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Abstract - Authentication of the objects of interest plays a vital role and applicability in security sensitive 
environments .With Pattern recognition to classify patterns based on prior knowledge or on statistical 
information extracted from the patterns provides various solutions for recognizing and authenticating the 
identity of objects or persons. Identifying faces/objects of interest requires to take samples for training 
the classifier and classifying the input probe images with better recognition rate depending on the 
classification features. Facial recognition accuracy decreases when illumination of image is changed and 
with Single Sample per Person, where only one training sample is available does not give best matching 
results. In this paper, we present a model which works by taking different sample images and extracting 
Local Binary patterns, constructing the normalized histograms for training the SVM classifier and then 
classifying input probe images using Binary and Multiclass Support Vector Machines.  
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I. INTRODUCTION 

With various biometric modalities available such as physiological or behavioral traits of humans, Face 
recognition stands out as one of the most popular biometric identification techniques [1].With nonintrusive 
nature of face recognition, where a system is supposed to recognize an uncooperative face in uncontrolled 
environment without the notice of the subject. Usually face recognition methods are classified into a) holistic 
matching methods, in which the whole detected positive sample face images act as an input to the recognition 
system b) feature based, in which some local features such as eyes, mouth and nose are extracted and the feature 
statistics are given input to the recognition system c) hybrid methods which make use of both local features as 
well as the some regions of face for the recognition process. Two main key steps in face recognition steps are 
feature extraction and classification with various methods available in both extraction and classification. A face 
recognition system with the input of an arbitrary image will search in database to output probe images 
identification. Various techniques for face recognition were presented and currently lot of research work 
involving detection, feature extraction and recognition of face images being presented by researchers [3]. 
Principal component analysis (PCA) which efficiently represents face image by a small number of coefficients 
corresponding to the most significant Eigen values and because of no consideration for the separability of 
various classes PCA is more suitable for image reconstruction. Fisherfaces approach (Fisher Discriminant 
Analysis) [4] expressively provides the discrimination among classes. This involves finding a base of vectors 
which maximizes the ratio of between-class difference to within class difference. With artificial neural network 
(ANN) for face recognition, single layer network WISARD [5] separate network for each stored individual is 
created to define the matching procedure of enrolled images. With neural networks Lawrence et al [6] provided 
hybrid neural network approach which combines image sampling, a self-organizing map (SOM) neural network, 
and a CNN. In this SOM is used for dimensionality reduction with mapping from high dimensional sub-image 
space to a lower dimensional discrete space. Convolution network applied to feature detection and classification 
contains iterative convolution and down sampling layers. 

Extraction of patterns from the image sets provides the way out for classification with different. Local Binary 
patterns [7] provide way for face recognition. Local pattern is extracted by binarising the gradients of center 
point to its 8 neighboring points pixel wisely and  patterns are used as features for classification Each face image 
is divided into several sub-regions and within each sub-region, the histogram is calculated. Through some 
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distance measurement, histograms are compared for recognition purpose. Feature extraction from face image 
has gone through various times of work. Local features against environmental variations like Local Binary 
Patterns (LBP), wavelet analysis, Bag of features, HOG features possess good characteristic of spatial-frequency 
localization to detect and recognize facial geometric structure.  

Support Vector machines have been applied extensively in feedforward networks [8].With applications ranging 
from face recognition, to time series prediction and in medical image diagnosis SVMs have successfully 
provided the good success rates.  

Intuitively, given a set of points belonging to classes, SVM finds the hyperplane that separates the largest 
possible fraction of points of the same class on the same side, while maximizing the distance from either class to 
the hyperplane. 

The organization of the paper is done as follows. Section 3 presents Proposed Model. Section 4 Presents 
Implementation results. In last section conclusion of work is presented. 

II. PROPOSED MODEL 

The proposed scheme has been divided into two main modules 1) the feature Extractor: includes preprocessing 
and local binary pattern extraction of face images 2) classifier: includes learning methods and classification of 
face images using SVM classifier. 

 
Fig. 1 Proposed Model 

The Proposed model consists of following phases 

A.  Feature Extraction: 

Feature extraction remains key step in any recognition system where images are collected which may include 
both positive as well as negative images. Discarding of negative images limits the extraction to well defined 
purpose for feature selection and extraction. Principal component Analysis (PCA) can be used to approximate 
the original data with lower dimensional feature vectors. 

