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Abstract—Nature has always been a source of inspiration for human beings. It is quite apparent in recent 
engineering and optimization problems that have found their solutions in nature-inspired algorithms.  
The basic steps followed by most of these algorithms are same. Difference lies in the way these basic steps 
are implemented. In this paper, implementation details of six recent and popular nature-inspired 
algorithms namely, Artificial Bee Colony Algorithm, Bat Algorithm, Black Hole Algorithm, Cuckoo 
Search Algorithm, Flower Pollination Algorithm and Grey Wolf Optimization Algorithm have been 
discussed. They are further compared on the basis of attributes such as their source of inspiration, the 
individuals in the population, way of selecting current best solution, ways to identify new solutions, ways 
to search better solutions and ways to abandon bad solutions. 

Keywords-Nature-Inspired Algorithm, Black Hole Algorithm, Artificial Bee Colony Algorithm, Bat Algorithm, 
Cuckoo Search Algorithm, Flower Pollination Algorithm, Grey Wolf  Optimization Algorithm. 

I. INTRODUCTION 

Optimization is a mathematical problem that has been encountered ever since in all engineering disciplines. 
Literally it is described as the process of finding the best possible solution. Wide variety of important 
optimization problems are faced by researchers and engineers and so it has observed inclination as an active 
research topic [1]. Real-world engineering optimization problems are difficult to be solved, and most of them are 
NP-hard problems. Optimization tools are used to find optimal solutions for such problems. Actually, for NP-hard 
problems, there happens to be no single efficient solution. They are then resolved by hit and trial or brute force 
approach. In addition, new algorithms have been developed to cope up with these challenging optimization 
problems. Working on the same context meta-heuristic algorithms such as flower pollination, black hole, grey 
wolf etc. has gained popularity due to their high efficiency. 

Optimization algorithms are broadly classified (on the basis of method of operation) as deterministic or 
probabilistic/randomized in nature. Deterministic optimization algorithms require large computational efforts and 
so these algorithms tend to fail as the size of the problem increases. Probabilistic or randomization optimization 
algorithms are computationally inexpensive alternatives to this deterministic approach. These algorithms include 
at least one instruction that is depending on a random numbers [2]. 

Heuristics are the functions which are when used for global optimization helps to select a solution from a set 
of possible solutions that are to be examined next. Deterministic optimization algorithms usually employ 
heuristics for the cause of identifying solution to the problem under consideration. Randomized optimization 
algorithms may use heuristic for selecting the elements of the search space for further computations. Meta-
heuristics are algorithms ‘beyond’ or at ‘higher level’ than heuristics [3]. It is conventional these days that 
randomized optimization algorithms are considered meta-heuristic. 

Meta-heuristics are becoming successful and popular due to their simplicity, ease for implementation as well 
as solution diversity. Most of these algorithms can be easily implemented and their code is generally of less than a 
hundred lines[4]. Along with this, these simple algorithms after being properly implemented can be subsequently 
used for handling a wide variety of optimization problems without much reprogramming. The main factor in the 
success of any meta-heuristic is to find the appropriate balance between the diversity of the solution and the 
computational efforts required to find the solution. Ideally, a meta-heuristic is desirable to obtain the global best 
solution with the maximum speed. Nature-inspired algorithms are most popular meta-heuristic algorithms 
observed these days. In this paper, some of the most commonly used and popular nature-inspired algorithms have 
been discussed and compared. 

Rest of the paper is organized as follows. Section II disuses various classifications of nature-inspired 
computing. Section III is dedicated to discussion and comparison of six nature-inspired algorithms namely, 
Artificial Bee Colony Algorithm, Bat, Black Hole Algorithm, Cuckoo Search Algorithm, Flower Pollination 
Algorithm and Grey Wolf Optimization Algorithm. Section IV concludes the paper. 
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C. Single-Objective Vs Multi-Objective optimization 

Optimization means to identify best possible solution to a given problem. Another classification of 
optimization algorithm is on the basis of number of objectives to be optimized. The algorithm could be  

 Single objective optimization algorithm  

 Multi-objective optimization algorithm 

In case of Single objective optimization, the main goal of optimization is to find the best solution having best 
value of a single objective function. The best value could be minimum or maximum depending on the problem 
under consideration 

III. DESCRIPTION OF NATURE-INSPIRED ALGORITHMS 

In this paper, the main inclination is towards swarm-based algorithms namely Artificial Bee Colony (ABC) 
algorithm, Bat algorithm, Black Hole (BH) algorithm, Flower Pollination algorithm (FPA), Cuckoo Search (CS), 
Grey Wolf Optimization algorithm (GWO). 

A. Artificial Bee Colony 

Artificial Bee Colony (ABC) [17-18] algorithm inspired by the intelligent foraging behaviour of honey bee 
swarms. Each individual in the population is known as a bee. The population of random candidate solutions is 
initialized. According to this algorithm, the colony of honey bees contains three groups of bees: employee, 
onlooker and scout bees. 

