
On the applicability of Artificial
Intelligence in Black Box Testing

Esha Khanna
Assistant Professor, Information Technology, DAV Institute of Management, Faridabad, India

eshakhanna30@gmail.com

Abstract—Efficient and thorough testing is essential to create quality software. In some cases, software
code may not be available in testing phase. In such scenarios black box testing is used. The work presents
various black box testing techniques. A systematic literature review has been carried out according to the
guidelines proposed by kitchenham. The work discusses the applicability of artificial intelligence
techniques in black box testing.

Keywords- Software Testing; Black Box Testing; Artificial Intelligence; Test Cases.

I. INTRODUCTION

Testing is a process of executing software with the intent of finding errors [1]. According to IEEE (1986,
1990), “Software testing is the process of analyzing a software to detect the differences between existing and
required conditions (that is, bugs) and to evaluate the features of the software system [2].” Efficient and thorough
testing improves the software quality and reduces the maintenance cost. Testing is an umbrella activity and is
carried out in all the phases of software development life cycle. Testing is classified as static or dynamic [3]. In
static technique, testing is performed without actual execution of program. As execution environment is not
required therefore the technique requires fewer resources. Static testing techniques include reviews, inspection
and walkthroughs. Dynamic testing techniques run the software code under test to find out the difference between
required and existing conditions.

Testing is generally carried out by a group of people which are not the part of development team. This is due
to the fact that humans are unwilling to find errors in their own work. In some scenarios software code might not
be available to testing team. In such cases black box testing technique can be used. Black box testing is testing
that ignores the internal mechanism of a system or component and focuses solely on the outputs generated in
response to the selected inputs and execution conditions [4]. The work reviews various black box testing
techniques. An extensive literature review has been carried out to find the gap in the existing literature. The
review has been carried out using the guidelines of Kitchenham [5]. The work also examines the role of artificial
intelligence techniques in black box testing

The goals of the paper are as follows.

 To review black box testing techniques.

 Classify black box testing techniques based on Artificial intelligence.

The paper has been organized as follows. Section two of the work discusses black box testing. Section three
reviews various black box testing techniques. Section four presents artificial intelligence techniques in black box
testing and section five concludes.

II. BLACK BOX TESTING

Black box testing technique intents to find errors in a module without taking into account internal working of
software. Black box testing rely only on the input/output behavior, without any assumption about what happens
in between the “pins” (precisely, the entry/exit points) of the system [6]. According to IEEE 1990, “black box
testing ignores the internal mechanism of a system or component and focuses solely on the outputs generated in
response to selected inputs and execution conditions [4]”. Black box testing relies on the functional requirements
of module under test. It can be applied to all the software testing levels i. e. unit, integration, system, acceptance
and regression. Objective of black box testing is to find that how well a system confirms to specified
requirements. Black box testing techniques are used to find missing or incorrect functionalities of module under
test.

Black box testing process is described as follows. Test cases are created and are fed to system under test.
Actual results are then compared to the predicted results in order to find functional errors. Figure 1 depicts Black
box testing procedure.

Esha Khanna / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 9 No.05 May 2017 165

Figure 1. Black Box Testing

Crafting of good test cases is one of the most important tasks in black box testing. Test case is defined as a set
of test inputs, execution conditions, and expected results developed for a particular objective, such as to exercise a
particular program path or to verify compliance with a specific requirement [7]. According to IEEE std 829-1983
test case is a documentation specifying inputs, predicted results, and a set of execution conditions for a test item
[8].A good test case is a one which has a high probability of finding maximum number of errors. Test cases must
be comprehensive and creative in nature. A good test case has a high potential to improve software quality and
reduce post maintenance costs. Test cases in a test suite must be designed in such a way that execution of test
suite covers functionality of software. Both individual units and interaction among the units must be thoroughly
tested. Figure 2 shows structure of a test case.

Test Case ID Module ID Description Inputs Expected Outputs

Figure 2. Test case structure

III. BLACK BOX TESTING TECHNIQUES

A. Conventional Black Box Testing Techniques

Black box testing techniques are classified as Boundary Value Analysis, Robustness, Equivalence Partitioning
method, Decision Table based, State Table Based and Error Guessing [3,9].

