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ABSTRACT: 

The objective of this project is to discuss a versatile speech enhancement method based on the human 
auditory model. In this project a speech enhancement scheme is being described which meets the demand for 
quality noise reduction algorithms which are capable of operating at a very low signal to noise ratio. We will be 
discussing how proposed speech enhancement system is capable of reducing noise with little speech degradation 
in diverse noise environments. In this model to reduce the residual noise and improve the intelligibility of 
speech a psychoacoustic model is incorporated into the generalized perceptual wavelet denoising method  to 
reduce the residual noise. This is a generalized time frequency subtraction algorithm which advantageously 
exploits the wavelet multirate signal representation to preserve the critical transient information. Simultaneous 
masking and temporal masking of the human auditory system are modeled by the perceptual wavelet packet 
transform via the frequency and temporal localization of speech components. To calculate the bark 
spreading energy and temporal spreading energy the wavelet coefficients are used from which a time 
frequency masking threshold is deduced to adaptively adjust the subtraction parameters of the discussed 
method. To increase the intelligibility of speech an unvoiced speech enhancement algorithm also integrated into 
the system. 

I. INTRODUCTION: 

The performance of the automatic speech processing systems degrade drastically when confronted with a great 
adverse noise conditions such as background noise and micro phone distortions. For this reason there is a 
strong demand for quality reduction algorithms capable of operating at very low signal to noise ratio in order 
to combat various forms of noise distortion. The solutions can be classified into two main areas a) 
nonparametric; usually remove an estimate of the distortion from the noisy features, and b) statistical model 
based speech enhancements, statistical model based speech enhancement utilizes a parametric model (1,2) of the 
signal generation process. This project is based on the proposed speech enhancement system which is based on 
subtractive type algorithms. By subtracting the noise estimation from the noisy speech this system estimates the 
short time spectral magnitude of speech. The reason that this is chosen is because of the relative simplicity, in 
the sense that it only requires an estimate of the noise power spectrum; its high flexibility against subtraction 
parameters variation. Here in this project it is to emphasize the reduction of the effect of residual noise and 
speech distortion in the denoising process and the enhancement of the denoised speech (2,3) in high frequency to 
improve its intelligibility. The proposed one consists of two main functions. One is a generalized perceptual 
time-frequency subtraction method based on the masking properties of the human auditory system, this works 
in conjunction with a perceptual wavelet packet transform (PWPT) (11,10,9,1) to reduce the effect of noise 
contamination. The second part of it is an unvoiced speech enhancement (USE) (11,9,5,1) , which tunes a set 
of weights in high-frequency sub-bands to improve intelligibility of the processed speech. The main theme in 
this proposed method is the use of PWPT to approximate 24 critical bands of the human auditory system up to 
16 khz. It enables the components of complex sound to be appropriately segregated in frequency and time in 
order to mimic the frequency selectivity and temporal masking of the human auditory system. This proposed 
method uses PWPT (1,11,2,6) to analyze to improve the perceptual quality of the final  processed speech. 
Parametric formulation of subtractive noise reduction based on the generalized perceptual wavelet transform is 
the second critical step of this proposed method. In this spectral subtraction method fourier transform based 
gain function of the generalized spectral subtraction method and derivation of the close from expressions for the 
subtraction factor to optimize the trade-off in the simultaneous reduction of background noise residual noise and 
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speech distortion. These parameters of GPTFS (1,11, 2, 6) can then be adaptively tuned according to the noise 
level and the masking thresholds derived from the human auditory model in wavelet domain. To integrate 
GPTFS and USE in wavelet domain a new system for speech enhancement is developed. 

