
DNA Compression Algorithm Using
Pattern Hunter

Rexline S J
Department of Computer Science

Loyola College
Chennai,India

rexlinegerard@gmail.com

Trujilla Lobo F
Department of Computer Science

Loyola College
Chennai,India

truji80@gmail.com

Abstract— Modern biological science produces vast amount of genomic progression data. Genome
contains the hereditary information of creatures. Huge amount of DNA sequences are stored in DNA
databases like GenBank. In consequence, decreasing the Data storage costs for DNA sequences has
become an essential. Standard general purpose compression algorithms are unsuccessful to get a good
compression ratio. This paper presents a Pattern Recognition based DNA Sequence Compression
algorithm which compresses the DNA sequences with 80% of reduction in its storage space.

Keywords - DNA Sequence Compression, deoxyribonucleic acid, Pattern Hunter.

I. INTRODUCTION

The genetic activity of every living organism is organized by billions of individual cells [1]. The control-
center of each cell is the deoxyribonucleic acid (DNA) that contains a complete set of instructions needed to
direct the functioning of every cell. The substance of the DNA is the same for all living organisms. The DNA of
all organisms has four components in common. They are the four nucleotide bases; namely Adenine, Cytosine,
Guanine, and Thymine. They are represented using the first character of their names; namely A, C, G and T
respectively [2, 3]. There is another unknown base element represented by the letter N. Therefore the DNA
sequence is represented as a set of {A, C, G, T, and N}. The first four elements are represented as a double helix
with A & T in one helix and C & G in another helix. The element N still remains unknown and is yet to have
pictorial representations but participates in the functionalities of a DNA. The use of DNA in genetic engineering,
forensics, bioinformatics, and DNA nanotechnology and anthropology applications has been extensive.

The DNA Database called GenBank is created and maintained by the National Center for Biotechnology
Information (NCBI).The other two repositories maintain similar data are European Molecular Biology Laboratory
(EMBL) and DNA Database of Japan (DDJB). GenBank keeps on growing at an exponential rate, it occupies
large space and so it is necessary to compress and store the DNA sequence data. The volume of data creates
severe storage and data communication problems. Thus, reduction of the DNA sequence storage costs has
become a necessity.

The paper is organized as follows: Section II presents the existing DNA compression algorithms; Section III
proposes our new approach; Section IV substantiates the achievability and competence of the proposed method
and finally Section V contains the conclusions.

II. EXISTING DNA COMPRESSION METHODS

The standard general purpose compression algorithm such as “gzip”, “bzip2”, “winzip” not succeeded to
compress the DNA genome file with better compression ratio. Most of them attained better compression ratio for
text files only but not for DNA sequences. The compression algorithms specifically designed for DNA sequences
not achieved average compression rate below 1.7 bits/base. Algorithms such as Ziv-Lempel compression
algorithms [10, 11] Biocompress [12], Gencompress [13] and DNAcompress [14] compress the DNA sequences
having about 1.74 bits per base on average. Grumbach and Tahi [6], [7] proposed compression algorithms called
Biocompress and Biocompress2 with the idea of Ziv and Lempel data compression method. BioCompress -1 and
BioCompress -2[7, 16] are compression algorithms used a window of size of the sequence to detect palindromes
and factors of arbitrarily long and far from each other. They encode the factor by the pair (l, p) where l is the
length of the factor and p is the first occurrence’s position. Two bit encoding is used, if the size of the code word
is greater than the factor. Substitutional and statistical methods lead this algorithm to the highest compression of
DNA.

Rexline S J et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 9 No.9 Sep 2017 559

