
Design and Implementation of Neural 
Processor for Parsing Manufacturing 

Query Language 
Mr. Girish R. Naik  

 

Associate Professor 
Production Department 

KIT's College of Engineering Kolhapur,India 
 girishnaik2025@gmail.com   

Dr. V.A.Raikar 
 

Director 
Sanjay Ghodawat Group of Institutions, Atigre,  

Kolhapur, India 
var312@yahoo.com 

 

Dr. Poornima G. Naik  
 

Professor  
Department of Computer Studies  

Chh Shahu Institute of Business Education and Research,  
Kolhapur, India 

luckysankalp@yahoo.co.in  

Abstract 
Practically, all the approaches employed for parsing with natural languages use some or other type of neural 
network architecture and some typical statistical function for obtaining a parsing decision. In parsing with neural 
networks an incremental tree is usually obtained by using a set of rules for connecting a possible parse tree to 
the previously obtained incremental tree. In the current work, linguistic data is mapped to corresponding part-of-
speech tags, which are then converted into a set of binary input vectors for each sentence. The tags have 
relationships with their neighbours which are modeled by the neural processor. When input is given to the 
neural processor, these relationships are analyzed and the string with the correct placement of parts-of-speech 
tag is output as syntactically correct else is declared as syntactically incorrect. A single layer network with back 
propagation is employed which utilizes a method based on minimization of error between the desired and actual 
activation of output nodes. A model is developed for dynamically accepting a query in natural language in the 
presentation tier of multi layered architecture which is processed and sent to the middle tier interfaced with R 
Software and MatLab for training the neural network and testing the query input by the user. The requisite Excel 
file in CSV format are generated and processed in the data layer. The entire approach is rendered generic and 
can be applied to similar cases containing the training data in the requisite format in Excel file. The confusion 
matrices generated by both the softwares are compared for  judging the accuracy of classification.   
Keywords- Classification, MatLab, Natural Language, Pattern Matching, R Software, Supervised Neural 
Network, Tokens 

I. INTRODUCTION  
Neural networks aim at development of a computational device operating at a faster rate than the traditional 
system. Artificial neural networks (ANNs) have gained tremendous importance in performing various tasks such 
as pattern matching and classification, optimization functions, vector quantizations and data clustering which 
prove to be difficult and time consuming in traditional systems.  ANNs possess large number of highly 
interconnected processing elements called nodes which usually operate in parallel and have an internal state of 
their own which is referred to as an activation level of neuron. Each neuron is connected with the other by a 
connection link. Each connection link is associated with weights which contain information about input signal. 
The information is utilized by a neural net for solving a particular problem. ANNs collective behaviour is 
characterized not only by their ability to learn but also to recall and generalize training patterns. The main 
property of ANN is its capability to learn. Training a neural network is a process by means of which a neural 
network adapts itself to a stimulus by making proper parameter adjustments resulting in a desired output. EASE OF 
USE 
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Supervised Learning 

In a supervised learning each input vector requires a corresponding target vector which represents the desired 
output.  The input vector along with the target vector is referred to as a training pair. The network here is 
informed precisely about what should be emitted as output. The pattern matching capabilities of neural networks 
can be exploited for parsing a natural language. A typical neural network can capture the information implicit in 
training data which can then be used to model a relationship between input and output data. The declarative 
sentences can be decomposed into pre-subject, subject and predicate and each of the constituents can be 
decomposed further into basic grammatical elements which can then be encoded to constitute valid patterns used 
for training a neural network. The neural processor maps the grammar onto each sentence and computes the 
syntactical validity of a sentence. In a sentence, some constituents may be empty which can be signified with a 
numeric 0. 
The neural networks outweigh other parallel stochastic approaches where they bear the ability to judge the 
correctness of sentence that has never occurred in the training set.  Neural networks can model both probabilities 
and improbabilities.  Another area where neural networks score high as compared to other similar approaches is 
the reduction in the computation time involved in problem solving. Suppose the runtime of the algorithm with 
the conventional approach is R, then for n test runs, the total computation time required is nR. In contrast to this, 
if the training time for the neural network is T and t is the processing time for an given set of input vector, then 
for n test runs, the total computation time is given by,  
 