II. A PERCEPTUAL WAVELET FILTER BANK ARCHITECTURE: 
Architecture for the perceptual wavelet filter bank: To design this algorithm for enhancing speech a well built 
psychoacoustic model of the ear which has an unsurpassed capability to adapt to noise. In this a new human 
auditory model that adapts to the basic structure of traditional auditory model but replace the time invariant 
band pass filters with WPT in order to mimic the time- frequency analysis of the critical bands according to the 
hearing characteristics of human cochlea. A PWPT is used to decompose the speech signal from 20 Hz to 16 
KHz Into 24 frequency sub -bands that approximate the critical bands, efficient seven level tree structure is 
implemented. This is given in the Fig 1. Two channel  wavelet (1 ,  11 ,2 ,6 )  filter banks are used to split the 
low pass and high pass bands as opposed to only the low pass and high pass bands in the usual wavelet 
decomposition. Advantages: first, Smoothness property of wavelet is determined by the number of vanishing 
moments: more the vanishing moments the stringent bandwidth and stop band attenuation of each sub- band 
and can be more close approximation by using the wavelet decomposition. Second, according to the 
psychoacoustic study of human ears a frequency to bark transformation needs to be performed which can be 
accomplished in audio processing systems by dividing the frequency range into critical bands. Using the perfect 
reconstruction filter bank with finite length filters using different wavelets for the analysis and synthesis scaling 
functions. Let H(z) and G(z) be the low pass (LP) and high pass (HP) transfer functions, before the 
decimation by two operation in each stage of the analysis filter bank. F (z) and J(z) be the LP and HP transfer 
functions, after the up sampling by two operation in each stage of the synthesis filter bank. Then the analysis and 
synthesis filter banks are related by 

                                                                  (1) 
The relationship between the LP and HP filters reduces the number of filters to be implemented for each 

stage of the two-channel filter bank by half. Once the LP filters, H (z) and F (z) are designed the HP filters G(z) 
and J(z) can be derived from the equation (1). According frequency selectivity related to critical band, temporal 
resolution of the human ear, and regularity property of wavelets debauchies wavelet basis is chosen as 

prototype filter and a seven stage WPT  is adopted to  build perceptual  wavelet  filter  bank.   Represents 

WPT  coefficient,  where k is the coefficient number; j is the transform stage from which  is chosen; l is 
the number of “temporal”   coefficients in the critical band. Table I shows the mapping of the PWPT 
coefficients in each stage. Table II shows the comparison of lower ( ) and upper ( ) frequencies, center 
frequency ( ) and bandwidth ( ) in hertz between the critical band rate and the proposed perceptual wavelet 
packet tree scale. Fig 2 shows the difference in the critical band rate between the critical bands and the 

proposed perceptual wavelet packet tree structural bands. The critical band rate in bark is approximated by 

where the frequency, , is measured in Hz. 

                                            (2) 

Ranganadh Narayanam / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 7 No.10 Oct 2015 109



 

Fig 1: Perceptual wavelet packet decomposition tree (PWPT) 

 

Fig 2: center frequency of critical bands and perceptual wavelet packet decomposition tree. 

Table 1 perceptual wavelet filter banks coefficients. 
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Table 2 Critical band rate Z and perceptual wavelet filter banks W 

 

In figure 3 it is given that the bandwidths of the critical bands and the perceptual wavelet packet tree it is 
form the figure 3 that the critical bands have constant width at approximately 100 hz for centre frequencies upto 
500 hz, and the bandwidths increase as the centre frequency increases further. The critical bandwidth (CBW) 
(11,1,3,8) is hertz is calculated by 

                                                      (3) 

 

Fig. 3: Bandwidths of critical bands and perceptual wavelet packet decomposition tree. 
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Fig 4: ATH in (a) frequency, (b) bark, and (c) perceptual wavelet packet tree scales. 

Figure 4 compares the absolute threshold of hearing (ATH) in hertz, critical band scale, and perceptual 
wavelet packet scale. The ATH characterizes the amount of energy needed in a pure tone such that it can be 
detected by a listener in a pure tone such that it can be detected by a listener in a noiseless environment. The 
table II and figures given it makes clear regarding the proposed perceptual wavelet packet tree can closely 
mimic the experimental critical bands. The parameters of the discrete WPT (11,6,9,1) filter used to derive the 
plots of figures are determined based on the auditory masking properties. 

