
Design and Implementation of Neural
Processor for Parsing Manufacturing

Query Language
Mr. Girish R. Naik

Associate Professor
Production Department

KIT's College of Engineering Kolhapur,India
 girishnaik2025@gmail.com

Dr. V.A.Raikar

Director
Sanjay Ghodawat Group of Institutions, Atigre,

Kolhapur, India
var312@yahoo.com

Dr. Poornima G. Naik

Professor
Department of Computer Studies

Chh Shahu Institute of Business Education and Research,
Kolhapur, India

luckysankalp@yahoo.co.in

Abstract
Practically, all the approaches employed for parsing with natural languages use some or other type of neural
network architecture and some typical statistical function for obtaining a parsing decision. In parsing with neural
networks an incremental tree is usually obtained by using a set of rules for connecting a possible parse tree to
the previously obtained incremental tree. In the current work, linguistic data is mapped to corresponding part-of-
speech tags, which are then converted into a set of binary input vectors for each sentence. The tags have
relationships with their neighbours which are modeled by the neural processor. When input is given to the
neural processor, these relationships are analyzed and the string with the correct placement of parts-of-speech
tag is output as syntactically correct else is declared as syntactically incorrect. A single layer network with back
propagation is employed which utilizes a method based on minimization of error between the desired and actual
activation of output nodes. A model is developed for dynamically accepting a query in natural language in the
presentation tier of multi layered architecture which is processed and sent to the middle tier interfaced with R
Software and MatLab for training the neural network and testing the query input by the user. The requisite Excel
file in CSV format are generated and processed in the data layer. The entire approach is rendered generic and
can be applied to similar cases containing the training data in the requisite format in Excel file. The confusion
matrices generated by both the softwares are compared for judging the accuracy of classification.
Keywords- Classification, MatLab, Natural Language, Pattern Matching, R Software, Supervised Neural
Network, Tokens

I. INTRODUCTION
Neural networks aim at development of a computational device operating at a faster rate than the traditional
system. Artificial neural networks (ANNs) have gained tremendous importance in performing various tasks such
as pattern matching and classification, optimization functions, vector quantizations and data clustering which
prove to be difficult and time consuming in traditional systems. ANNs possess large number of highly
interconnected processing elements called nodes which usually operate in parallel and have an internal state of
their own which is referred to as an activation level of neuron. Each neuron is connected with the other by a
connection link. Each connection link is associated with weights which contain information about input signal.
The information is utilized by a neural net for solving a particular problem. ANNs collective behaviour is
characterized not only by their ability to learn but also to recall and generalize training patterns. The main
property of ANN is its capability to learn. Training a neural network is a process by means of which a neural
network adapts itself to a stimulus by making proper parameter adjustments resulting in a desired output. EASE OF
USE

Mr. Girish R. Naik et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 7 No.12 Dec 2015 142

Supervised Learning

In a supervised learning each input vector requires a corresponding target vector which represents the desired
output. The input vector along with the target vector is referred to as a training pair. The network here is
informed precisely about what should be emitted as output. The pattern matching capabilities of neural networks
can be exploited for parsing a natural language. A typical neural network can capture the information implicit in
training data which can then be used to model a relationship between input and output data. The declarative
sentences can be decomposed into pre-subject, subject and predicate and each of the constituents can be
decomposed further into basic grammatical elements which can then be encoded to constitute valid patterns used
for training a neural network. The neural processor maps the grammar onto each sentence and computes the
syntactical validity of a sentence. In a sentence, some constituents may be empty which can be signified with a
numeric 0.
The neural networks outweigh other parallel stochastic approaches where they bear the ability to judge the
correctness of sentence that has never occurred in the training set. Neural networks can model both probabilities
and improbabilities. Another area where neural networks score high as compared to other similar approaches is
the reduction in the computation time involved in problem solving. Suppose the runtime of the algorithm with
the conventional approach is R, then for n test runs, the total computation time required is nR. In contrast to this,
if the training time for the neural network is T and t is the processing time for an given set of input vector, then
for n test runs, the total computation time is given by,