 T + nt 
 where,  nR >> T+nt, 
 

as the training is done in advance, the runtime is tremendously reduced. 
In the current work, linguistic data is captured from the user and is automatically mapped to corresponding part-
of-speech tags, which are then converted into a set of binary input vectors for each sentence employing numeric 
mapping of part-of-speech tokens. The tags have relationships with their neighbours which are modeled by the 
neural processor. When input is given to the neural processor, these relationships are analyzed and the string 
with the correct placement of parts-of-speech tag is output as syntactically correct else is declared as 
syntactically incorrect. A single layer supervised neural network with back propagation is employed which 
utilizes a method based on minimization of error between the desired and actual activation of output nodes. 
Since the network has no hidden layer, the incorrectness in output can be attributed to weights and weight 
updates can be triggered from the error terms, which is referred to as an external error measure in contrast to 
internal error measure occurring due to one or more hidden layers. 
Tools and Techniques. 
R Software 

The template is used to format your paper and style the text. All margins, column widths, line spaces, and text 
fonts are prescribed; please do not alter them. You may note peculiarities. For example, the head margin in this 
template measures proportionately more than is customary. This measurement and others are deliberate, using 
specifications that anticipate your paper as one part of the entire proceedings, and not as an independent 
document. Please do not revise any of the current designations. 

R is an integrated suite of software applications employed for data manipulation, calculation and graphical 
display. 

R has  
• an effective data handling and storage facility, 
• a large, coherent, integrated collection of intermediate tools for data analysis 
• graphical facilities for data analysis and display and  
• a well developed, simple and effective programming language (called ‘S’) which includes conditionals, 

loops, user defined recursive functions and input and output facilities. Most  of the system supplied functions are 
themselves written in the S language. 

The R functions employed in the current work for training a neural network are depicted in Table I. 
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TABLE I.  R FUNCTIONS EMPOYED FOR TRAINING A NEURAL NETWORK 

 

MatLab 

MatLab incorporates neural network and neural network pattern recognition tools for constructing, training 
and simulating a neural network. Neural network pattern recognition tool has a built-in feature for generating 
confusion matrix for displaying correct classifications and misclassifications visually. Confusion value indicates 
the fraction of values misclassified. 
The MatLab functions employed in the current work for training a neural network are depicted in Table II. 

TABLE II.  MATLAB FUNCTIONS EMPOYED FOR TRAINING A NEURAL NETWORK 

 

II. LITERATURE REVIEW 

In recent years, many neural network models have been proposed for pattern classification, function 
approximation and regression problems. In literature  there exist numerous papers for parsing natural language 
using variety of techniques which focus on techniques such as Deterministic Finite Automata, stochastic models 
and neural networks [1-5]. However, data driven, neural methods overweigh the benefits offered by various 
stochastic approaches.  Neural nets can capture more of the implicit information in the training data since they 
can model negative as well as positive relationships [6-10]. 

Almost all current dependency parsers classify based on millions of sparse indicator features. Not only do 
these features generalize poorly, but the cost of feature computation restricts parsing speed significantly. In their 
work, Chen et.al [11] have  proposed a novel way of learning a neural network classifier for use in a greedy, 
transition-based dependency parser. Because their classifier learns and uses just a small number of dense features, 
the authors claim that it can work very fast, while achieving about 2% improvement in unlabeled and labeled 
attachment scores on both English and Chinese datasets.  
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ANNs are practically “black boxes”, due to the complexity of the networks. Network pruning offers another 
approach for dynamically determining an appropriate network topology. Pruning techniques [12] begin by 
training a larger than necessary network and then eliminate weights and neurons that are deemed redundant. 
Typically, methods for removing weights involve adding a penalty term to the error function [13]. In their work 
authors of paper [14] have made an attempt to open up these black boxes by reducing the complexity of the 
network. The factor makes this possible is the pruning algorithm. By eliminating redundant weights, redundant 
input and hidden units are identified and removed from the network. Using the pruning algorithm, the authors 
been able to prune networks such that only a few input units, hidden units and connections left yield a simplified 
network. Experimental results on several benchmarks problems in neural networks show the effectiveness of the 
proposed approach with good generalization ability.   