III. ADAPTIVE SPEECH ENHANCEMENT SYSTEM: 
The proposed adaptive speech enhancement  system a new GPTFS method based on the PWPT and the human 
auditory perception is being discussed. Its parametric formulation is derived from the basis of the generalized 
Fourier spectral subtraction algorithm. The  GPTFS algorithm incorporates most of the basic subtraction rules 
and realizes the subtraction in a broader time-frequency domain. To get better perceptual outputs more crucial 
information has been preserved than in the Fourier transform domain. The block diagram for this system is given 
Fig 5. 

 

Fig 5: Architecture of the proposed speech enhancement system. 

After the noisy signal x[n] is decomposed by PWPT, the transform sequence is enhanced by a subtractive type 
algorithm to produce the rough speech estimate. To calculate a time frequency masking threshold this 
estimate is useful. To compute an estimation of the original speech masking threshold which is masking 
dependent this threshold is used. This approach assumes that the high energy frames of speech will partially 
mask the input noise, hence reducing the need for a strong enhancement mechanism. Frames containing less 
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speech will undergo an overestimated subtraction. To further improve the intelligibility (2,8,9,11,1) of 
processed speech, an USE is applied. The processed speech is reconstructed by the inverse PWPT. During 
speech pauses the noise estimation is assumed to be available and is performed. The general speech pause 
detection algorithm is adopted for the noise spectrum estimation by tracking the power envelope dynamics. 
The speech pause detection algorithm has been extended for sub band processing. 
A) Generalized perceptual time-frequency subtraction: noisy signal x[n] = s[n] + v[n] 
x[n] and s[n] are the noisy and original speech respectively. V[n] is the additive noise. To capture the 
localized information of transient signal, the PWPT is applied to the noisy input speech 

                       (4) 

Where, ,  and  are the wavelet transform coefficients of a noisy signal, clean 
signal, noise. (j, k) in the subscript of w corresponds to its scale translation indexes. jmax is the maximum 
number of levels of wavelet decomposition. Then according to spectral subtraction method in the wavelet 
domain  the  estimated power of the enhanced speech is given by 

               (5) 
 
Where , , , are the estimates of the power wavelet coefficients of the 
noise suppressed speech signal the noisy speech and the estimated noise in the wavelet domain. The time 
average noise spectrum is obtained as 

                                    (6) 

Where i is frame index. Human speech is based on mixing voiced and unvoiced phonemes over time are the 
consideration taken into account for this design. For this reason s[n] is nonstationary over time interval of above 
250ms, and the noise v[n] is assumed to be piecewise stationary or more stationary than s[n], which is valid for 
most noise encountered, then input signal x[n] is divided into 128 samples. 

                                   (7) 

The wavelet power spectrum of the estimated speech signal includes error terms due to the nonlinear mapping of 
spectral estimates, the variations of the instantaneous noise power about the estimated mean noise power. The 
final gain is given by 

                               (8) 
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Where  is posterior  SNR,  which  is defined as the ratio 
of the wavelet power spectrum of the noisy speech signal to that of the estimated noise. The input noisy speech 
is attenuated more heavily with decreasing posterior SNR and vice versa with increasing posteriori SNR. The 
residual noise is made perceptually white by using several flexible subtraction parameters. These subtraction 
parameters are chosen to adapt to a criterion associated with human auditory perception. It considers only the 
simultaneous masking property of the human auditory system. The effects of PWPT gain function’s parameters 
have the effects in the design 1) The subtraction factor controls the amount of noise subtracted from the noisy 
signal. Over subtraction allows the time-frequency spectrum to be attenuated more than necessary. This factor 
must be selected in an appropriately. 2) The noise flooring factor [3] makes use of the addition of background 
noise to mask the residual noise. It determines the minimum value of the gain function. If this factor is 
increased parts of the residual noise can be masked. 3) The exponent [4] determines the abruptness of the 
transition from pure clean speech to pure noise in noisy speech. To formally select these adaptation parameters 
we need to optimize the fixed gain function. To segregate the residual noise from the speech distortion a 
differential wavelet coefficient is defined as the difference between the wavelet coefficients of the clean speech 
and the enhanced speech. In this case the difference in the  gain 
function is that the optimization here is based on the thresholding (2,6,8,1) criterion that correrelate with 
both temporal and simultaneous maskings. The auditory perception is better approximated by using more 
complex wavelet basis and efficient filter bank structure. The optimal gain function is given by 

