather of our choice. It is possible to choose 2 or any number, whereas Dk-BDHIP requires at least 250 
from (8) for a security level equal to 80-bits (security level in the case of Symmetric Cryptography). 
The security of the new IBE scheme is based on the rigidity of Dk-BDHI, from: 
 
Theorem 1: Suppose that  ( , , )t k ε  -Decision BDHI is rigid in a cyclic group 1G  of length 1( ).p G p=   

Then the new IBE scheme is 
´

( , , )st k ε    -selective identity, it is chosen plaintext (IND-sID-CPA) secured, with 
an advantage: 
  

 
´

( )nouveauIBEschemeadv t >  Dk DBDHIPadv −  ( ( )).t O k−   
  
 for each  ( )sk k<  where   is the time required to calculate the exponentiation in the following 
study: 
  
Proof: 
 Suppose an opponent A has a Z advantage to attack the new IBE scheme. We construct an algorithm B 
that uses A to solve the Decision problem k-BDHI in G1. The algorithm B receives as inputs: arbitrary  

( 2)k +  -parameters 
2

( , , ,... , )
k

g g g g T∝ ∝ ∝  1
1
kG + TG×      which are extracted from BDHIP  (with 

/( , )aT e g g α= ) or BDHIR  (with T is uniform and independent in :TG  group of arrival of the pairings). The 

purpose of the algorithm B is to output 1 if /( , )aT e g g α=    and 0 otherwise. The algorithm B works in 
collaboration with A to obtain a gain under the selective-ID model as follows: 
Setup : 
 To generate the parameter system, algorithm B does the following: 
 At the beginning, the algorithm A gives B the identity I = a1 where it wants to attack. The gain of the 
selective identity begins, but the algorithm B needs the following preparation step: 
  
Preparation step: 

 In the preparation step, the algorithm B chooses an arbitrary x, then it calculates 1b x   . Afterwards, he 
calculates implicitly: 

 
1

( )
k

i

f
=

∝ = i
ic ∝    ------------ (2) 

It arbitrarily chooses 0r , it also implicitly calculates 

 1 0
1

k

i

r r
=

=   1i
ic −∝    ------------ (3) 

 Finally, it calculates ( )fh g ∝=   , it publishes this h . 
Phase 1 : 

 Issuing at most sk  private key request, with Sk k<  . Consider the i th request for a private key 

corresponding to the key  iID  such that: 
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 * *( ) ( )i iI ID ID I= ≠ =   . We need private key replies in the form  

*( )

( , ).
ta r I I

r h
+ −

∝  

The  iI  represents a general identity that has been fixed and  *I  represents the identity to be attacked (identity 

in defie form). r is uniformly distributed in pZ . 

Algorithm B responds to requests as follows: 

First, it is possible that the private key in the new IBE scheme can have a syntax in the form:
Aa rID

lg
+

instead of 
A

l

a rID

rg
+

  , since: 
  

A
l

a rID

rg
+

=
l

A
l

r IDa

lrg
+

=
1 1

Aa r ID

lg
+

   -----------(4) 
We need it to simplify the evidence. 

B poses 1
0

x
R r

r
= +  , it calculates implicitly: 

*1
*

0

( ) ( )
( ) i

i

rf x
R I I

f r I I

∝= + −
∝ −

 

*1
*

1 0

1

( ) ( ( ))ik
i i

i
i

rf x
I I

r I I
c −

=

∝ + −
−∝ ∝

  

( )f ∝=
∝ 1

0
1

(
k

i
i

i

x

r c −

=

∝
 + *1

1 *

1

( ))
( )

ik
i

i i
i

r
I I

c I I−

=

−
∝ −

 

( )f ∝=
∝

 
1

0
1

(
k

i
i

i

x

r c −

=

∝
 +

1
0

*1

1 *

1

( ))
( )

k
i

i
i

ik
i

i i
i

r c
I I

c I I

−

=

−

=

∝
−

∝ −




 

( )f ∝=
∝ 1

0
1

(
k

i
i

i

x

r c −

=

∝
+ 0

*
i

r

I I−
*( ))iI I−  

( )f ∝=
∝

 
´ ´

*( ( )).ia r I I+ −  

With 0
*

i

r
r

I I
′ =

−
  which can be easily computed by B. 