III. SUPERVISED LEARNING MODEL FOR PARSING MQL SENTENCES. 

The authors have designed Manufacturing Query Language (MQL) to aid a manufacturing organization a 
quick selection of manufacturing method based on single/multi objective and/or single/multi/function [15-17]. In 
the current work, the authors have designed and implemented a neural processor for parsing MQL sentences. The  
training data consists of the MQL sentences depicted in Table III.  along with the different combinations of all 
invalid statements. 

TABLE III.  SAMPLE MQL SENTENCES 

List All Objectives 
List All Methods 
List All Functions 
List All Methods in ClassS | ClassT | ClassP | ClassM | ClassX 
List All Methods Meeting Objective1|Objective2|. . . . |Objective16 
List All Methods Meeting Objective1|Objective2|. . . . |Objective16 And Function1.1|. . . . . |Function4.6 
List All Methods Meeting Objective1|Objective2|. . . . |Objective16 And Function1.1|. . . . . |Function4.6 
                                                                                              in ClassS | ClassT | ClassP | ClassT | ClassX 
The language contains the following tokens. 
{ List, All, Objectives, Methods, Functions, ClassS, ClassT, ClassP, ClassM, ClassX, Meeting, Objective1, . 

. ., Objective16, Function1.1, . . . ,Function4.6 } 

The shortest sentence is broken into parts of speech tokens as shown in Figure 1. 
 

 
Figure 1. Decomposition of Shortest MQL Sentence into Parts of Speech Tags. 

Similarly, a longest sentence is broken into different parts of speech tokens  as shown in Figure 2. 
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Figure 2. Decomposition of Longest MQL Sentence into Parts of Speech Tags. 

Hence the  sentences shown in Table III can be grouped into one of the six  patterns shown in Table IV. 

TABLE IV.  POSSIBLE DECOMPOSITION OF MQL SENTENCES  

verb-adjective-noun 
verb-adjective-noun-preposition-noun 
verb-adjective-noun-verb-noun 
verb-adjective-noun-verb-noun-preposition-noun 
verb-adjective-noun-verb-noun-conjunction-noun 
verb-adjective-noun-verb-noun-conjunction-noun-prepotition-noun 

Numeric encoding is employed  for constructing an input vector to a neural network using the mapping shown in 
Figure 3. 

 

Figure 3. Numeric Mapping of Parts of Speech Tokens. 
 

The above encoding  mechanism yields the set of valid patterns shown in Table V. Different sentences differ in 
size of tokens as some of parts of speech elements may be missing. The maximum size of the input vector is 9. 
To yield input vectors of uniform size equal to the maximum size 0 padding semantics is employed as shown in 
Table 5. 

TABLE V.  GENERATION OF INPUT VECTORS FOR NEURAL NETWORK 

123000000 

123430000 

123130000 

123134300 

123135300 

123135343 
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Application Architecture 
Figure 4. depicts the layered architecture for the interaction between different layers comprising the application 
where the VB application situated in presentation tier interacts with R Software and retrieves and stores data 
from/to  corresponding Excel files in CSV format. Figure 5. shows capturing, processing and generating a 
response for user input entered in a natural language. 

 
Figure 4. Layered Application Architecture. 

 
Figure 5. Processing of User Input by Supervised Neural Network.  

Control Flow Diagram 
The control flow diagram for reading and parsing MQL sentence is shown in Figure 6. 

                            
 

Figure 6. Control Flow Diagram for Parsing of MQL Sentence by Neural Network 
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Proposed Algorithm 
/* Algorithm in C-Style */ 
/* 
     Every high-level language has built-in string manipulation functions present in a string library. The 

following functions assume the existence of the following string manipulation functions. 
instr() – Accepts two string arguments and returns the position of the second string within a first string, if the 

string is not found returns -1. 
  right() – Accepts two arguments of type string and int, respectively and returns a substring of a string passed 

as the first argument containing  rightmost n characters passed as the second argument to a function. 
Purpose of some functions listed below are only described and their implementation is language dependent. 
save_pattern("mqltest.csv") - Function is used for storing the patter in Excel CSV file format which contains 