CFACT was proposed by E.Rivals et al. [8] which was not only detects repeats in a text but also selected
some of them according to their compressibility. Cfact is a two pass algorithm. The first pass is to find repeated
segment in a sequence and the second pass is to measure their quantitative importance by the compression rate. It
looks for the longest exact Matching repeat using Suffix tree structure in the sequence. The idea of Cfact is
basically the same as Biocompress-2. GenCompress was proposed by Chen et al[9][10] the performance of which
is based on reference sequence selection as approximate matching with edit operations uses this reference
sequence for compression. It takes use of both approximate repeats and repeat complements, and encodes it with
length, position and the errors. In CTW-LZ, the compression ratio is attained by the Context-Tree Weighting
(CTW) algorithm which achieves an excellent compression ratio but takes time to encode the
sequences.GenomeCompress [11,12,13] compresses both repetitive and non repetitive sequences by taking less
execution time and memory. DNACompress [14,15] is a two phase algorithm designed by Chen et. al [11] and
uses special software tool PatternHunter for finding the repeats. PatternHunter finds complementary palindromes
and approximate repeats with highest score in the first phase and encodes them in second phase. Hence
DNACompress involves less searching time. It checks that each repeats to see whether it saves bits to encoding, if
not it will be discarded. At the end all the non-repeats are concatenated together and encoded. Behshad Behzadi et
al. [12] uses Dynamic Programming techniques to identify the repeating sequences called DNAPack. Raja
Rajeswari et al. [16] proposes GenBit Compress algorithm that compresses repetitive and non-repetitive
sequences using the ideas of extended binary tree.

III. PROPOSED METHOD

DNA sequences consists of only four nucleotides bases {A, C, G, T}, and therefore two bits are enough to
store each base. To reduce the compression ratio of DNA sequences below 1.7 bits per base is a very challenging
task [5]. Standard DNA compression algorithms to reduce the storage space of the DNA sequences can be
developed using the special characteristics of the DNA sequences. The special characteristics of the DNA
sequences are given as follows.

 One of these characteristics is the appearance of “complements”. In DNA, A and T are complements of
each other; G and C are also complements of each other. The complement of the DNA sequence
GGGAAACGT is CCCTTTGCA.

 Another characteristic is the appearance of “reverse complements”. In DNA, A and T are complements
of each other; G and C are also complements of each other. The complement of the DNA sequence
GGGAAACGT is CCCTTTGCA. If we then reverse CCCTTTCGA, the reversed complement obtained
is ACGTTTCCC. ACGTTTCCC is defined as being the reverse complement of GGGAAACGT.

 Some other characteristics of the DNA sequences are i) They contain many tandem repeats ii) Many of
the strings are palindromes iii) Some of them are reverse palindromes and iv) Nucleotide may appear
only nine consecutive times.

All these facts conclude that better compression for DNA sequences is possible.

 The proposed algorithm is based on the binary representation of nucleotides. The algorithm that compresses the
DNA sequences is of Two Pass. In the first Pass, it finds the repeats, palindromes, complements and reverse
complements and generates the PatternCode Table for the Pattern size of 3 to 9 with PatternCode. It is enough to
generate the Pattern Code Table up to 9 bytes because of the characteristics of the nucleotide that they may
appear only nine consecutive times in the DNA sequences. The source file is encoded using the PatternCode
during the second pass.

 In order to achieve a better compression ratio, the compressor finds the longest repeating patterns and
their reverse, complements and reverse complements of those patterns. The PatternCode table is
generated by taking the advantage of the characteristic of DNA sequences. For example, the PatternCode
table would store the pattern of the DNA sequence AAACGT. The reverse pattern of the DNA sequence
AAACGT would be TGCAAA. The complement of the DNA sequence AAACGT would be TTTGCA.
The reverse complement of AAACGT is ACGTTT. These reverse, complement and reverse complement
patterns are not necessary to store in the PatternCode table.

 The PatternCode table would store only the repeated pattern and palindromes not reverse pattern,
complement and reverse complement of the pattern. Presumably, there is a need of two bits indicating
that it is a regular pattern [00], reverse pattern [01], complement [10] and reverse complement [11]. It
reduces the space required for the PatternCode table. The Pattern Code Tables are generated with a
unique Pattern code for the identified repeating patterns of varying sizes are shown in Table I.

Rexline S J et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 9 No.9 Sep 2017 560

TABLE I. PATTERNCODE TABLE

 Let there be a finite sequence made up of A, G, T, C which can have many repeats. Included only those
repeats into the Pattern Code table that provide maximum amount of compression in the encoding pass. In
such a way that the number of bits required representing the Pattern ID is determined by satisfying the
condition that for any ‘n’ number of bases maximum of 2n possible combinations of pattern are used.
Otherwise, two bits per base encoding will be used.

 The compressed file consists of three different regions: Header, Compressed file and the length of the file
header. The Header contains all the information that must be known to decode the compressed code regions.

The compressed file is structured as:

 Blocks of bits representing the content of the PatternCode Table [00-06] of exact 3 bytes to 9 bytes pattern
that provide maximum amount of compression in the encoding pass.

