
Model Transformation Languages: State–
of–the-art

Madhavi Karanam
Computer Science & Engineering

Gokaraju Rangaraju Institute of Engineering & Technology, Hyderabad, india
bmadhaviranjan@yahoo.com

Lavanya Gottemukkala
Computer Science & Engineering

Gokaraju Rangaraju Institute of Engineering & Technology, Hyderabad, india
lavanya.cvsr@gmail.com

Abstract: Model Transformation is a core activity of all model-driven approaches. The success of model
driven approaches like Model-Driven Development, Model-Driven Engineering etc depends on the model
transformations. Hence, Model Transformations has become an emerging approach. Number of
appropriate languages and tools are available for Model transformation. In literature, there are several
studies are available which encounter comparison of Model Transformation Languages. These articles
focused on limited number of languages, related work, motivation and comparison specifications. Hence,
this paper aims to focus on all available model transformation languages and their comparison
specifications considered here which are not yet focused. The main purpose of this paper to present how
timely evolution of model transformation languages have materialized and also the languages are
discriminated in various aspects.

Keywords- Model Transformation, Transformation Languages, Model Driven Engineering, Tools.

I. INTRODUCTION

Transforming models is a main activity of model driven approaches like Model Driven Engineering (MDE),
Model-Driven Development (MDD), as it is a process of converting one model to another model of the same
system. There are various definitions for Model Transformation are available in [1,2].Model Transformations
are used for different activities like creating, modifying, merging, mapping, etc. ,for models in Model Driven
Development.
The central concept of model-driven development approaches is Model transformation. It provides a mechanism
which automatically does the manipulation of models in various ways. This paper deals with survey of existing
model transformation languages. Classif cation used in this paper presents how model transformation languages
are evolved, and the mechanism, i.e. characteristics of the model transformation languages. Selection of model
transformation languages, tools, and techniques are introduced in this paper by using our classif cation scheme.
Model transformations play an important role in Model Driven Engineering (MDE) approach. It is expected that
writing model transformation definitions will become a common task in software development [13]. Software
engineers needs support from Model transformation tools and techniques in performing the task as similar to
support given now by IDEs, compilers, and debuggers in their everyday work. As a result a number of
transformation languages have been proposed. It is observed that, even though the problem domain of these
languages is fixed, they still differ in programming paradigm. For programming languages like declarative,
functional, object-oriented, imperative, etc supporting model transformation languages are already developed
and currently available which usually expose a synthesis of programming paradigms. Different approaches are
suitable for different tasks. It is very clear that a single approach may be provided in future. But understanding
and more experience is base for identifying non trivial problems which is still necessary.
One class of transformation problems may be solved by using one type of paradigm like declarative and other
class of problems may be required imperative. Hence, it is essential to understand various model transformation
languages and approaches used, and tools available. For this purpose this paper focuses on review of existing
and available Model transformation languages and also comparing them in various aspects. Section 2 of this
paper represents various transformation languages available. Section 3 presents classification and comparison,
and Section 4 concludes the paper.

Madhavi Karanam et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 9 No.06 Jun 2017 404

II.RELATED WORK

Available model transformation languages are described in this paper and mentioned as below.
A. ATL: (Atlas Transformation Language)

ATL is a domain -specific language for specifying model-to-model transformations. It is a part of the AMMA
(ATLAS Model Management Architecture) platform.ATL is a hybrid of declarative and imperative. The
preferred style of transformation writing is declarative, which means simple mappings can be expressed simply.
However, imperative constructs are provided so that some mappings too complex to be declaratively handled
can still be specified. An ATL transformation program is composed of rules that define how source model
elements are matched and navigated to create and initialize the elements of the target models.ATL supports only
unidirectional transformations. [8],[9],[10],[13], [15], [17]
Query/View/Transformation (QVT)

OMG is the root for Query/View/Transformation (QVT) which is a standard language for Model
Transformation.QVT having Three Languages for Model-to-Model Transformations.1.QVT Relational 2.QVT
Operational, 3.QVT Core.
B. QVT Relational

QVT-Relations is a declarative language designed to permit both unidirectional and bidirectional model
transformations to be written. A transformation embodies a consistency relation on sets of models. Consistency
can be checked by executing the transformation in check only mode; the transformation then returns true if the
set of models is consistent according to the transformation and False otherwise. The same transformation can be
used in enforce mode to attempt to modify one of the models so that the set of models will be consistent. The
QVT-Relations language has both a textual and a graphical concrete syntax.[2],[8],[10]
C. QVT Operational