Figure 3. Conventional Black Box Testing Techniques

 BOUNDARY VALUE ANALYSIS: In this technique, test cases are selected on and near the boundary of
the input domain [10,11]. The technique is based on the fact that boundary values of input domain have
higher tendency to detect an error. For n input variable, boundary value analysis technique generates
4n+1 test case [9].

 ROBUSTNESS TESTING: It is an extension of Boundary Value Analysis technique. The technique takes
into account outside values from input domain along with the values on and near the boundary [10, 11].
Software responses are therefore tested for both valid as well as invalid inputs. Robustness testing
technique generates 6n+1 test case for n input variable [9].

 EQUIVALENCE PARTITIONING: In this technique, input domain is partitioned into equivalence classes
in such a way that test cases of same class generate same output results. The technique strives to touch the
completeness of the testing domain without executing the redundant test cases. Equivalent classes are
created for both valid and invalid test cases [10, 11].

 DECISION TABLE: Decision tables are used to represent the logical relationship between conditions
(inputs) and actions (outputs). Test cases are then derived by taking every possible combination of
condition and action [10, 12].

 STATE TABLE BASED: The technique selects test cases covering all the possible states and transactions
on them. This technique is suitable for transaction processing, embedded and real time systems [10, 12].

 ERROR GUESSING: The technique aims to guess the hidden bugs and errors which do not fit into any of
earlier defined situations. Error guessing is based on tester’s expertise along with the history of errors
discovered in earlier project [11].

Esha Khanna / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 9 No.05 May 2017 166

B. Other Techniques

In the work by Blanco et. al. [13] scatter search metaheuristic technique was proposed in order to generate test
cases of Black box suite. The work used branch coverage criteria to generate test cases. Proposed technique was
evaluated on 13 benchmark programs. The work also compared the technique with GA, TSGen and EDA test
case generators.

Frezza et. al. [14] proposed graph data model based technique in order to generate automated test cases for
black box testing. Test cases were crafted by capturing the relationships between design and requirement phases.
The proposed technique was evaluated using floating point arithmetic and logical unit examples. Hu and Lin [15]
used unification mechanism along with constraint solving mechanism in order to generate test cases for black box
suite. The proposed structure was evaluated on UML defined java methods.

Murnane and Reed [16] proposed a mutation based technique in order to generate test cases for black box
testing. The work reported a case study on two different programs comparing mutation based technique,
equivalence class testing and boundary value analysis technique. The reports resulted that test cases generated
using mutation based technique were efficient and effective in black box testing. In the work by Mumtaz and
Sadiq [17] , a tool was developed in order to automate black box test case generation process. The work validated
the tool using line equation problem and concluded that robustness testing techniques are superior to boundary
value analysis.

Chen et. al. [18] combined mirroring and ART technique for black box testing. Mirror ART technique was
applied on square’s input domain and results were compared with ART technique. Results presented that
proposed technique is more cost effective than ART. In the work by Chan and Yu [19] partial dynamic analysis
was used in order to limit the number of test cases in black box test suite. The technique was examined on path
based methods.

Kanatamnehi et. al. [20] proposed a dynamic measure “potential of a branch” to improve on the coverage and
efficiency of BBT. Potential of a branch was calculated by merging structural and coverage information. In order
to increase the branch coverage magnifying branches approach was used. Four different sized programs triangle,
calendar, roots and max were evaluated using the proposed technique and results were effective.

Verma and Karambir [21] finite automata based technique were proposed in order to perform black box
testing for component based software. The work proposed bbt by using DFA and NFA techniques. The work was
evaluated using five UML diagrams of online shopping catalog.

The number of test cases of a black box test suite may become colossal. Due to limited time and resources all
the test cases may not be executed. Test cases are therefore prioritized so that important test cases that have a high
probability of detecting errors are executed first. In the work by Noguchi et. al. [22], black box test cases were
prioritized based on test execution history of similar products. The work took into account ant colony
optimization technique in order to prioritize black box test cases. The proposed framework was simulated using
two products and results in effective testing.