                    (9) 
By equating the adaptive gain function to the optimal gain function and then considering the power 
subtraction the closed form expressions for the subtraction parameters alpha and beta are derived. The above 
equations are used to assure the subtraction parameters alpha and beta is adapted to the masking threshold of 
human auditory system to achieve a good trade-off between the residual noise speech distortion and 
background noise. In high SNR condition the parameter alpha is increased to reduce the residual noise at the 
expense of introducing more speech distortion. In low SNR condition the parameter beta is increased to trade 
(4,6,8) the residual noise reduction for an increased background noise in the enhanced speech. If the masking 
threshold is low the subtraction parameters will be increased to reduce the effect of residual noise. If the 
masking threshold is high the residual noise will naturally be masked and become inaudible. Therefore the 
subtraction parameters (9,7,8,1) can be kept at their minimal values to minimize the  speech distortion. 
B) Unvoiced speech enhancement: The intelligibility of the processed speech is further improved by an 
USE. It is given in the Fig 5.Although the GPTFS sub-system is useful for enhancing the portion of speech 
signal that contains most of the signal energy, for this soft thresholding is used to enhance the portion of speech 
signal that is in the high-energy high frequency bands. To enhance the portion of the speech that is in the high 
frequency range without degrading the performance of the overall system, the USE unequally weights the 
frequency bands to amplify only those components with detectable peaks in the high-frequency range. The time-
frequency energy (TFE), which is estimated using the wavelet coefficients, is applied in this subsystem. 

                                                                   (10) 
Fjmax is the total frame length. Fj is the frame length of each subband. To estimate the enhanced original 
speech, the assumption is that TFE of noise does not change much over time. USE spans over several frames. 
To amplify those high-frequency bands containing components of unvoiced speech without affecting all other 
high frequency bands, a threshold is defined [5]. Different wavelet coefficients of the processed speech are then  
emphasized  (9,8,7) via their weights. Uj,k = 1. The weighted coefficients are given by 
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                                                                              (11) 
GPTFS either amplifies or attenuates a particular frequency band based on the estimated signal energy 
content in low frequency. USE is effective only when the SNR is high. In the case of low SNR, GPTFS have 
suppressed most energy of noise while significantly reduced the unvoiced speech at the same time. Still the 
succeeding USE (1,11,6,8) can still estimate the noise and tune a set of weights to somewhat enhance the 
unvoiced speech. 
 

                                                                                                                                             (12) 

Where IPWPT means inverse PWPT. 

IV. EXPERIMENTAL RESULTS: 
The discussed method is evaluated with speeches produced in various adverse conditions and compared 
against the following competitive methods: 1) speech enhancement method using perceptually constrained gain 
factors in critical-band-WPT 2) speech enhancement method incorporating a psycho acoustical model in 
frequency domain 3) wavelet speech enhancement method based on the teaser energy operator. 
4) Perceptual time-frequency subtraction algorithm 5) single channel speech enhancement based on masking 
properties of human auditory system 6) parametric spectral subtraction. The noisy environments include white 
Gaussian noise, pink noise, Volvo engine noise, F16 cockpit noise, factory noise, high-frequency channel noise, 
and speech like noise. Noise added to the clean speech signal with different SNRs. 
A) SNR Improvement and Itakura Saito (IS) distortion: The  amount  of  noise  reduction  is  generally 
measured in terms the SNR improvement, given by the difference between the input and output segmental 
SNRs. The pre-SNR and post-SNR are defined in the equation 40. Where K represents the number of frames 
in the signal and N indicates the number of samples per frame. The segment SNR improvement is defined as 
SNR post  – SNR pre.  Which is given in 13, 14 and 15 equations. 