 T + nt
 where, nR >> T+nt,

as the training is done in advance, the runtime is tremendously reduced.
In the current work, linguistic data is captured from the user and is automatically mapped to corresponding part-
of-speech tags, which are then converted into a set of binary input vectors for each sentence employing numeric
mapping of part-of-speech tokens. The tags have relationships with their neighbours which are modeled by the
neural processor. When input is given to the neural processor, these relationships are analyzed and the string
with the correct placement of parts-of-speech tag is output as syntactically correct else is declared as
syntactically incorrect. A single layer supervised neural network with back propagation is employed which
utilizes a method based on minimization of error between the desired and actual activation of output nodes.
Since the network has no hidden layer, the incorrectness in output can be attributed to weights and weight
updates can be triggered from the error terms, which is referred to as an external error measure in contrast to
internal error measure occurring due to one or more hidden layers.
Tools and Techniques.
R Software

The template is used to format your paper and style the text. All margins, column widths, line spaces, and text
fonts are prescribed; please do not alter them. You may note peculiarities. For example, the head margin in this
template measures proportionately more than is customary. This measurement and others are deliberate, using
specifications that anticipate your paper as one part of the entire proceedings, and not as an independent
document. Please do not revise any of the current designations.

R is an integrated suite of software applications employed for data manipulation, calculation and graphical
display.

R has
• an effective data handling and storage facility,
• a large, coherent, integrated collection of intermediate tools for data analysis
• graphical facilities for data analysis and display and
• a well developed, simple and effective programming language (called ‘S’) which includes conditionals,

loops, user defined recursive functions and input and output facilities. Most of the system supplied functions are
themselves written in the S language.

The R functions employed in the current work for training a neural network are depicted in Table I.

Mr. Girish R. Naik et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 7 No.12 Dec 2015 143

TABLE I. R FUNCTIONS EMPOYED FOR TRAINING A NEURAL NETWORK

MatLab

MatLab incorporates neural network and neural network pattern recognition tools for constructing, training
and simulating a neural network. Neural network pattern recognition tool has a built-in feature for generating
confusion matrix for displaying correct classifications and misclassifications visually. Confusion value indicates
the fraction of values misclassified.
The MatLab functions employed in the current work for training a neural network are depicted in Table II.

TABLE II. MATLAB FUNCTIONS EMPOYED FOR TRAINING A NEURAL NETWORK

II. LITERATURE REVIEW

In recent years, many neural network models have been proposed for pattern classification, function
approximation and regression problems. In literature there exist numerous papers for parsing natural language
using variety of techniques which focus on techniques such as Deterministic Finite Automata, stochastic models
and neural networks [1-5]. However, data driven, neural methods overweigh the benefits offered by various
stochastic approaches. Neural nets can capture more of the implicit information in the training data since they
can model negative as well as positive relationships [6-10].

Almost all current dependency parsers classify based on millions of sparse indicator features. Not only do
these features generalize poorly, but the cost of feature computation restricts parsing speed significantly. In their
work, Chen et.al [11] have proposed a novel way of learning a neural network classifier for use in a greedy,
transition-based dependency parser. Because their classifier learns and uses just a small number of dense features,
the authors claim that it can work very fast, while achieving about 2% improvement in unlabeled and labeled
attachment scores on both English and Chinese datasets.

Mr. Girish R. Naik et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 7 No.12 Dec 2015 144

ANNs are practically “black boxes”, due to the complexity of the networks. Network pruning offers another
approach for dynamically determining an appropriate network topology. Pruning techniques [12] begin by
training a larger than necessary network and then eliminate weights and neurons that are deemed redundant.
Typically, methods for removing weights involve adding a penalty term to the error function [13]. In their work
authors of paper [14] have made an attempt to open up these black boxes by reducing the complexity of the
network. The factor makes this possible is the pruning algorithm. By eliminating redundant weights, redundant
input and hidden units are identified and removed from the network. Using the pruning algorithm, the authors
been able to prune networks such that only a few input units, hidden units and connections left yield a simplified
network. Experimental results on several benchmarks problems in neural networks show the effectiveness of the
proposed approach with good generalization ability.