In another work requirement analysis and design specification were used in order to prioritize black box test
cases [23]. The work presented an algorithm for test case prioritization that creates module description document
for each input and output module. Specifications gathered in module description document were then used to
extract the range of each input and output, which were further used generate test cases.

IV. ARTIFICIAL INTELLIGENCE BASED BLACK BOX TESTING TECHNIQUES

Artificial intelligent techniques are classified as Genetic Algorithms, Neural Networks and Fuzzy Logic.

Figure 4. Artificial Intelligence Techniques

A. Genetic Algorithms

Genetic Algorithms are adaptive heuristic search algorithms which mimics the process observed in natural
evolution [24]. Genetic Algorithms are used to solve optimization problems. They follow “survival for the fittest”
principle laid by Charles Darwin. Genetic algorithms are used in black box testing in order to enhance the quality
of test cases. Selection, crossover and mutation are the basic operations of genetic algorithms [24].

Esha Khanna / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 9 No.05 May 2017 167

Last et. al. [25] introduced Fuzzy-based age extension of genetic algorithm (FAexGA) approach in order to
automate test case generation for black box testing. FAexGA included test cases that has higher probability to
find errors and eliminated the test cases that have no probability to expose an error. The proposed approach was
demonstrated on complex Boolean Expression. Results depicted better performance using proposed approach.

In the work by Fisher and Tonjes [26] a Genetic algorithm based automated test data generator for BBT was
proposed. The work used micro genetic algorithms as filters to enhance the test data quality. The work examined
GA components in order to generate qualitative test data for Black Box testing environment.

B. Neural Networks

Neural networks are physical cellular systems which can acquire, store and process the experiential
knowledge [27]. They mimic the human brains in order to carry out learning tasks. Some of the applications of
NN include robotics, securities, medical science, aerospace, recognition and defense. Neural networks are also
being used to carry out the task of software testing. Neural networks learning techniques are used in automatic
generation of test cases for black box testing. In the work by Mariani et. al. [28], a tool AutoBlackTest was
presented in order to generate test cases for GUI application. AutoBlackTest used reinforcement learning
techniques, Q-learning agent and test case selector to generate test cases for interactive application. The work also
compared the proposed technique to GUITAR and resulted that AutoBlackTest generated test cases detects more
failures than GUITAR.

In the work by Lilan, wu et. al.[29], back propogation neural networks based technique was used to generate
test cases covering the functionality of the software under test. The proposed methodology was implemented on
an automatic teller machine (ATM).

In one of the works by Saraph et. al., [30], neural networks were used as classifiers to form equivalence
classes of input domain. The proposed technique was used to reduce the number of test cases of black box test
suite. The technique was based on three phase algorithm on network pruning.

Data mining algorithms were used by Last et. al. [31], to induce functional requirements for test data. The
induced functional requirements were then used to minimize the set of test cases. Info fuzzy networks were used
in order to accomplish the task of data mining. The technique was validated using partial differential equations.

In the work by Vanmali et. al. [32], artificial neural networks were presented as automated oracle to determine
the result of test case. Back propagation algorithm was used to train the neural network. Training of neural
networks was done using black box testing.

In black box testing, number of test cases generated for a system may be colossal. Execution of all these test
cases is not possible due to resource and time constraints. Bhasin et. al. [33] presented a framework which
prioritizes the black box test cases with help of neural networks. The work also presented the guidelines to
prioritize test cases in black box test suite. The proposed technique was implemented on financial management
system.

In another work, neural networks were trained to find out the priority of black box test cases [34]. In training
phase, neural networks were fed with test cases which are manually prioritized using manual test case prioritizer,
design specifications and SRS documents. Trained neural networks were then used to prioritize other test cases on
the scale of 1 to 10; 1 being the highest priority. The proposed work was implemented on enterprise resource
planning system.