 QVT Operational is an imperative model transformation language that extends QVT Relational with imperative
constructs. The transformations are unidirectional. It uses implicit trace models.[2],[8],[10]
D. QVT Core

QVT Core is a simple, low-level declarative model transformation language. It serves as a foundation for QVT
Relational and is equally expressive. It supports pattern matching over a flat set of variables, where the variables
of source, target and trace models are treated symmetrically. Trace models must be defined explicitly.[2],[8][10]
E. Henshin

EMF Henshin is a continuation of the EMF Tiger transformation language. It uses triple graph grammars (TGG)
for model-to-model transformation. It is based on the Eclipse Modeling Framework EMF. The transformations
are described in the form of model consisting of a left-hand-side graph, a right-hand-side and a list of
correspondence mappings. The graph nodes are model element instances of the source metamodel and the target
metamodel, respectively. Due to this higher-order transformations are possible with EMF Henshin. [1], [8],[16]
F. GReAT

The Graph Rewriting and Transformation (GReAT) language, which is a graphical language for the
specification of graph transformations between domain-specific modeling languages (DSMLs)? It consists of
three distinct parts: (1) Pattern Specification language, (2) Graph transformation language, and (3) Control flow
language. Input and output transformations are defined in terms of meta-models. Set of transformation rules are
used for model transformation. It is not a stand-alone tool.[27], [28].
G. Kermeta
Kermeta is a meta modeling language which allows describing both the structure and the behaviour of models.
The characteristics of Kermeta are Model oriented, Imperative, Kermeta is a meta modelling language which
allows describing both the structure and the behaviour of models. The characteristics of Kermeta are Model
oriented, Imperative, Object-Oriented, Aspect-Oriented and Statically Typed (100% type safe).Various versions
of Kermeta are available. [21],[29]
H. ETL

 Epsilon family (Kolovos et al., 2006) is a model management platform that provides transformation languages
for model-to-model, model-to-text, update-in-place, migration and model merging transformations. Epsilon
Transformation Language (ETL) provides all the standard features of a transformation language. ETL can
transform many inputs to many output models. Both source and target model scan query/navigate/modify.ETL
is a Hybrid model-to-model transformation language. It is part of Epsilon model management infrastructure.
Several source and target models can be handled by ETL. [33]

Madhavi Karanam et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 9 No.06 Jun 2017 405

I. JTL

 Janus Transformation Language (JTL), is a declarative model transformation language. Distinctive
characteristics of JTL are non-bijectivity, model approximation. It also supports bi directionality and change
propagation. Answer Set Programming (ASP) is used to represent the semantics of JTL. [19],[20]
J. MT

Model Transformation (MT) is low-cost transformation language and have the same common features as other
transformation languages. MT is recognized as vital part of MDD. It also provides additional set of new features
compared to others. MT is a unidirectional model transformation language. MT is also capable of doing change
propogation. By the MTL ie. Model-to-model, model-to-code. Code-to-model, model-to-text is given in third
coloumn. Input/output to any MTL may be one model to one or many which is mentioned as cardinality. How
MTLs are used to perform transformation, and how to use is given as technical space. For each MTL a specific
tool is available for usage purpose that is also mentioned. When we consider model transformation, in which
language models are generated is more important. This information is given as modelling language dependency.
[20],[30].

Table 1.Comparision of MTLs

LANGUAGE Model
transformati
on paradigm

Type of
transformatio

n

Technical
space

Input/
output

cardinalit
y

Supporting
tools

Direction Modeli
ng

languag
e

depend
ency

 Source

ATL(atlas
transformati

on
language)

Hybrid(mix
er of

imperative
and

declarative)

Model to
model(M2M)

`

EMF(Eclips
e modeling
framework)

 M to N ATL Tool
kit

Unidirectional UML 13,15, 17

QVT
Relational

High-Level
Declarative

Model to
model(M2M)

SmartQVT M to N ModelMorf

EclipseM2
M

Both
Unidirectional

&
Bidirectional

UML 2, 8,10

QVT Core Low level
Declarative

Model to
model(M2M)

EMF(Eclips
e modeling
framework)

 M to N OptimalJ Bidirectional UML 2, 8,10

QVT
Operational

Imperative Model to
model(M2M)