III. SUPERVISED LEARNING MODEL FOR PARSING MQL SENTENCES.

The authors have designed Manufacturing Query Language (MQL) to aid a manufacturing organization a
quick selection of manufacturing method based on single/multi objective and/or single/multi/function [15-17]. In
the current work, the authors have designed and implemented a neural processor for parsing MQL sentences. The
training data consists of the MQL sentences depicted in Table III. along with the different combinations of all
invalid statements.

TABLE III. SAMPLE MQL SENTENCES

List All Objectives
List All Methods
List All Functions
List All Methods in ClassS | ClassT | ClassP | ClassM | ClassX
List All Methods Meeting Objective1|Objective2|. . . . |Objective16
List All Methods Meeting Objective1|Objective2|. . . . |Objective16 And Function1.1|. |Function4.6
List All Methods Meeting Objective1|Objective2|. . . . |Objective16 And Function1.1|. |Function4.6
 in ClassS | ClassT | ClassP | ClassT | ClassX
The language contains the following tokens.
{ List, All, Objectives, Methods, Functions, ClassS, ClassT, ClassP, ClassM, ClassX, Meeting, Objective1, .

. ., Objective16, Function1.1, . . . ,Function4.6 }

The shortest sentence is broken into parts of speech tokens as shown in Figure 1.

Figure 1. Decomposition of Shortest MQL Sentence into Parts of Speech Tags.

Similarly, a longest sentence is broken into different parts of speech tokens as shown in Figure 2.

Mr. Girish R. Naik et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 7 No.12 Dec 2015 145

Figure 2. Decomposition of Longest MQL Sentence into Parts of Speech Tags.

Hence the sentences shown in Table III can be grouped into one of the six patterns shown in Table IV.

TABLE IV. POSSIBLE DECOMPOSITION OF MQL SENTENCES

verb-adjective-noun
verb-adjective-noun-preposition-noun
verb-adjective-noun-verb-noun
verb-adjective-noun-verb-noun-preposition-noun
verb-adjective-noun-verb-noun-conjunction-noun
verb-adjective-noun-verb-noun-conjunction-noun-prepotition-noun

Numeric encoding is employed for constructing an input vector to a neural network using the mapping shown in
Figure 3.

Figure 3. Numeric Mapping of Parts of Speech Tokens.

The above encoding mechanism yields the set of valid patterns shown in Table V. Different sentences differ in
size of tokens as some of parts of speech elements may be missing. The maximum size of the input vector is 9.
To yield input vectors of uniform size equal to the maximum size 0 padding semantics is employed as shown in
Table 5.

TABLE V. GENERATION OF INPUT VECTORS FOR NEURAL NETWORK

123000000

123430000

123130000

123134300

123135300

123135343

Mr. Girish R. Naik et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 7 No.12 Dec 2015 146

Application Architecture
Figure 4. depicts the layered architecture for the interaction between different layers comprising the application
where the VB application situated in presentation tier interacts with R Software and retrieves and stores data
from/to corresponding Excel files in CSV format. Figure 5. shows capturing, processing and generating a
response for user input entered in a natural language.

Figure 4. Layered Application Architecture.

Figure 5. Processing of User Input by Supervised Neural Network.

Control Flow Diagram
The control flow diagram for reading and parsing MQL sentence is shown in Figure 6.