In the work by Bhasin et. al. [35], backpropogation neural network model was proposed to prioritize the test
cases. The work was implemented on 200 test cases. 2, 5, 10, 15 and 20 layers neural networks were used to carry
out the experiment. The result concluded the efficiency of neural networks as test case prioritizers.

C. Fuzzy Logic

Marcos et. al. [36] proposed a hybrid intelligent approach based on neuro-fuzzy classifiers and multi-agent
system architecture in order to improve the quality of black box testing. The work compared the efficiency of
traditional black box testing techniques with the proposed hybrid intelligent approach.

 In the work by Sujata et. al. [37], fuzzy logic was implemented in order to generate test cases. The work
proposed search based testing approach using fully logic and natural language processing.

In another work, fuzzy theory was used in black box testing phase to identify acceptability of test cases by
their degree of existence [38]. The work implemented fuzzy theory on graph based testing, boundary value
analysis, equivalence class partitioning and orthogonal array testing.

Esha Khanna / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 9 No.05 May 2017 168

V. CONCLUSIONS

Black box testing is essential at times, when software code is not available during testing phase. Crafting good
test cases for black box testing is one of the most important tasks to create quality software. The work reviews
various techniques for creating and prioritizing black box test cases. The work presents both conventional as well
as artificial intelligence techniques used to increase efficiency of black box testing. The review has been carried
out in accordance with the guidelines proposed by kitchenham [5]. The work also presents the role of artificial
intelligence techniques (Genetic Algorithms, Neural Networks and Fuzzy Logic) in black box testing.

REFERENCES
[1] J. Myers, “The Art of Software Testing, second edition”, John Wiley and Sons, 2004.
[2] IEEE Standard Computer Dictionary: A Compilation of IEEE Standard Computer Glossaries; IEEE; New York, NY.; Software testing,

1990.
[3] A. Bertolino, “A brief essay on Software Testing”, in Thayer, R.H., Christensen, M.J (eds.) Software Engineering, 3rd edition. Vol 1,

pp. 393-441, Wiley-IEEE, 2005.
[4] IEEE Standard Computer Dictionary: A Compilation of IEEE Standard Computer Glossaries; IEEE; New York, NY.; Black, Rex;

(2002), Managing the Testing Process (2nd ed.), Wiley Publishing, 1990.
[5] B. A. Kitchenham, . et. al. “Systematic literature reviews in software engineering .A tertiary study”, Information & Software

Technology .INFSOF , vol. 52, no. 8, pp. 792-805, 2010
[6] IEEE 1990 definition of black box testing.[online]
[7] IEEE Standard 610 (1990) definition of test cases [online].
[8] IEEE std 829-1983 definition of test cases.
[9] N. Chauhan, “Software Testing: Principles and Practices”, oxford publications, 2010.
[10] P. C. Jorgensen, “Software Testing A Craftsman's Approach”, CRC Press, 1995.
[11] C. Kaner, J. Falk and H. Q. Nguyen ”Testing Computer Software”, 2nd Edition, Wiley, 1999.
[12] B. Beizer, “ Software Testing Techniques”, 2nd Edition, Van Nostrand Reinhold, 1990.
[13] R. Blanco, J. Tuya and B. Adenso-Diaz, “Automated test data generation using scatter search approach”, Information and Software

Technology, 51,4, pp. 708-720, 2009.
[14] S. T. Frezza, S. P. Levitan and P. K. Chrysanthis,“Linking requirements and design data for automated functional evaluation”,

Elsevier, 1996.
[15] Y.T. Hu and N.W. Lin, “Automatic black-box method-level test case generation based on constraint logic programming”, IEEE,

Computer Symposium (ICS), 2010 International, pp: 977 – 982 , 2010.
[16] T. Murnane and K. Reed, “On the effectiveness of mutation analysis as a black box testing technique”, conference on Software

engineering, IEEE, 2004.
[17] M.A. Khan and Mohd. Sadiq, “Analysis of black box software testing techniques: A case study”, Current Trends in Information