 M to N EclipseM2
M

MagicDraw
SmartQVT

Unidirectional UML 2,8,10

Henshin Graph
Transformat

ion

Model to
model(M2M)

EMF(Eclips
e modeling
framework)

 M to N Henshin
Plug-in

Bidirectional UML
class

diagram
State

macjine

2,8,16

GreAT Graph
Transformat

ion

Model to
model(M2M)

GME M to N
And 1 to

1

 GME &
GR-Engine

Unidirectional UML
Class

Diagra
m

27,28

Kermeta Imperative Model to
model(M2M)

EMF(Eclips
e modeling
framework)

 1 to 1 Kermeta Multidirection
al

UML,D
SML

21,28,29

ETL Hybrid Model to
model(M2M)

Epsilon M to N ETL plug-in Unidirectional - 33

JTL Declarative Model to
model(M2M)

EMF &
AMMA

 JTL Engine Bidirectional UML
State

Machin
e

19.20

MT Declarative Model to
model(M2M)

QVT M TO N MT Unidirectional UML 20,30

Madhavi Karanam et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 9 No.06 Jun 2017 406

III..PROPOSED WORK

In this section model transformation languages (MTL) are distinguished in various aspects. The correlated
aspects presented in Table 1 are useful for right model transformation. From literature various Model
transformation languages have considered for distinguishing. This kind of comparison of number of MTLs is
not available. Hence, this paper targeted to provide such comparison in which features of languages are focused.
In Table 1, first column represent name of the MTL. Second One is about Model transformation paradigm gives
whether MTL is declarative, imperative and hybrid. What kind of transformation provided by the MTL ie.
model-to-model, model-to-code. code-to-model, and model-to-text is given in third column. Input/output to any
MTL may be one model to one or many which is mentioned as cardinality. How MTLs are used to perform
transformation, and how to use this transformation is given as technical space. For each MTL a specific tool is
available for usage purpose that is also mentioned. When we consider model transformation, in which language
models are generated is more important. This information is given as modelling language dependency.

IV.CONCLUSION

In this paper, an overview of model transformation languages have given, and outlined how they can compare
in different aspects. A review of current model transformation languages is presented here. Identified common
and unexplored MTLs. Based on this MTLs are capable of providing a flexible, efficient, and practical platform
for creating model transformations. These transformations are facilitated by tool integration. Distinguish ion
provided in this paper handle experimentation and also model transformations. Choosing a right transformation
made easy by the comparison available in this paper.

REFERENCES
[1] Adaptability of Model Transformations , Ivan Kurtev, PhD Thesis, University of Twente, 2005 ISBN 90-365-2184-X
[2] Literature Study on Model Transformations, Matthias Biehl. Royal Institute of Technology, Tech. Rep. ISRN/KTH/MMK
[3] Verifying Metamodel Coverage of Model Transformations, Junhua Wang, Soon-Kyeong Kim and David Carrington, Proceedings of

the 2006 Australian Software Engineering Conference (ASWEC’06) 1530-0803/06 $20.00 © 2006 IEEE
[4] OMG, UML 2.0 Infrastructure - Final Adopted Specification, OMG document ptc/03-09-15. http://www.omg.org/cgi-

bin/doc?ptc/2003-09-15. 2003
[5] OMG, MDA Guide Version 1.0.1. http://www.omg.org/docs/omg/03-06-01.pdf. 2003
[6] From UML/SPT Models to Schedulability Analysis: a Metamodel-based Transformation AbdelouahedGherbi and FerhatKhendek.

Proceedings of the Ninth IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing 0-
7695-2561-X/06 $20.00 © 2006 IEEE

[7] Model-driven Development of Complex Software: A Research Roadmap, Robert France, Bernhard Rumpe, Future of Software
Engineering(FOSE'07) 0-7695-2829-5/07 $20.00 © 2007,IEEE

[8] A taxonomy of model Transformation.TMens, P Van Gorp - Electronic Notes in Theoretical Computer Science, 2006 – Elsevier pp
125-142

[9] Model Driven Development:Integrating Tools with Practices , Proceedings of the 1997 Workshop on Engineering of Computer-Based
Systems (ECBS '97) 0-8186-7889-5/97 $10.00 © 1997 IEEE

[10] Model Transformation: The Heart and Soul of Model-Driven Software Development, Shane Sendall, Swiss Federal Institute of
Technology in Lausanne WojtekKozaczynski, Microsoft.