10 columns containing 9 words and accept column which is left blank. 
create_file("temp.R") - Function which dynamically generates R file containing a formula and nnet function 

for training neural network. 
create_and_execute("run.bat") - Function which dynamically generates a batch file for environment variable 

settings and execution of R Script. 
save_results("mqlout.csv) - Function for storing the results of the test data in mqlout.csv file. 
update_file("mqltest.csv","mqlout.csv") - Function for updating the mqltest.csv file based on the contents of 

mqlout.csv file which fills out accept column left blank in save_pattern() function. 
result=read_from_file("mqltst.csv") - Function which reads a value in accept column of mqltst.csv file and 

assigns the value to result variable.  
 
*/ 
struct Token 
{ 
    char name[50]; 
    char type[20];   
    int code; 
} 
char words[10][10]; 
int cntWords; 
char syntax[10]; 
char query[50]; 
Token t[50]; 
/* Main function for parsing the given sentence using Neural Network */ 
function parse() 
{ 
            initialize_tokens(); 
 read sentence; 
 cntWords=count_words(sentence); 
             split_words(sentence); 
 for(i=1;i<cntWords ;i++) 
              { 
 for( ii = 1 ;ii< 18;ii++) 
             { 
found = false; 
   if (UCase(Word(i)) = UCase(t(ii).name))  
  { 
    found = True 
    pattern = pattern & CStr(t(ii).code) 
      break; 
   } 
  } 
 
  if (found = =false)  
  { 
   pattern = pattern & "0" 
   } 
     } 
save_pattern("mqltest.csv"); 
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create_file("temp.R"); 
create_and_execute("run.bat"); 
save_results("mqlout.csv); 
update_file("mqltest.csv","mql_out.csv"); 
result=read_from_file("mqltst.csv"); 
 if (result=="y") 
               print "Parsed successfully..."; 
             else 
    print "Syntax Error!" 
} 
/* Function for initializing standard tokens in one of the cateories and encoding numerically */ 
function initialize_tokens() 
{ 
t(0).name = "List" 
t(0).type = "VERB" 
t(0).code = 1 
. 
t(17).name = "Meeting" 
t(17).type = "VERB" 
t(17).code = 1 
} 
/* Function for returning No. of words in a given sentence */ 
function int count_words(char sentence[10]) 
{ 
 int count=0; 
 int pos; 
 pos=instr(sentence,” “); 
             while (pos != -1) 
 { 
  count++; 
  sentence=right(sentence,pos+1); 
  pos=instr(sentence,” “); 
 } 
              return count; 
} 
 
/* Function for splitting the words in a given sentence and storing them in words array */ 
function split_words(char sentence[10]) 
{ 
     words=sentence.split(“ “); 
} 
Figure 7. shows dynamically generated R File. The VB code for dynamic generation of R file is shown in 

Appendix A. 
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#ANN 
mql<- read.csv("D:/R systems/mqlparser.csv") 
table(mql$accept) 
mqlTrain = sample(1:22,20) 
mqlVal = setdiff(1:22,mqlTrain) 
mql[mqlTrain,] 
mql[mqlVal,] 
table(mql[mqlTrain,]$accept) 
table(mql[mqlVal,]$accept) 
library(nnet) 
formula <- accept ~ word1+word2+word3+word4+word5+word6+word7+word8+word9 
studANN = nnet(formula, data=mql, subset=mqlTrain, size = 10, rang = 0.2,decay = 5e-4, maxit = 200) 
table(mql$grade[mqlTrain], predict(mqlANN, mql[mqlTrain,], type = "class")) 
table(student$grade[stVal], predict(studANN, mql[mqlVal,], type = "class")) 
predict(mqlANN, mql[mqlTrain,], type="class") 
predict(mqlANN, mql[mqlVal,], type="class") 

 

Figure 7. Dynamically Generated R File 

IV. RESULTS AND DISCUSSIONS. 

The model proposed above is implemented in VB which interfaces with R software and MatLab for 
constructing and training a neural network. Figure 8-10. show the Graphical User Interface (GUI)  residing in 
presentation tier for supplying training and test data to R software and accepting MQL query in human language 
for parsing. The Excel file in CSV format storing test data which is generated by VB application is shown in 
Figure 11. The content of mqlout.csv file generated on execution of R script is shown in Figure 12. which in turn 
is used for updating the contents of mqltest.csv file. 