                                          (13) 

                                                               (14) 

                                           (15) 
This equation takes into account both residual noise and speech distortion. the figures 6(a)-9(a) compare the 
SNR improvement of various speech enhancement methods in white noise, Volvo engine noise, factory noise, 
and speechlike noise with different noise level. The discussed methods has higher SNR improvement than  
other methods, particulary for low-input SNRs. The best noise reduction is obtained in the case of white 
gaussion noise, while for colored noise the improvement is less prominent (4,7,3) . According to the 
experiements though the SNRs are very similar at the output of the enhancement system, the listening test 
and speech spectrograms can produce very divergent results. So to indicate the speech quality IS distortion 

also have to be considered. It is derived from the linear  predictive coefficient  vector  of the original 

clean speech frame and the processed speech coefficient vector as
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(16) 
 
Where and are the all-pole gains for  the processed and clean speeches, and denotes the 
clean speech signal correlation matrix. Smaller value of IS implies better speech quality. The figures 6(b)-9(b) 
show the IS distortion of various methods in different noise environments at varying noise levels. According to 
all these proposed method outperforms remaining methods. The USE of the proposed system (5,6 ,7,8)  
components for the speech in the high frequency range. When the SNR is high the proposed system has 
excellent performance. 

 

Fig. 6: Comparison of different speech enhancement methods in white Gaussian noise by (a) SNR improvement and (b) IS distortion. 

A. Speech  spectrograms: the above objective  measures do not provide information  about  how speech 
and noise are distributed across frequency, for this reason we need to go for speech spectrograms. Fig 10 Shows 
the comparisons of the speech spectrograms obtained by different enhancement methods in speechlike noise. As 
the nonstationarity of noise increases, the results of our proposed method are still better than other algorithms. 
This is because the proposed PWPT filter bank has closely approximated the critical bands of the human 
auditory system. By appropriately segregating (11, 10, 9,1) the speech and noise components of the noisy 
speech in frequency and time, the subtraction parameters of our proposed GPTFS method adapt well to the 
combined temporal and simultaneous masking threshold. When the noise is speech like then there are worst 
result. 

 

Fig. 7: Comparison of different speech enhancement methods in Volvo engine Noise by (a) SNR improvement and (b) IS distortion. 
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Fig. 8: Comparison of different speech enhancement methods in factory noise by (a) SNR improvement and (b) IS distortion. 

 

Fig. 9: Comparison of different speech enhancement methods in speechlike noise by (a) SNR improvement and (b) IS distortion. 

V. CONCLUSION: 
The system consists of two functional stages working cooperately to perform perceptual time- frequency 
subtraction by adapting the weights of the perceptual wavelet coefficientceints. The noisy speech is first 
decomposed into critical bands by perceptual wavelet transform. The temporal and spectral pyschoacoustic 
model of masking is developed to calculate the threshold to be applied to GPTFS method for noise reduction. 
The unvoiced speech is also enhanced by a soft thresholding scheme. Different spectral resolutions of the 
wavelet representation preserve the energy of the critical transcient components so that the background 
noises,distrotion, and residual noise can be adaptively processed by GPTFS method. Both the temporal and 
simultanious maskings of the tuning of subtraction parameters in the proposed GPTFS are considered. Together 
with the USE, the system makes an average ANR improvement of 5.5% by objective measurements, an average 
intelligibility improvement of 8% by subjective evaluation. 
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Fig. 10: Speech spectrograms. (a) Original clean speech. (b) Noisy signal (additive speech like noise at a SNR = 0 dB). (c), (d), (e) are the 
Speech enhanced by above specified recent methods specified (g) Speech enhanced by the proposed method. 
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