 Blocks of bits representing the Pattern Code [000-111].

 Blocks of bit representing the pattern code of identified patterns with the pattern type [00-11] in a contiguous
form to indicate the repeated patterns, reversed pattern, complement pattern and reversed complement
pattern.

 Blocks of bit patterns representing compressed data in a contiguous form.

The following is the pseudo code incorporating all the above ideas:

 Procedure to compress the DNA sequence.

 Read the Sequence repeatedly and create the Pattern CodeTables for the Pattern of size 3 to 9 with pattern
IDs and Pattern Codes.

 Identify the number of bits required to represent pattern IDs and Pattern Codes.

Patter
n ID

Pattern

Pattern
Code &

Type
=00

Reverse
Pattern

 Pattern
Code &

Type
=01

Complement
Pattern

 Pattern
Code &

Type
=10

Reverse
Compleme
nt Pattern

 Pattern
Code &

Type =11

Patterns of Size 3 Bytes – 9 Bytes (Pattern Code 000-110)

P0
AAA ---

AAAAAAA
AA

000X0
Nil Nil TTT ---

TTTTTTTT
T

Nil Nil Nil

P1
CCC ---

CCCCCCC
CC

000X1
Nil Nil GGG ---

GGGGGGG
GG

Nil Nil Nil

P2
3 Bytes – 9

Bytes

Sample
Code

AAACGT
ACCATAG
ATCGAAT

G

000X2
Reverse of

3 Bytes
–

9 Bytes

Sample
Code

TGCAAA
GATACC

A
GTAAGC

TA

010X2
Complement

of
3 Bytes

–
9 Bytes

Sample
Code

TTTGCA
TGGTATC
TAGCTTA

C

100X2 Reverse
Compleme

nt of
3 Bytes

–
9 Bytes
Sample
Code

ACGTTT
CTATGG

T
CATTCG

AT

110X2

P3 000X3 010X3 100X3 110X3

P4 000X4 010X4 100X4 110X4

P5 000X5 010X5 100X5 110X5

P7 000X6 010X6 100X6 110X6

P7 000X7 010X7 100X7 110X7

P8 000X8 010X8 100X8 110X8

P9 000X9 010X9 100X9 110X9

P10 000XA 010XA 100XA 110XA

P11 000XB 010XB 100XB 110XB

P12 000XC 010XC 100XC 110XC

P13 000XD 010XD 100XD 110XD

P14 000XE 010XE 100XE 110XE

P15 000XF 010XF 100XF 110XF

Rexline S J et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 9 No.9 Sep 2017 561

 Hexadecimal numbers [0x1-0xF] are enough to represent pattern ID based on the number of bases [A, C, G,
and T]. The number of bits required to represent a Pattern ID is determined by satisfying the condition that
for any ‘n’ number of bases possible cases of pattern formations are maximum of 2n.

 Octal numbers [00-06] are enough to represent Pattern Code for 7 Pattern Tables of pattern size Exact 3
Repeat Bases to 9 Repeat Bases, since the DNA sequences are in the form of only four nucleotides bases
{A,C,G,T} with a constraint that a nucleotide may appear only nine consecutive times.

 i) Using the Pattern Code Tables generated in step 1, encode the compressed file using the following
procedure.

 Nine bits are used to represent a pattern size of Exact 3 Repeat Bases to 9 Repeat Bases; 3 bits to represent
the pattern code and 4 bits to represent pattern ID and 2 bits to represent pattern type.

 Octal numbers [00-06] are enough to represent pattern code for 7 pattern Code tables.

 Hexadecimal numbers [0x1-0xF] are enough to represent pattern ID based on the number of bases [A, C, G,
and T].

 Two bits are used to represent the Pattern type: 00-Regular Pattern, 01- Reverse Pattern, 10-Complement
Pattern and 11- Reverse Complement Pattern.

 ii) If there are individual bases (non repeat regions) and for Repeat Bases but not in the Pattern Code Table,
the corresponding code gets transformed. Assigned code for bases is: A=”00”, G=”01”, C=”10”, T=”11” and
indicated by 3 bit (07) Pattern Code. Totally 5 bits are enough to represent individual base.

 Repeat the step3 till the end of the file is encountered.

 Modify the encoded file with the required field like the presented patterns to retrieve the DNA sequences.