Figure 6. Control Flow Diagram for Parsing of MQL Sentence by Neural Network

Mr. Girish R. Naik et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 7 No.12 Dec 2015 147

Proposed Algorithm
/* Algorithm in C-Style */
/*
 Every high-level language has built-in string manipulation functions present in a string library. The

following functions assume the existence of the following string manipulation functions.
instr() – Accepts two string arguments and returns the position of the second string within a first string, if the

string is not found returns -1.
 right() – Accepts two arguments of type string and int, respectively and returns a substring of a string passed

as the first argument containing rightmost n characters passed as the second argument to a function.
Purpose of some functions listed below are only described and their implementation is language dependent.
save_pattern("mqltest.csv") - Function is used for storing the patter in Excel CSV file format which contains

10 columns containing 9 words and accept column which is left blank.
create_file("temp.R") - Function which dynamically generates R file containing a formula and nnet function

for training neural network.
create_and_execute("run.bat") - Function which dynamically generates a batch file for environment variable

settings and execution of R Script.
save_results("mqlout.csv) - Function for storing the results of the test data in mqlout.csv file.
update_file("mqltest.csv","mqlout.csv") - Function for updating the mqltest.csv file based on the contents of

mqlout.csv file which fills out accept column left blank in save_pattern() function.
result=read_from_file("mqltst.csv") - Function which reads a value in accept column of mqltst.csv file and

assigns the value to result variable.

*/
struct Token
{
 char name[50];
 char type[20];
 int code;
}
char words[10][10];
int cntWords;
char syntax[10];
char query[50];
Token t[50];
/* Main function for parsing the given sentence using Neural Network */
function parse()
{
 initialize_tokens();
 read sentence;
 cntWords=count_words(sentence);
 split_words(sentence);
 for(i=1;i<cntWords ;i++)
 {
 for(ii = 1 ;ii< 18;ii++)
 {
found = false;
 if (UCase(Word(i)) = UCase(t(ii).name))
 {
 found = True
 pattern = pattern & CStr(t(ii).code)
 break;
 }
 }

 if (found = =false)
 {
 pattern = pattern & "0"
 }
 }
save_pattern("mqltest.csv");

Mr. Girish R. Naik et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 7 No.12 Dec 2015 148

create_file("temp.R");
create_and_execute("run.bat");
save_results("mqlout.csv);
update_file("mqltest.csv","mql_out.csv");
result=read_from_file("mqltst.csv");
 if (result=="y")
 print "Parsed successfully...";
 else
 print "Syntax Error!"
}
/* Function for initializing standard tokens in one of the cateories and encoding numerically */
function initialize_tokens()
{
t(0).name = "List"
t(0).type = "VERB"
t(0).code = 1
.
t(17).name = "Meeting"
t(17).type = "VERB"
t(17).code = 1
}
/* Function for returning No. of words in a given sentence */
function int count_words(char sentence[10])
{
 int count=0;
 int pos;
 pos=instr(sentence,” “);
 while (pos != -1)
 {
 count++;
 sentence=right(sentence,pos+1);
 pos=instr(sentence,” “);
 }
 return count;
}

/* Function for splitting the words in a given sentence and storing them in words array */
function split_words(char sentence[10])
{
 words=sentence.split(“ “);
}
Figure 7. shows dynamically generated R File. The VB code for dynamic generation of R file is shown in

Appendix A.

Mr. Girish R. Naik et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 7 No.12 Dec 2015 149

#ANN
mql<- read.csv("D:/R systems/mqlparser.csv")
table(mql$accept)
mqlTrain = sample(1:22,20)
mqlVal = setdiff(1:22,mqlTrain)
mql[mqlTrain,]
mql[mqlVal,]
table(mql[mqlTrain,]$accept)
table(mql[mqlVal,]$accept)
library(nnet)
formula <- accept ~ word1+word2+word3+word4+word5+word6+word7+word8+word9
studANN = nnet(formula, data=mql, subset=mqlTrain, size = 10, rang = 0.2,decay = 5e-4, maxit = 200)
table(mql$grade[mqlTrain], predict(mqlANN, mql[mqlTrain,], type = "class"))
table(student$grade[stVal], predict(studANN, mql[mqlVal,], type = "class"))
predict(mqlANN, mql[mqlTrain,], type="class")
predict(mqlANN, mql[mqlVal,], type="class")

Figure 7. Dynamically Generated R File

IV. RESULTS AND DISCUSSIONS.

The model proposed above is implemented in VB which interfaces with R software and MatLab for
constructing and training a neural network. Figure 8-10. show the Graphical User Interface (GUI) residing in
presentation tier for supplying training and test data to R software and accepting MQL query in human language
for parsing. The Excel file in CSV format storing test data which is generated by VB application is shown in
Figure 11. The content of mqlout.csv file generated on execution of R script is shown in Figure 12. which in turn
is used for updating the contents of mqltest.csv file.