By taking Binary values of addressable units of images i.e. image pixels and then taking binary values, these are 
labelled by thresholding each pixel of an image with summation of 3x3 neighborhood and using these calculated 
values. Then the histogram of the labels can be used as a texture descriptor. LBP is more robust to pose changes 
because it relies more on histogram of the pattern in a region. LBP can tolerate small pose variations and 
achieve perfect recognition rate when the rotations are less than 15°. With at most two bit wise transitions from 
0 to 1 or vice versa in circular binary string, a Local Binary Pattern is called uniform pattern. Then histograms 
are normalized which are used for training the Support Vector Machines (SVM). Feature Extraction is done for 
the test face images as well for the training image set. 

Algorithm for Local Binary patterns 

 
 
 
 
 
 
 
 
 
 
 
 

Input -: image Set Img 
For i:= 1 to Length( Img ) 
Compute labelled index C j where to extract features 
S j C j 

S jk LBPExtraction(S j) 
S jk PCA_image (S jk) 
End for  
Output -: LBP patterns 
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Calculated local binary patterns are put in classifier as vectors treated as support vectors .These patterns are 
given input to SVM classifier for matching with already trained local binary patterns. Although various samples 
were taken for validating the accuracy of classifier but only single screenshot of working MATLAB 
implementation of the work is presented. Particular SVM is returned if it gives the best matched result for the 
input face image and labelled Class label is returned if same normalized histograms are there otherwise no class 
label is returned. For 3rd given image no class label. 

IV. CONCLUSION 

Face images can be seen as a composition of micro-patterns which can be well described by LBP. We exploited 
this observation and proposed a simple and e�cient representation for face recognition. In this paper we 
calculated the Local Binary patterns of input probe image and then calculated the normalized histogram which 
when given to SVM Classifier trained with Local Binary pattern Histograms for classification returns the face 
ID if the same normalized histogram is observed using SVM classifier  otherwise it returns no face ID. For 
implementation MATLAB was used to get the results of recognizing the face images from ORL database. 
Although we clearly showed the simplicity of LBP-based face representation extraction and its robustness with 
respect to facial expression, aging, illumination and alignment, some improvements are still possible. For 
instance, using HOG, BURST, and BagOfFeatures various different possible feature classifications models can 
be presented and used for object recognition. A possible direction is to apply a dimensionality reduction to the 
face feature vectors and use other recognition techniques to increase the accuracy rate. 

V. ACKNOWLEDGMENT 

First of all, we are very grateful to almighty Allah for giving us patience and perseverance for completing the 
work successfully. Further we would like to thank Mr. Syed Ali Mehdi (Assistant Prof. Jamia Hamdard) for his 
kind support. At Last but not least we would like to thank Dr. Jyotsna Grover (Assistant Prof. Jamia Hamdard) 
for her valuable suggestions and Kind Supervision. 

REFERENCES 
[1] W. e. a. Zhao, " "Face recognition: A literature survey," " ACM computing surveys (CSUR), pp. 399-458., (2003). 
[2] A. H. a. M. U. 1. Lone, ""A Novel Scheme for Image Authentication and Secret Data Sharing."," International Journal of Computer 

Network and Information Security (IJCNIS) , vol. 8 , no. 10, (2016. 
[3] M. A. a. A. P. P. Turk, ""Face recognition using eigenfaces." in Proceedings CVPR'91., IEEE Computer Society Conference on. IEEE, 

991 
[4] P. N. J. P. H. a. D. J. K. ". Belhumeur, "Eigenfaces vs. fisherfaces: Recognition using class specific linear projection.," IEEE 

Transactions on pattern analysis and machine intelligence , vol. 19, no. 7 , pp. 711-720., (1997): .  
[5] T. J. Stonham, ""Practical face recognition and verification with WISARD."," Aspects of face processing. Springer Netherlands, pp. 

426-441., 1986. .  
[6] S. e. a. Lawrence, ""Face recognition: A convolutional neural-network approach." I," EEE transactions on neural networks, vol. 8, no. 

1 , pp. 98-113., (1997): .  
[7] T. A. H. a. M. P. Ahonen, ""Face recognition with local binary patterns," in" European conference on computer vision, Springer Berlin 

Heidelberg,, 2004..  
[8] M. O. a. M. A. M. H. Faruqe, ""Face recognition using PCA and SVM." Anti-counterfeiting, Security, and Identification in 

Communication," in 3rd International Conference on. IEEE,, 2009..  
[9] J. ". f. t. t. Shi, "" Computer Vision and Pattern Recognition,," in IEEE Computer Society Conference on. IEEE, 1994. 

Ab Waheed Lone et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 9 No.05 May 2017 226