Procedure to decompress the DNA sequence:

 Create the Patterns Code Table by locating the repeated patterns present in the source file from the
compressed file structure.

 Extract the size of the Pattern Code from the blocks of bit representing the pattern Code of identified patterns
in a contiguous form.

 Calculate the size of the blocks to be read based on the value of the Patterns Code.

 Extract the blocks of compressed Patterns and recollect the Pattern Type, pattern ID and then the Patterns.

 Decode it from the beginning to the end of the file to get the original DNA sequence.

IV. EXPERIMENTAL RESULTS

In order to illustrate our algorithm’s approach, the following sequence is used as an example:

AAACGT ACCATAG ATCGAATG TGCAAA GATACCA GTAAGCTA TTTGCA TGGTATC TAGCTTAC
ACGTTT CTATGGT CATTCGAT AAACGT ACCATAG ATCGAATG TGCAAA GATACCA GTAAGCTA
TTTGCA TGGTATC TAGCTTAC ACGTTT CTATGGT CATTCGAT

TABLE II. PATTERN CODE TABLE FOR THE GIVEN DNA SEQUENCE

PID Pattern

Pattern
Code &

Type =00

Reverse
Pattern

 Pattern
Code &

Type =01

Complement
Pattern

 Pattern
Code &

Type =10

Reverse
Compleme
nt Pattern

 Pattern
Code &

Type =11

 Patterns of Size 6 Bytes (Pattern Code 011)

P0
AAAC

GT

000000 TGCAAA 010000 TTTGCA 100000 ACGTTT 110000

 Patterns of Size 7 Bytes (Pattern Code 100)

P0
ACCAT

AG 000000
GATACC

A 010000
TGGTATC

100000 CTATGGT

110000

 Patterns of Size 8 Bytes (Pattern Code 101)

P0
ATCG
AATG

000000
GTAAGC

TA
010000

TAGCTTA
C

100000
CATTCGA

T
110000

Rexline S J et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 9 No.9 Sep 2017 562

Encoded string:

011000000 100000000 101000000 011010000 100010000 101010000 011100000 100100000
101100000 011110000 100110000 101110000 011000000 100000000 101000000 011010000
100010000 101010000 011100000 100100000 101100000 011110000 100110000 101110000

Total number of encoded binary bits = 24 x 9 = 216 bits

Total number of bits required to store the repeated Patterns = 6 x 2 +7 x 2+ 8 x2 = 42 bits

Total bits required to store the above said bases = Total number of encoded binary bits + Total number of bits
required to store the repeated Patterns = 216 +42 = 258 bits= 32.25 bytes.

According to 2 bits per symbol technique, the total bits required to store the above said bases = 168 x 2 = 336 bits
= 42 bytes.

In general, the total bits required to store the above said bases = 168 x 8 = 1344 bits.

From the above said example, the 168 bytes of data is compressed as 32.25 bytes; which gives approximately
80.8% reduction in storage space of DNA files.

To experiment the efficiency of the proposed algorithm, standard set of DNA sequences are compressed and the
results are compared with the compression ratio of other efficient DNA compressors. The standard algorithms
used for comparison are BioCompress2, Genome Compress, CTW, DNA Compress, DNAPACK, DNABIT and
the general purpose compression software WinRAR. The sequence files can be downloaded from the GENBANK
database: http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi. The DNA sequence files are made available in
FASTA file format in DNA databases which can also retrieved by any text processor. Efficiency of the proposed
method is measured in terms of bits per base (BPB). The results are shown in Figure I have proved that the
proposed algorithm performs better than other DNA Compression algorithm.

FIGURE 1: EFFICIENCY COMPARISON OF PATTERN HUNTER WITH OTHER DNA COMPRESSORS

V. CONCLUSION

A simple DNA compression algorithm which gives better compression is proposed to compress DNA sequences
which are repetitive as well as non repetitive in nature. The simplicity and flexibility of DNA Compress
algorithm could make it an invaluable tool for DNA compression in clinical research.