 Figure 8. GUI for User Interaction with Neural Network. Figure 9. GUI for Supplying Data for Training Neural Network.

Mr. Girish R. Naik et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 7 No.12 Dec 2015 150

 Figure 10. GUI for Supplying MQL Query to Neural Network Figure 11. Dynamically Generated Excel File in CSV Format
 containing Test Data.

Figure 12. Excel File Generated on Execution of R Script.

Figures 13-19 show similar steps for parsing of another MQL sentence.

Mr. Girish R. Naik et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 7 No.12 Dec 2015 151

Figure 13-19. Parsing of MQL Sentence using Supervised Neural Network.

The execution of R script in R software is shown in Figure 20. where 2500 records of data set are employed
for training purpose and 659 are employed for testing purpose. Figure 21 shows the corresponding confusion
matrix generated by R Software. As seen in the output of confusion matrix there is 0% misclassification which
can be attributed to large dataset employed for training purpose taking care of virtually all possibilities.

 Figure 20. Execution of R Script in R Software. Figure 21. Confusion Matrix Generated by R Software.

The model is also implemented in MatLab using nprtool toolkit. The network generated is shown in Figure 22.

Figure 22. Neural Network Generated by MatLab.

Mr. Girish R. Naik et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 7 No.12 Dec 2015 152

As shown in Figure 23 , the best performance is achieved at epoch 53 with .01% Mean Square Error (MSE).
The corresponding plots for Receiver Operating Characteristics (ROC) are shown in Figure 24.

 Figure 23. Neural Network Performance. Figure 24. Receiver Operating Characteristics (ROC) of Neural
 Network.

The confusion matrix grid generated by nprtool and neural network are shown in Figure 25 and Figure 26,
respectively.

 Figure 25. Confusion Matrix Grid generated by nprtool. Figure 26. Neural Network Generated by nnttool of MatLab.

Figure 27 shows regression plots.

Figure 27. Regression Plots.

Mr. Girish R. Naik et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 7 No.12 Dec 2015 153

The M file generated dynamically at presentation tier is shown in Figure 28.

numHiddenNeurons = 20;
net = newpr(inputs,targets,numHiddenNeurons);

net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;

% Train and Apply Network

[net,tr] = train(net,inputs,targets);
outputs = sim(net,inputs);

% Plot

plotperf(tr)
plotconfusion(targets,outputs)

Figure 28. Dynamically Generated M File.

Table VI and VII depict the R Software and MatLab results showing the accuracy of classification.

TABLE VI. RESULTS OF R SOFTWARE

Training Dataset Validation Dataset Entire Dataset

Total Misclassified Accuracy Total Misclassified Accuracy Total Misclassified Accuracy
2500 0 100% 659 0 100% 3159 0 100%

TABLE VII. RESULTS OF MATLAB

Table VIII. depicts the relative comparison between classifications performed by R software and nprtool toolbox
of MatLab.

TABLE VIII. COMPARISON OF CLASSIFICATION RESULTS BY R SOFTWARE AND MATLAB

 Size of
Dataset

Misclassifications % Accuracy

R software 3159 0 100%
MatLab 3151 5 99.8%

V. CONCLUSION AND SCOPE FOR FUTURE WORK

In this paper, the authors have proposed a generic model for parsing a sentence employing 3-tier architecture.
Back propagation algorithm is employed for training a neural network. The model is implemented using R
software and MatLab. The model is tested for parsing sentences of Manufacturing Query Language (MQL)
designed by authors. Confusion matrix is generated for evaluating the accuracy of classification. The results
obtained by both R software and MatLab are found to be comparable and close to the actual results. Both
softwares generate results with more than 95% accuracy.