[11] A Survey on Incremental Model Transformation Approaches∗ Angelika Kusel1, Juergen Etzlstorfer1, Elisabeth Kapsammer1, Philip
Langer2, Werner Retschitzegger1, Johannes Schoenboeck3, Wieland Schwinger1, and Manuel Wimmer2 ACM/IEEE 16th
International Conference on

[12] A Survey on Incremental Model Transformation Approaches∗ Angelika Kusel1, Juergen Etzlstorfer1, Elisabeth Kapsammer1, Philip
Langer2, Werner Retschitzegger1, Johannes Schoenboeck3, Wieland Schwinger1, and Manuel Wimmer2 ACM/IEEE 16th
International Conference on Model Driven Engineering Languages and Systems September 30, 2013 – Miami, Florida (USA).

[13] Transforming Models with ATL1 FrédéricJouault, Ivan Kurtev
[14] https://wiki.eclipse.org/ATL/User_Guide_-_The_ATL_Language.
[15] http://www.eclipse.org/atl/
[16] Arendt, Thorsten, et al. "Henshin: advanced concepts and tools for in-place EMF model transformations." International Conference on

Model Driven Engineering Languages and Systems. Springer Berlin Heidelberg, 2010.
[17] Jouault, Frédéric, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. "ATL: A model transformation tool." Science of computer

programming 72, no. 1 (2008): 31-39.
[18] Kalnins, Audris, Janis Barzdins, and Edgars Celms. "Model transformation language MOLA." Model Driven Architecture. Springer

Berlin Heidelberg, 2005. 62-76.
[19] Cicchetti, Antonio, et al. "JTL: a bidirectional and change propagating transformation language." International Conference on

Software Language Engineering. Springer Berlin Heidelberg, 2010.
[20] Tratt, Laurence. "The MT model transformation language." Proceedings of the 2006 ACM symposium on Applied computing. ACM,

2006.
[21] Jézéquel, Jean-Marc, Olivier Barais, and Franck Fleurey. "Model driven language engineering with kermeta." International Summer

School on Generative and Transformational Techniques in Software Engineering. Springer Berlin Heidelberg, 2009.
[22] https://code.google.com/archive/p/synclib /
[23] Review of Model to model Transformation approaches and Technology ModelWriter,Text & Model-Synchronize Engineering

Platform. Project number: ITEA 2 13028 Edited by: FerhatErata, Moharram Challenger, Geylani Kardas
[24] http://mola.mii.lu.lv/
[25] http://jtl.di.univaq.it/
[26] Huber, Philipp. The model transformation language jungle: an evaluation and extension of existing approaches. na, 2008.
[27] Daniel Balasubramanian, Anantha Narayanan, Chris vanBuskirk, and Gabor Karsai,The Graph Rewriting and Transformation

Language: GReAT, Proceedings of the Third International Workshop on Graph Based Tools (GraBaTs 2006)
[28] GReAT: A Metamodel Based Model Transformation Language AdityaAgrawal. Proceedings of Automated Software Engineering, 18th

IEEE International Conference, 2003.

Madhavi Karanam et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 9 No.06 Jun 2017 407

[29] www.kermeta.org/documents/tutorials/.../mosser_transformation_with_kermeta.
[30] http://www.tcs-trddc.com
[31] Model transformations and tool integration, Laurence Tratt, Journal of Software and Systems Modelling, 4(2):112-122, May 2005
[32] http://www.eclipse.org/epsilon/doc/etl/

AUTHORS PROFILE

G.Lavanya working as a Asst.Prof in Computer Science and Engineering Department,
Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad. She has
completed her B.Tech in 2010, M.Tech from JNTUH in 2012.She has 4 years of teaching
experience. Her research interest includes software engineering, and Model Driven
Engineering.

Dr.K.Madhavi, working as a Professor in Computer Science and Engineering Department,
Gokaraju Rangaraju Institute of Engineering and Technology. She has completed her B.E
in 1997, M.Tech from JNTUA in 2003 and awarded Ph.D from JNTUA in 2013. She has 19
years of teaching experience. She has published several papers in reputed international
journals and international conferences. Her research interest includes software engineering,
Model Driven Engineering, Data Mining, and Mobile software engineering.

Madhavi Karanam et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 9 No.06 Jun 2017 408