The 
1

0
1

( )
k

i
i

i

x
a

r c −

=

′ =
∝

 is the master key, which is not known by B, is like ∝ . 

Note 2: A can publish Q in a system of parameters. To avoid the Computation of a, B can choose its x in such a 

way that: 
´
ag =  

1
0

1

k
i

i
i

x

r c

g
−

=

∝
is calculable (it suffices that 1

1

k
i

i
i

X cα −

=

=  ). Next, B looks for a σ such that:  

ag gσ
´

.ag=   
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Then B can easily compute Rg  as he knows 0

x

rg  and 1rg  . 
  
However, 

Rg =  
( )

*( ( ))
f a

a
iag r I I′+ −′ =

*( )ia r I I

h α
′ ′+ −

  ------------(5) 

Which is a valid private key, and then B can give A the private key 

*( )

( , ).
ia r I I

r h α
′ ′+ −

′  With, B does not have the 

advantage of calculating a private key for *I  . 
Challenge : 

Outputs two messages 0 1 1,M M G∈  . The algorithm B selects an arbitrary bit b {0,1}∈  and an arbitrary 
*( )pr Z∈   . It responds with a ciphertext prepared as follows: 

We have:
.s

s ah h
∝

= =
´

1
lh c∝ =   , with  

´ s
I =

∝
 

And 
1 1

1

( )

2

s xb a

b
hc MT

+

=  = *( )s
hT x I+  or rather  

1 1

1

( )
*

2 ( )
s ab a

b s
h hc MT T a I

+

= = +  

Then if 
1

( , )hT e h h ∝=  we have  
*( )

( , )
s

x I
e h h

+
∝  = 2c =  

´
*( )( , ) .l x Ie h h +  ------------(6) 

The combination CT= 1 2( , )c c = 
´

( ,lh ∝
´

*( )( , ) )l x Ie h h +  is valid ciphertext under *ID  if hT  is uniform in G1 
then CT is independent of bit b. 
 

 BB1(version IBE) 
Params 

/ /1
2 1 1

i z i zG q G qT
ff ffExp coup Exp+ +  

Extract 
/ /1

2 2
i z i zz q G qq

ff ffMul Exp+  

Encrypt 
/ 1 //1 3 1

i z q i zz q G qq r
ff G z ffMul Exp Exp+ +  

Decrypt 
/

2 1
i GG TT

ffcoup Div+  

Somme 
/ / / /11 1

3 1 3 7 2
i G i G i z i zG T G G q G qT T

ff ff ff ffcoup Div Mul Exp Exp+ + + +  

Table 1. Complexity of BB1 

Phase 2 : A has generated more requests for private keys, with a total of at most sk k<   . The algorithm B 
responds as before (ie in phase 1). 

Guess : Finally, A outputs a guess (estimate) 
´

{0,1}b∈ . If b = b' then B outputs 1 which means that T= 
1

( , ) .e g g ∝  Otherwise, it outputs 0 which means that 
1

( , ) .T e g g ∝≠   

When the input of type 2k +    is computed from BDHIPP  (where   
1

( , ) )T e g g ∝=   then the opinion of A is 

identical to its opinion in the real attack and hence A must satisfy : [ ] 1/ 2pr b b ε′= − > . On the other hand, 

when the input of type  2k +  is computed from BDHIPR  (or T is uniform in TG ), which gives 

[ ] 1/ 2pr b b′= −   . Then with g is uniform in 1G  and T is uniform in TG , then we have: 
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|
2