 

     
 
            Figure 8. GUI for User Interaction with Neural Network.             Figure 9. GUI for Supplying Data for Training Neural Network. 
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     Figure 10. GUI for Supplying MQL Query to Neural Network                  Figure 11. Dynamically Generated Excel File in CSV Format  
                                                                                                                                                           containing Test Data. 

 
Figure 12. Excel File Generated on Execution of R Script. 

Figures 13-19 show similar steps for parsing of another MQL sentence. 
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Figure 13-19. Parsing of MQL Sentence using Supervised Neural Network. 

The execution of R script in R software is shown in Figure 20. where 2500 records of data set are employed 
for  training purpose and 659 are employed for testing purpose. Figure 21 shows the corresponding confusion 
matrix generated by R Software. As seen in the output of confusion matrix there is 0% misclassification which 
can be attributed to large dataset employed for training purpose taking care of virtually all possibilities. 

      
 

         Figure  20. Execution of R Script in R Software.                       Figure 21. Confusion Matrix Generated by R Software. 
 

The model is also implemented in MatLab using nprtool toolkit. The network generated is shown in Figure 22. 
 

 
 

Figure 22. Neural Network Generated by MatLab. 
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As shown in Figure 23 , the best performance is achieved at epoch 53 with .01% Mean Square Error (MSE). 
The corresponding plots for Receiver Operating Characteristics (ROC) are shown in Figure 24. 

      
 

             Figure 23. Neural Network Performance.                        Figure 24. Receiver Operating Characteristics (ROC) of Neural   
                                                                                                      Network. 

The confusion matrix grid generated by nprtool and neural network are shown in Figure 25 and Figure 26, 
respectively. 

       
 

    Figure 25. Confusion Matrix Grid generated by nprtool.           Figure 26. Neural Network Generated by nnttool of MatLab. 
 

Figure 27 shows regression plots. 
 

 
 

Figure 27. Regression Plots. 
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The M file generated dynamically at presentation tier is shown in Figure 28. 
 

numHiddenNeurons = 20;  
net = newpr(inputs,targets,numHiddenNeurons); 

net.divideParam.trainRatio = 70/100;   
net.divideParam.valRatio = 15/100;   
net.divideParam.testRatio = 15/100;   

  
% Train and Apply Network 

[net,tr] = train(net,inputs,targets); 
outputs = sim(net,inputs); 

  
% Plot 

plotperf(tr) 
plotconfusion(targets,outputs) 

 
Figure 28. Dynamically Generated M File. 

 

Table VI and VII depict the  R Software and MatLab results showing the accuracy of classification. 

TABLE VI.  RESULTS OF R SOFTWARE 

Training Dataset Validation Dataset Entire Dataset 

Total Misclassified Accuracy Total Misclassified Accuracy Total Misclassified Accuracy 
2500 0 100% 659 0 100% 3159 0 100% 

TABLE VII.  RESULTS OF MATLAB  

 
 

Table VIII. depicts the relative comparison between classifications performed by R software and nprtool toolbox 
of MatLab. 

TABLE VIII.  COMPARISON OF CLASSIFICATION RESULTS BY R SOFTWARE AND MATLAB   

 Size of 
Dataset 

Misclassifications  % Accuracy  

R software 3159 0 100% 
MatLab 3151 5 99.8% 

V. CONCLUSION AND SCOPE FOR FUTURE WORK 

In this paper, the authors have proposed a generic model  for parsing a sentence employing 3-tier architecture. 
Back propagation algorithm is employed for training a neural network. The model is implemented using R 
software and MatLab. The model is tested for parsing sentences of Manufacturing Query Language (MQL) 
designed by authors.  Confusion matrix is generated for evaluating the accuracy of classification. The results 
obtained by both R software and MatLab are found to be comparable and close to the actual results. Both 
softwares generate results with more than 95% accuracy. 

