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Abstract: Model Transformation is a core activity of all model-driven approaches. The success of model 
driven approaches like Model-Driven Development, Model-Driven Engineering etc depends on the model 
transformations. Hence, Model Transformations has become an emerging approach. Number of 
appropriate languages and tools are available for Model transformation. In literature, there are several 
studies are available which encounter comparison of Model Transformation Languages. These articles 
focused on limited number of languages, related work, motivation and comparison specifications. Hence, 
this paper aims to focus on all available model transformation languages and their comparison 
specifications considered here which are not yet focused. The main purpose of this paper to present how 
timely evolution of model transformation languages have materialized and also the languages are 
discriminated in various aspects.  
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I. INTRODUCTION  

Transforming models is a main activity of model driven approaches like Model Driven Engineering (MDE), 
Model-Driven Development (MDD), as it is a process of converting one model to another model of the same 
system. There are various definitions for Model Transformation are available in [1,2].Model Transformations 
are used for different activities like creating, modifying, merging, mapping, etc. ,for models  in Model Driven 
Development. 
The central concept of model-driven development approaches is Model transformation. It provides a mechanism 
which automatically does the manipulation of models in various ways. This paper deals with survey of existing 
model transformation languages. Classif cation used in this paper presents how model transformation languages 
are evolved, and the mechanism, i.e. characteristics of the model transformation languages. Selection of model 
transformation languages, tools, and techniques are introduced in this paper by using our classif cation scheme. 
Model transformations play an important role in Model Driven Engineering (MDE) approach. It is expected that 
writing model transformation definitions will become a common task in software development [13]. Software 
engineers needs support from Model transformation tools and techniques in performing the task as similar to 
support given now by IDEs, compilers, and debuggers in their everyday work. As a result a number of 
transformation languages have been proposed. It is observed that, even though the problem domain of these 
languages is fixed, they still differ in programming paradigm.  For programming languages like declarative, 
functional, object-oriented, imperative, etc supporting model transformation languages are already developed 
and currently available which usually expose a synthesis of programming paradigms. Different approaches are 
suitable for different tasks. It is very clear that a single approach may be provided in future. But understanding 
and more experience is base for identifying non trivial problems which is still necessary. 
One class of transformation problems may be solved by using one type of paradigm like declarative and other 
class of problems may be required imperative. Hence, it is essential to understand various model transformation 
languages and approaches used, and tools available. For this purpose this paper focuses on review of existing 
and available Model transformation languages and also comparing them in various aspects. Section 2 of this 
paper represents various transformation languages available. Section 3 presents classification and comparison, 
and Section 4 concludes the paper. 
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II.RELATED WORK 

Available model transformation languages are described in this paper and mentioned as below. 
A. ATL: (Atlas Transformation Language) 

ATL is a domain -specific language for specifying model-to-model transformations. It is a part of the AMMA 
(ATLAS Model Management Architecture) platform.ATL is a hybrid of declarative and imperative. The 
preferred style of transformation writing is declarative, which means simple mappings can be expressed simply. 
However, imperative constructs are provided so that some mappings too complex to be declaratively handled 
can still be specified. An ATL transformation program is composed of rules that define how source model 
elements are matched and navigated to create and initialize the elements of the target models.ATL supports only 
unidirectional transformations. [8],[9],[10],[13], [15], [17] 
Query/View/Transformation (QVT) 

OMG is the root for Query/View/Transformation (QVT) which is a standard language for Model 
Transformation.QVT having Three Languages for Model-to-Model Transformations.1.QVT Relational 2.QVT 
Operational, 3.QVT Core. 
B. QVT Relational 

QVT-Relations is a declarative language designed to permit both unidirectional and bidirectional model 
transformations to be written. A transformation embodies a consistency relation on sets of models. Consistency 
can be checked by executing the transformation in check only mode; the transformation then returns true if the 
set of models is consistent according to the transformation and False otherwise. The same transformation can be 
used in enforce mode to attempt to modify one of the models so that the set of models will be consistent. The 
QVT-Relations language has both a textual and a graphical concrete syntax.[2],[8],[10] 
C. QVT Operational 

 QVT Operational is an imperative model transformation language that extends QVT Relational with imperative 
constructs. The transformations are unidirectional. It uses implicit trace models.[2],[8],[10] 
D. QVT Core 