1

ˆ, , ,... , ( , )
k

Pr g g g g e g g∝ ∝ ∝ ∝
 

− 
 

2

, , ,... ,
k

Pr g g g g T∝ ∝ ∝ 
   | ≥ |

1 1( ) .
2 2

ε ε± − = ∣ ----------(7) 

Efficiency of Proposed new IBE Scheme 

Complexity calculation for BB1, BB2 and the new IBE scheme The notations used in Tables 1, 2 and3 mean:  

:
iGffExp Multiplication Scalar;  

:
iffExp Exponentiation in a finite field;  

:
iffInv Inversion into a finite field;  

:
iffMul Multiplication in a finite field; Coup: Pairing; 

In addition, we have: 
*/**ffiExp , for example (The same will be said for other operations) means the 

Exponentiation of a finite field grouped in  * / **, the * is the basis of the exponentiation, while ** represents 
the base of the exponent. 
Efficiency Testing 

Complexity (BB1-IBE version) -Complexity (New IBE scheme) 

=
/ / / /11 1

3 1 3 7 2
i G i G i z i zG T G G q G qT T

ff ff ff ffcoup Div Mul Exp Exp+ + + + -

/ / / / / /1
2 1 2 1 3 3 1

i G i z i G i z i z i zG T z q G T G q G q z qT q T T q
ff ff ff ff ff ffcoup Div Mul Mul Exp Exp Inv+ + + + + + = 

/ / / / / /11 1
1 4 3 1 2 1 1

i z i G i z i z i G i zG q G z q z q G T G qq q T T
ff ff ff ff ff ffcoup Exp Mul Inv Mul Mul Exp+ + − − − −  0  

 BB2 

Params 
/1

2 1
i zG q

ffExp coup+  

Extract 
/ / /1

1 1 1
i z i z i zz q z q G qq q

ff ff ffMul Inv Exp+ +  

Encrypt 
/ / // 11 1

1 3 1 1
i z i i z i Gz q G z G q Gq q r

ff ff ff ffMul Exp Exp Mul+ + +  

Decrypt 
/ / /11 1

1 1 1 1
i G i G i zG T G G qT

ff ff ffcoup Div Mul Exp+ + +  

Sum 
/ / / / /11 1 1

2 1 2 7 1 2
i G i G i z i z i zG T G G q z q G qT q

ff ff ff ff ffcoup Div Mul Exp Inv Mul+ + + + +  

Table 2 Complexity of BB2 

 New IBE Schema 

Params 
/ /1

1 1 1
i z i zG q G qT

ff ffExp coup Exp+ +  

Extract 
/ / /1

1 2 1
i z i z i zG q z q z qq q

ff ff ffExp Mul Inv+ +  

Encrypt 
/ /1

/1 2 1
i G T q i zG T G qT

ff G z ffMul Exp Exp+ +  

Decrypt 
/ /1

1 1 1
i G i zG T G qT

ff ffcoup Div Exp+ +  

Sum 
/ / / / / /1

2 1 2 1 3 3 1
i G i z i G i z i z i zG T z q G T G q G q z qT q T T q

ff ff ff ff ff ffcoup Div Mul Mul Exp Exp Inv+ + + + + +  

 
Table 3.   Complexity of the new IBE scheme 
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And : 
Complexity (BB2) - Complexity (New IBE scheme) 

=
/ / / / /11 1 1

2 1 2 7 1 2
i G i G i z i z i zG T G G q z q G qT q

ff ff ff ff ffcoup Div Mul Exp Inv Mul+ + + + + - 

/ / / / / /1
2 1 2 1 3 3 1

i G i z i G i z i z i zG T z q G T G q G q z qT q T T q
ff ff ff ff ff ffcoup Div Mul Mul Exp Exp Inv+ + + + + +  = 

/ / / / /11 1 1
4 1 2 2 2

i z i G i z i z i zG q G G q z q G qq T
ff ff ff ff ffExp Mul Mul Mul Exp+ + − −  0  
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