In the current work many of the strings that would be rejected by a neural processor which differ in a single 
parts-of-speech tag from their correct counter parts can be identified and neural processor can be further trained to 
detect one or more correct versions of such nearly correct sentences. For achieving this, probabilities of 
correctness can be associated with each sentence and cut-offs can be defined for classifying the sentence into one 
of three overlapping classes, correct, nearly correct and incorrect. A fuzzy neuro processor can be constructed 
wherein the output generated by a neural processor can be input to a fuzzy inference system which would classify 
the sentence into one of correct, nearly correct or incorrect linguistic variables. 
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Appendix A 
Dynamic Generation of R File 

Dim ans(1 To 100) As String 
Dim colnames(1 To 10) As String 
Dim colcnt As Integer 
Dim formula As String 
      colcnt = 1 
      Set oXL = CreateObject("Excel.Application") 
      oXL.Visible = True 
      Set oWB = oXL.Workbooks.Open(filename) 
      Set oSheet = oWB.ActiveSheet 
      colnames(colcnt) = oSheet.Cells(1, 1).Value 
      While (colnames(colcnt) <> "") 
       colcnt = colcnt + 1 
       colnames(colcnt) = oSheet.Cells(1, colcnt).Value 
      Wend 
      colcnt = colcnt - 1 
       oWB.Save 
      oWB.Close 
       Set oRng = Nothing 
      Set oSheet = Nothing 
      Set oWB = Nothing 
      Set oXL = Nothing 
 formula = "formula <- " 
 formula = formula & colnames(colcnt) & " ~ " 
 For i = 1 To colcnt - 2 
  formula = formula & colnames(i) & "+" 
 Next 
 formula = formula & colnames(colcnt - 1) 
 
 'accept ~ word1+word2+word3+word4+word5+word6+word7+word8+word9" 
Open "temp.R" For Output As #1 
Print #1, "#ANN" 
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Print #1, "mqltrain<- read.csv(""" & filename1 & """)" 
Print #1, "mqltest<- read.csv(""" & filename2 & """)" 
Print #1, "mqltrain1 = sample(1:" & Text1.Text & "," & Text1.Text & ")" 
Print #1, "library (nnet)" 
Print #1, formula 
Print #1, "mqlANN = nnet(formula, data=mqltrain, subset=mqltrain1, size=10, rang=0.2, decay=0.0005, 
maxit=200)" 
'#table(mqltrain$accept, predict(mqlANN, mqltrain1, type = "class")) 
'#table(mqltest$accept, predict(mqlANN, mqltest, type = "class")) 
Print #1, "predict(mqlANN, mqltrain, type=""class"")" 
Print #1, "mqlpred = predict(mqlANN, mqltest, type=""class"")" 
pname = App.Path & "\mqlout.csv" 
pname = Replace(pname, "\", "/") 
Print #1, "write.csv(mqlpred,""" & pname & """)" 
Close #1 
MsgBox "R file created successfully..." 
 
Open "run.bat" For Output As #1 
Print #1, "set path=%path%;C:\Program Files\R\R-3.1.2\bin" 
Print #1, "rscript temp.r" 
Print #1, "pause" 
Close #1 
Shell (App.Path & "\run.bat") 
 
      Set oXL = CreateObject("Excel.Application") 
      oXL.Visible = True 
Set oWB = oXL.Workbooks.Open(App.Path & "\mqlout.csv") 
      Set oSheet = oWB.ActiveSheet 
      For i = 2 To Val(Text2.Text) + 1 
       ans(i - 1) = oSheet.Cells(i, 2).Value 
      Next 
       oWB.Save 
      oWB.Close 
       Set oRng = Nothing 
      Set oSheet = Nothing 
      Set oWB = Nothing 
      Set oXL = Nothing 
 
      Set oXL = CreateObject("Excel.Application") 
      oXL.Visible = True 
      Set oWB = oXL.Workbooks.Open(filename) 
      Set oSheet = oWB.ActiveSheet 
      For i = 2 To Val(Text2.Text) + 1 
      oSheet.Cells(i, colcnt) = ans(i - 1) 
      Next 
      oWB.Save 
      oWB.Close 
       Set oRng = Nothing 
      Set oSheet = Nothing 
      Set oWB = Nothing 
      Set oXL = Nothing 
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