Employee bee is associated with a particular food source and carries information about it. Onlooker bee waits 
in the dance area for making a decision to choose a food source on the basis of information shared by employee 
bees. Scout bee goes on a random search to discover new sources. If a candidate solution can’t be improved 
further during a pre-specified number of cycles called limit, then that candidate is replaced by a new food source. 
This newly created solution is compared to existing solutions and best solution achieved so far is memorized.  

Next iteration is started (cycle = cycle + 1) until the stopping criteria is met. The first half of the population 
acts as employee bees and other as onlooker bees. The algorithm improves the solutions under consideration by 
using neighbour search mechanism. Poor solutions are abandoned. The quality of a candidate solution is 
compared to nectar amount of flowers discovered by bees. So, more the nectar of the flower better is the 
attraction of bees towards it. Food sources that can’t be improved are considered scout and are abandoned. Fresh 
food source and hence candidate solutions are generated in place of them to maintain population size. The 
flowchart for ABC algorithm is shown in Figure 4. 

The main features of this algorithm include: 

 The position of a food source represents a candidate solution to the problem. 

 The amount of nectar associated with a food source represents the quality (fitness) of the underlying 
solution.  

 The number of employee bees is equal to the number of food sources. 

 Each employed bee is associated with one and only one food source. 

The major applications of ABC [19]includes lot streaming flow shop scheduling problem [20], dynamic 
deployment of wireless sensor networks [21] etc. 

B. BAT Algorithm 

BAT algorithm [13, 22-23] is a meta-heuristic global optimization nature-inspired algorithm that has been 
inspired by a bat’s capability of echolocation to detect prey and avoid obstacles in the dark. Each individual in the 
population is called a bat. On the basis of search space (having dimensions equal to the number of decision 
variables to be optimized), velocity of all the bats are initialized. Pulse rate (r) and loudness (A) (required to build 
three-dimensional scenario of the surrounding) of all the bats are initialized to random numbers between 0 and 1. 
The flowchart for BAT algorithm is shown in Figure 5. 

Loudness decreases once a bat has found its prey whereas pulse rate emission increases. Each bat depicts a 
possible candidate solution. It is assumed that each bat (taken as a possible solution) flies in a random direction 
with a velocity vi at position xi (possible solution) with a varying frequency or wavelength and particular loudness 
Ai. Search is based on local random walk. 

It has observed wide variety of application including image matching [24], optimization of power system 
stabilizers [25] etc. 
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The probability of switching of local and global pollination has been controlled by switch probability 
݌ ∈ ሾ0,1ሿ. The algorithm works as follows. 

1. Encode and initialize the population of possible candidate solutions (x). Each individual clustering is 
called flower. Define switching probability (p) and set other parameters. 

2. Select current best candidate (best)  

3. Randomly perform search. Generate a random number r. 

4. If r > p 

//Perform global search 

xi(t+1)=xi(t) +L (best - xi(t)) where L is step vector following Levy distribution, t is the current 
iteration. 

Else 

//Perform local search 

xi(t+1)=xi(t) +Ɛ (xa(t) - xb(t)), where xa(t) and xb(t) are randomly selected candidate solutions, Ɛ 
is drawn from uniform distribution between 0 and 1. 

5. If new solution xi(t+1) is better than that of xi(t), then replace xi(t) with xi(t+1). 

As discussed above, FPA and CS algorithms are based on Lévy flight which is considered powerful than a 
random walk. In case of Lévy flights both global and local search capabilities can be carried out simultaneously. 
Lévy flights occasionally perform Lévy steps [38] that help the algorithm to get rid of local valleys.  

Lévy step is depicted as shown in below. 

ܮ ൎ  ሺଵାఉሻݏ/1

where ߚ refers to the Lévy exponent. Parameter s, u and v are described in Equations 1.5 and 1.6. 

ݏ ൌ  ሺଵାఉሻ|ݒ|/ݑ

ݑ ൎ ܰሺ0, ,ଶሻߪ ݒ ൎ ܰሺ0,1ሻ 

where ߪ  is a function of ߚ.. 

F. Grey Wolf Optimizer Algorithm 

Grey Wolf Optimizer (GWO) algorithm is inspired from grey wolves those are predators at the top of the food 
chain. Grey wolf are considered as apex predators and are observed to belong to Canidae family. They have the 
tendency to live in a pack of 5 to 12 wolves. The flowchart is shown in Figure 9. The Grey wolf community 
follows following hierarchy. 

The alphas (xα) (male and females) are the leaders. They take decisions regarding hunting, sleeping place etc. 
The whole pack acknowledges the decisions made by alpha by holding their tails down [39]. Only they are 
allowed to mate in the pack.  

The betas (xβ) (male or female) are at second level in the hierarchy of grey wolves. They have the duty to help 
the alpha in decision-making or other pack activities. They happen to be the best candidate to be the alpha in case 
one of the alpha could not perform its duties. They command the other lower-level wolves but obey the alpha. 
They act as a bridge between alpha and rest of the pack especially in conveying alphas decisions. The omega (xγ) 
(scapegoat) falls at lowest rank in the hierarchy of grey wolf. They have to obey all other wolves and are allowed 
to eat in the end. Sometimes they act as babysitters in the pack.  