In the current work many of the strings that would be rejected by a neural processor which differ in a single
parts-of-speech tag from their correct counter parts can be identified and neural processor can be further trained to
detect one or more correct versions of such nearly correct sentences. For achieving this, probabilities of
correctness can be associated with each sentence and cut-offs can be defined for classifying the sentence into one
of three overlapping classes, correct, nearly correct and incorrect. A fuzzy neuro processor can be constructed
wherein the output generated by a neural processor can be input to a fuzzy inference system which would classify
the sentence into one of correct, nearly correct or incorrect linguistic variables.

Mr. Girish R. Naik et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 7 No.12 Dec 2015 154

REFERENCES
[1] Mr. Girish R. Naik, Dr. V.A.Raikar, Dr. Poornima G. Naik, Implementation of DFA Parser for Manufacturing Query Language

Tokens, International Journal of Engineering Sciences and Research Technology, Vol 4, Issue 1, January 2015, p.no 370-382.
[2] J Shavlik, R Mooney, and G Towell. Symbolic and neural learning algorithms: An experimental comparison. Machine Learning, 1992.
[3] P J Wyard and C Nightingale. A single layer higher order neural net and its application to context free grammar recognition.

Connection Science, 4, 1990.
[4] C Lyon. Guidelines for neural network design and their application to natural langage processing. Technical report, School of

Information Sciences, University of Hertfordshire, September 1995.
[5] John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods for online learning and stochastic optimization. The

Journal of Ma- chine Learning Research.
[6] C Lyon and R Dickerson. A fast partial parse of natural language sentences using a connectionist method. In 7th Conf. of European

Chapter of Association of Computational Linguistics, 1995.
[7] H T Siegelmann, E D Sontag, and C Lee Giles. Complexity of language recognition by neural net- works. In 12th World Computer

Congress on Algorithms,Software and Architecture. Elsevier, 1992.
[8] C Lyon. The representation of natural language to enable neural networks to detect syntactic struc- tures. PhD thesis, University of

Hertfordshire, 1994.
[9] Ronan Collobert, Jason Weston, L´eon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011. Natural language

processing (almost) from scratch. Journal of Machine Learning Research.
[10] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut- dinov. 2012. Improving neural networks

by preventing co-adaptation of feature detectors. CoRR, abs/1207.0580.
[11] A Fast and Accurate Dependency Parser using Neural Networks, Danqi Chen and Christopher D. Manning , Computer Science

Department Stanford University Press.
[12] R. Reed, “Pruning algorithms-A survey,” IEEE Trans. Neural Networks, vol. 4, pp. 740-747, 1993.
[13] Simon Haykin, “Neural Networks- A Comprehensive Foundation”, Second Edition, Pearson Edition Asia, Third Indian Reprint, 2002.
[14] S. M. Kamruzzaman, Ahmed Ryadh Hasan, Pattern Classification using Simplified Neural Networks with Pruning Algorithm, ICTM

2005.
[15] Mr. Girish R. Naik, Dr. V.A.Raikar, Dr. Poornima G. Naik, Single Objective Criteria For Selection Of Manufacturing Method,

International Journal of Computer Science and Engineering (IJCSE), Vol. 3, Issue 2, Mar 2014, 35-46.
[16] Mr. Girish R. Naik, Dr. V.A.Raikar, Dr. Poornima G. Naik, Single Objective Single Function Criteria for Selection of Manufacturing

Method, International Journal of Emerging Technology and Advanced Engineering, Volume 4, Issue 2, February 2014, 182-190.
[17] Mr. Girish R. Naik, Dr. V.A.Raikar, Dr. Poornima G. Naik, Multi Objective Criteria for Selection of Manufacturing Method,

International Journal of Advanced Research in Computer Science and Software EngineeringVolume 4, Issue 7, July 2014