0

0.5

1

1.5

2

2.5

winrar Bio-Compress2 GenomeCompress CTW+LZ DNA compress DNAPACK DNABIT Compress Pattern Hunter

Rexline S J et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 9 No.9 Sep 2017 563

REFERENCES
[1] Calladine, C. R. and Horace A. Drew. Understanding DNA: The Molecule and How It Works. San Diego: Academic Press, 1997.
[2] Choi-Ping Paula Wu, Ngai-Fong Law and Wan-Chi Siu, “Cross chromosomal similarity for DNA sequence

compression”,Bioinformation 2(9), pp. 412-416, 2008.
[3] Choi-Ping Paula Wu, Ngai-Fong Law and Wan-Chi Siu, “Analysis of cross sequence similarities for DNA multiple sequence

compression”, International journal of Computer Aided Engineering and Technology, 2009.
[4] Manzini, G. and Rastero, M., “A simple and fast DNA Compressor, Software: Practice and Experience”, MIUR support

projects(ALINWEB), Vol. 34(14), pp.1397-1411, 2004.
[5] X Chen et al. A compression algorithm for DNA sequences and itsapplications in Genome comparison. In Proceedings of the

FourthAnnual International Conference on Computational Molecular Biology, Tokyo, Japan, April 8-11, 2000.
[6] Grumbach, S. and Tahi, F., “Compression of DNA Sequences”, In Proc. IEEE Symp. On Data Compression, pp. 340-350, 1993.
[7] Grumbach, S. and Tahi, F., “A new challenge for compression algorithms: Genetic Sequences”, Journal of Information Processing

&Management, Vol. 30, pp. 875-886, 1994.
[8] Rivals,E., Jean Paul Delahaye, M., Dauchet and Delgrange,O.,“A Guaranteed Compression Scheme for Repetitive DNA Sequences”,

In Proc. Data Compression Conf. (DCC-96), Snowbird, UT. p453, 1996.
[9] Chen, X., Kwong, S. and Li, M., “A compression algorithm for DNA sequences and its applications in genome comparison”, The

10thworkshop on Genome Informatics (GIW-99), pp.51–61, Tokyo, Japan, 1999.
[10] Textual data compression in computational biology: a synopsis Raffaele Giancarlo∗, Davide Scaturro and Filippo Utro, Vol. 25 no. 13

, pages 1575–1586 ,2009.
[11] U. Ghoshdastider et al., “GenomeCompress: A Novel Algorithm for DNA Compression”, ISSN 0973-6824,2005.
[12] Xin Chen, Sam Kwong and Ming Li, “A Compression Algorithm for DNA Sequences and Its Applications in Genome Comparison,”

Genome Informatics, Vol. 10, pp. 51-61, 1999
[13] Matsumoto,T. et al. Biological sequence compression algorithms. Genome Inform. 11, 43–52,2000
[14] Xin Chen, et al.,” DNA Compress: fast and effective DNA sequence Compression” Bioinformatics Applications Note, Vol. 18 no. 12,

Pages 1696–1698,2002.
[15] Chen, X., Li, M., Ma, B. and Tromp, J., “DNACompress: Fast and effective DNA sequence compression”, Bioinformatics, Vol.

18(12), pp. 1696–1698, 2002.
[16] Raja Rajeswari and Dr.AlamApparao, “GenBit Compress-Algorithm for repetitive and non repetitive DNA sequences”, Journal of

theoretical and applied information technology, pp. 25-29, 2010.
[17] Raja Rajeswari and Dr.AlamApparao,” DNABIT Compress – Genome compression algorithm”, Bioinformation Volume 5 ,Issue 8,

January 22, 2011.
[18] Soliman, T., “A Lossless Compression Algorithm for DNA sequences”, International Journal of Bioinformatics and Applications, Vol.

5(6), pp. 593, 2009.
[19] Kamnath Mishra, Dr.Anupam Agarwal, Dr.EdriesAbdelhadi and Dr. Prakash C. Srivasatava, “An Efficient Horizontal and Vertical

Method for Online DNA Sequence Compression”, IJCA, Vol. 3(1), pp.39-46, June, 2010.
[20] Behzadi, B. and Le Fessant, F., “DNA Compression Challenge Revisited”, Symposium on Combinatorial Pattern Matching

(CPM2005), pp.190-200, June 2005.

Rexline S J et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 9 No.9 Sep 2017 564

	DNA Compression Algorithm UsingPattern Hunter
	Abstract
	Keywords -
	I. INTRODUCTION
	II. EXISTING DNA COMPRESSION METHODS
	III. PROPOSED METHOD
	IV. EXPERIMENTAL RESULTS
	V. CONCLUSION
	REFERENCES