QVT Core is a simple, low-level declarative model transformation language. It serves as a foundation for QVT 
Relational and is equally expressive. It supports pattern matching over a flat set of variables, where the variables 
of source, target and trace models are treated symmetrically. Trace models must be defined explicitly.[2],[8][10] 
E. Henshin 

EMF Henshin is a continuation of the EMF Tiger transformation language. It uses triple graph grammars (TGG) 
for model-to-model transformation. It is based on the Eclipse Modeling Framework EMF. The transformations 
are described in the form of model consisting of a left-hand-side graph, a right-hand-side and a list of 
correspondence mappings. The graph nodes are model element instances of the source metamodel and the target 
metamodel, respectively. Due to this higher-order transformations are possible with EMF Henshin. [1], [8],[16] 
F. GReAT 

The Graph Rewriting and Transformation (GReAT) language, which is a graphical language for the 
specification of graph transformations between domain-specific modeling languages (DSMLs)? It consists of 
three distinct parts: (1) Pattern Specification language, (2) Graph transformation language, and (3) Control flow 
language. Input and output transformations are defined in terms of meta-models. Set of transformation rules are 
used for model transformation. It is not a stand-alone tool.[27], [28]. 
G.  Kermeta 
Kermeta is a meta modeling language which allows describing both the structure and the behaviour of models. 
The characteristics of Kermeta are Model oriented, Imperative, Kermeta is a meta modelling language which 
allows describing both the structure and the behaviour of models. The characteristics of Kermeta are Model 
oriented, Imperative, Object-Oriented, Aspect-Oriented and Statically Typed (100% type safe).Various versions 
of Kermeta are available. [21],[29] 
H. ETL 

 Epsilon family (Kolovos et al., 2006) is a model management platform that provides transformation languages 
for model-to-model, model-to-text, update-in-place, migration and model merging transformations. Epsilon 
Transformation Language (ETL) provides all the standard features of a transformation language. ETL can 
transform many inputs to many output models. Both source and target model scan query/navigate/modify.ETL 
is a Hybrid model-to-model transformation language. It is part of Epsilon model management infrastructure. 
Several source and target models can be handled by ETL. [33] 
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I. JTL 

 Janus Transformation Language (JTL), is a declarative model transformation language. Distinctive 
characteristics of JTL are non-bijectivity, model approximation. It also supports bi directionality and change 
propagation. Answer Set Programming (ASP) is used to represent the semantics of JTL. [19],[20] 
J. MT 

Model Transformation (MT) is low-cost transformation language and have the same common features as other 
transformation languages. MT is recognized as vital part of MDD. It also provides additional set of new features 
compared to others. MT is a unidirectional model transformation language. MT is also capable of doing change 
propogation. By the MTL ie. Model-to-model, model-to-code. Code-to-model, model-to-text is given in third 
coloumn. Input/output  to any MTL may be one model to one or many which is mentioned as cardinality. How 
MTLs are used to perform transformation, and  how to use is given as technical space. For each MTL  a specific 
tool is available for usage purpose that is also mentioned. When we consider model transformation, in which 
language models are generated is more important. This information is given as modelling language dependency.  
[20],[30]. 

Table 1.Comparision of MTLs 
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III..PROPOSED WORK 

In this section model transformation languages (MTL) are distinguished in various aspects. The correlated 
aspects presented in Table 1 are useful for right model transformation. From literature various Model 
transformation languages have considered for distinguishing. This kind of comparison of number of MTLs is 
not available. Hence, this paper targeted to provide such comparison in which features of languages are focused. 
In Table 1, first column represent name of the MTL. Second One is about Model transformation paradigm gives 
whether MTL is declarative, imperative and hybrid. What kind of transformation provided by the MTL ie. 
model-to-model, model-to-code. code-to-model, and model-to-text is given in third column. Input/output  to any 
MTL may be one model to one or many which is mentioned as cardinality. How MTLs are used to perform 
transformation, and  how to use this transformation is given as technical space. For each MTL a specific tool is 
available for usage purpose that is also mentioned. When we consider model transformation, in which language 
models are generated is more important. This information is given as modelling language dependency.  

IV.CONCLUSION 

In this paper, an overview of model transformation languages have given, and outlined how they can compare 
in different aspects. A review of current model transformation languages is presented here. Identified common 
and unexplored MTLs. Based on this MTLs are capable of providing a flexible, efficient, and practical platform 
for creating model transformations. These transformations are facilitated by tool integration. Distinguish ion 
provided in this paper handle experimentation and also model transformations. Choosing a right transformation 
made easy by the comparison available in this paper. 
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