Appendix A
Dynamic Generation of R File

Dim ans(1 To 100) As String
Dim colnames(1 To 10) As String
Dim colcnt As Integer
Dim formula As String
 colcnt = 1
 Set oXL = CreateObject("Excel.Application")
 oXL.Visible = True
 Set oWB = oXL.Workbooks.Open(filename)
 Set oSheet = oWB.ActiveSheet
 colnames(colcnt) = oSheet.Cells(1, 1).Value
 While (colnames(colcnt) <> "")
 colcnt = colcnt + 1
 colnames(colcnt) = oSheet.Cells(1, colcnt).Value
 Wend
 colcnt = colcnt - 1
 oWB.Save
 oWB.Close
 Set oRng = Nothing
 Set oSheet = Nothing
 Set oWB = Nothing
 Set oXL = Nothing
 formula = "formula <- "
 formula = formula & colnames(colcnt) & " ~ "
 For i = 1 To colcnt - 2
 formula = formula & colnames(i) & "+"
 Next
 formula = formula & colnames(colcnt - 1)

 'accept ~ word1+word2+word3+word4+word5+word6+word7+word8+word9"
Open "temp.R" For Output As #1
Print #1, "#ANN"

Mr. Girish R. Naik et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 7 No.12 Dec 2015 155

Print #1, "mqltrain<- read.csv(""" & filename1 & """)"
Print #1, "mqltest<- read.csv(""" & filename2 & """)"
Print #1, "mqltrain1 = sample(1:" & Text1.Text & "," & Text1.Text & ")"
Print #1, "library (nnet)"
Print #1, formula
Print #1, "mqlANN = nnet(formula, data=mqltrain, subset=mqltrain1, size=10, rang=0.2, decay=0.0005,
maxit=200)"
'#table(mqltrain$accept, predict(mqlANN, mqltrain1, type = "class"))
'#table(mqltest$accept, predict(mqlANN, mqltest, type = "class"))
Print #1, "predict(mqlANN, mqltrain, type=""class"")"
Print #1, "mqlpred = predict(mqlANN, mqltest, type=""class"")"
pname = App.Path & "\mqlout.csv"
pname = Replace(pname, "\", "/")
Print #1, "write.csv(mqlpred,""" & pname & """)"
Close #1
MsgBox "R file created successfully..."

Open "run.bat" For Output As #1
Print #1, "set path=%path%;C:\Program Files\R\R-3.1.2\bin"
Print #1, "rscript temp.r"
Print #1, "pause"
Close #1
Shell (App.Path & "\run.bat")

 Set oXL = CreateObject("Excel.Application")
 oXL.Visible = True
Set oWB = oXL.Workbooks.Open(App.Path & "\mqlout.csv")
 Set oSheet = oWB.ActiveSheet
 For i = 2 To Val(Text2.Text) + 1
 ans(i - 1) = oSheet.Cells(i, 2).Value
 Next
 oWB.Save
 oWB.Close
 Set oRng = Nothing
 Set oSheet = Nothing
 Set oWB = Nothing
 Set oXL = Nothing

 Set oXL = CreateObject("Excel.Application")
 oXL.Visible = True
 Set oWB = oXL.Workbooks.Open(filename)
 Set oSheet = oWB.ActiveSheet
 For i = 2 To Val(Text2.Text) + 1
 oSheet.Cells(i, colcnt) = ans(i - 1)
 Next
 oWB.Save
 oWB.Close
 Set oRng = Nothing
 Set oSheet = Nothing
 Set oWB = Nothing
 Set oXL = Nothing

Mr. Girish R. Naik et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 7 No.12 Dec 2015 156

	Design and Implementation of NeuralProcessor for Parsing ManufacturingQuery Language
	Abstract
	I. INTRODUCTION
	II. LITERATURE REVIEW
	III. SUPERVISED LEARNING MODEL FOR PARSING MQL SENTENCES.
	IV. RESULTS AND DISCUSSIONS.
	V. CONCLUSION AND SCOPE FOR FUTURE WORK
	REFERENCES
	Appendix ADynamic Generation of R File