Technology (CTIT), IEEE, 2011.
[18] T.Y. Chen, F.C. Kuo, R.G. Merkel and S.P. Ng, “Mirror adaptive random testing”, Elsevier, 2004.
[19] E.Y.K. Chan and Y. T. Yu, “Evaluating several path-based partial dynamic analysis methods for selecting black-box generated test

cases”, IEEE, 2004.
[20] H. V. Kantamneni, S. R. Pillai and Y. K. Malaiya,. “Structurally Guided Black Box Testing”, online-

http://www.cs.colostate.edu/~malaiya/structbbox2.pdf
[21] D. Verma and Karambir, “Component Testing Using Finite Automata”, Indian Journal of Computer Science and Engineering (IJCSE),

2012.
[22] T. Noguchi , H. Washizaki, Y. Fukazawa, A. Sato and K. Ota, “ History-Based Test Case Prioritization for Black Box Testing Using

Ant Colony Optimization” Software Testing, Verification and Validation (ICST), IEEE, ISSN-2159-4848, 2015.
[23] H. Bhasin, E. Khanna and Sudha, “Black Box testing based on Requirement Analysis and Design Specification” International Journal

of Computer Application, volume 87, No. 18, 2014.
[24] S. N. Shivanandam and Deepa, “Principles of Soft Computing”, Second edition, Wiley India, 2012.
[25] M. Last, S. Eyal and A. Kandel, “Effective Black-Box Testing with Genetic Algorithms”, Hardware and Software, Verification and

Testing, Vol 3875, Springer, 2006.
[26] M. Fisher and R. Tonjes, “Generating test data for black-box testing using genetic algorithms” Conference on Emerging Technologies

& Factory Automation, IEEE, 2012.
[27] J.M Zurada, “Introduction to Artificial Neural Systems”, Jaico Publishing House.
[28] L. Mariani, M. Pezz, O. Riganelli and M. Santoro , “AutoBlackTest: Automatic Black-Box Testing of Interactive Applications”, IEEE,

2012.
[29] L. Wu, B. Liu, Y. Jin and X. Xie, “Using Back-propagation Neural Networks for Functional Software Testing”, Anti-counterfeiting,

Security and Identification, ASID 2008, 2nd International Conference on 20-23 Aug. 2008.
[30] P. Saraph, M. Last and A. Kandel, “Test Set Generation and Reduction with Artificial Neural Networks” in M. Last, A. Kandel, and

H. Bunke (Editors),.Artificial Intelligence Methods in Software Testing, World Scientific, 2004.
[31] M. Last, M. Friedman and A. Kandel, “The Data Mining Approach to Automated Software Testing” Conference on Knowledge

Discovery in Data, 2003.
[32] M. Vanmali, M. Last and A. Kandel, " Using a Neural Network in the Software Testing Process”, International Journal of Intelligent

Systems, 2002, pp. 45-62.
[33] H. Bhasin and E. Khanna,” Neural Network based Black Box Testing”, ACM Sigsoft Software Engineering Notes, volume 40, 2014.
[34] H. Bhasin, E. Khanna and Sudha, “On the Applicability of Neural Networks in Black Box testing” International Journal of Computer

Application, R S Publications, issue 4, volume 2, 2014.
[35] H. Bhasin, E. Khanna and K. Sharma, “Neural Networks based Automated Priority Assigner”, Series Advances in Intelligent Systems

and Computing, Springer, Volume 381, 2015.
[36] M.A.B. Junior, F.B. de Lima Neto and J. C. S. Fort,” Improving black box testing by using neuro-fuzzy classifiers and multi- agent

systems”, International conference on Hybrid Intelligent Systems, IEEE, October, 2010.
[37] V. Sujatha, K. Sriraman, K. Ganapathi Babu and B.V.R.R. Nagrajuna, “Testing and Test case generation by using Fuzzy Logic and N.

L. P Techniques”, International Journal of Computer Engineering and Technology, volume 4, Issue 3, 2013.
[38] V. Chandra, “Fuzzy Theory in Black Box Testing”, International Journal of Advanced Research in Computer Science and Technology,

Volume 2, Issue 2, 2014.

Esha Khanna / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 9 No.05 May 2017 169