Delta wolves have to obey to alphas and betas and are dominated by the omega. Scouts, elders, hunters, 
caretakers has been allocated to this category. Scouts have the duty to warn the pack in case of any danger. 
Sentinels are responsible for the protection of the pack. Alphas and betas that become old falls in the category 
called Elders. Hunters have the duty to help the alphas and betas while hunting. The caretaker wolves have the 
responsibility to take care of the weak, ill, and wounded wolves in the pack. The main phases of their hunting 
mechanism are: 

 Tracking, chasing, and approaching the prey  

 Pursuing, encircling, and harassing the prey until it stops moving  

 Attack towards the prey. 

Some of the important things considered while implementing GWO algorithm are as follows:  

 The hierarchy of wolves is exploited to keep the best solutions obtained so far over each execution. 
The encircling mechanism involved in implementation defines a circle-shaped neighbourhood 
around the solutions also called hyper-sphere. A and C are randomly selected to maintain hyper-
spheres with different random radii. 
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xi2(t)=xβ -A2* Dβ 

xi3(t)= xγ -A3* Dγ 

xi(t+1)=( xi1(t)+ xi2(t)+ xi3(t))/3 

4. If fitness xi(t+1) is better than xi(t) then replace xi(t) with xi(t+1). 

5. Update xα, xβ  and xγ. 

Grey wolf optimizer has been used for wide variety of problems such as parameter estimation in surface 
waves [40], two stage assembly flow shop scheduling [41] etc. 

Table I compares the nature-inspired algorithms under consideration. The algorithms are compared on the 
basis of their source of inspiration, the name of each individual in the population, way of selecting current best 
solution, ways to identify new solutions, ways to search better solutions and ways to abandon solutions. 

TABLE I.  COMPARISON OF NATURE-INSPIRED ALGORITHMS 

Criteria ABC BAT BH CS FPA GWO 

Inspiration 

Foraging 
behaviour 
of honey 
bees  

Echolocation 
used by bats to 
search their prey 

Black hole 
theory of 
the universe 

Parasitic 
behaviour of 
some cuckoo 
species  

Pollination of 
flowering 
plants  

Hunting 
behaviour of 
grey wolves  

Individual Bee  Bat  Star  Nest  Flower  Wolf  

Current 
Best 

solution 

No such 
mechanism  

Fittest bat  Black Hole Fittest nest  Fittest flower  
Alpha xα, 
Beta xβ, Delta 
xγ  

Identify 
new 

solution 

Identify 
new food 
source in 
the 
neighbour  

Update 
frequency, 
velocity and 
location of each 
bat  

Black hole 
attracts all 
other stars 
and 
changes 
their 
position  

Select nest i 
by using step 
vector drawn 
from Lévy 
distribution  

If a randomly 
generated  
number r is 
greater than 
switching 
probability p 
perform global 
search else 
perform local 
search 

Population of 
wolves 
update their 
positions on 
the basis of 
the position 
of xα, xβ and 
xγ.  

Search for 
a better 
solution 

If new food 
source is 
better; then  
replace it  

If a randomly 
generated 
number is less 
than Loudness 
of the bat and 
new location is 
better, then keep 
this new 
location  

If the new 
solution is 
better than 
xBH, then 
designate 
this new 
solution as 
new Black 
Hole  

Randomly 
select a 
solution j. If 
j is better 
than i then 
exchange 
them  

If new flower 
is better than 
replace it.  

From the 
updated 
population of 
grey wolves, 
update xα, xβ 
and xγ.  

Abandon 
solution 

Abandon 
solutions if 
can’t be 
improved  

No such 
mechanism  

Abandon 
star if it 
enters event 
of horizon 
of xBH  

Abandon 
fraction of  
candidates 
(pa)  

No such 
mechanism  

No such 
mechanism  

IV. CONLCUSION 

Optimization problems are widely found in all engineering disciplines. It is described as the process of finding 
the best possible solution. Real-world engineering optimization problems are difficult to be solved, and most of 
them are NP-hard problems. Heuristics are the methods which are used for global optimization and help to select 
a solution from a set of possible solutions that are to be examined next. Meta-heuristics are algorithms ‘beyond’ 
or at ‘higher level’ than heuristics. They are becoming successful and popular due to their simplicity, ease for 
implementation as well as solution diversity. Further, nature-inspired algorithms are meta- heuristic algorithms 
that are widely used for engineering optimization and are developed by taking inspiration from nature. In this 
paper, various kinds of classifications of nature-inspired algorithms have been discussed. Six popular nature-
inspired algorithms are discussed along with their flowcharts and compared on the basis of attributes such as 
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source of inspiration, individuals in the population, selection of current best solution, identification of new 
solutions, search for better solutions and abandonment of bad solutions. 
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