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Abstract-Multi-robot Search system is one area that attracts many researchers. In the field of multi-robot 
system one of the problem is to design a system that allow the robot to work within a team to find a 
target. There are many methods that are used on the multi-robot systems. One of the methods is Particle 
Swarm Optimization (PSO) that uses a virtual multi-agent search to find a target in a 2 dimensional 
search space. In this paper we present a multi-search algorithm by modifying the Particle Swarm 
Optimization algorithm to model an abstracted level theeffects of changing aspects and parameters of the 
system suchas number of robots. 
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I. INTRODUCTION 

Robotic search are used in many real-world applications like search and rescue, object finding, hazardous waste 
cleanup [1] and planet exploration [2]. By growing the technology, researchers felt the need to use multi-robot 
systems to solve the problems of mobile robotics in a more efficient way and also to tackle the problems that are 
difficult for single robotic systems to solve. Using Multi-robot in searching task decrease the search time to find 
the located target and improve the robustness against failure of single robots by redundancy as well as individual 
simplicity. Since the swarm provide more environmental information and sensory then the decision making in 
this system is stronger than the single agent. Although search has been well explored in the past [3], using multi-
robot systems for search is a more recent development and has not yet been studied extensively.  

The time consuming to collect experimental data with multi-robot system in the real world is high therefore this 
limitation motivates the use of abstracted model which uses approximations of details of the system which have 
little impact on the targeted performance metrics. There are two categories for such models: Microscopic and 
Macroscopic. Macroscopic models a swarm robotic as a whole and Microscopic models each robot separately.  

In 1995 James Kennedy and Russell Eberhart introduced Particle Swarm Optimization (PSO) that was based on 
social behavior of fish schooling or bird flocking [4, 5]. PSO is one of the evolutional optimization methods and 
can solve many optimization problems that are encountered in various fields of technology. This method 
because of the simple concept and easy implementation has developed fast in recent years .In bird flocking, a 
flock of birds is looking for food and tries to keep following the members of the group that have the closest 
position to the food. The birds that have the better situation inform others and they simultaneously move toward 
that place. By doing this process iteratively and communication among them, they might achieve the better 
places and find the food faster. Particle Swarm Optimization by imitating from the social behavior of bird 
flocking, initializes a population of particles that simulates a flock of birds. The particles that each is represented 
as a solution are spread out in the search space randomly and search for finding the optimal or near optimal 
solution by generating new solutions. Each particle is represented with its position that is as a set of coordinates, 
which describes a point in a search space and its velocity and it’s best past position achieved so far. At each 
iteration of the algorithm, particles in their current positions are evaluated through fitness function and if the 
value of fitness function is better than any that is found so far, it is stored as the best position called ௕ܲ௘௦௧. The 
particle with the closest position to the goal gets the highest value in fitness function and is stored as ܩ௕௘௦௧. After 
that, the next position that particle has to go and also its velocity is calculated by the following formula: 

௜ାଵݒ ൌ .ݓ ௜ݒ ൅ ߮௣. ௣൫ݎ ௕ܲ௘௦௧೔ െ ௜൯ݔ ൅ ߮௚. ௕௘௦௧೔ܩ௚൫ݎ െ  ௜൯       (1)ݔ

௜ାଵݔ ൌ ௜ାଵݒ ൅  ௜            (2)ݔ

where w is the inertia coefficient which slows the velocity over time to prevent explosions of the swarm and 
ensure ultimate convergence,߮௣ is the weight given to the attraction to the previous best location of the current 
particle and ߮௚is the weight given to the attraction to the previous best location of the particle neighborhood. 
,௚ݎ  .௣are the random numbers between (0,1) generated at each iteration randomly for each particleݎ

The parallel between the multi-agent search in the robotic scenario and the multi-agent search in the virtual 
optimizationspace has been recently explored in several instances.Distributed unsupervised robotic learning was 
accomplishedin a robotic group by assigning each robot a unique PSOparticle that represented the robot 
controller [6]. Adaptationsof PSO have been used for multi-robot odor search in severalinstances [7,8]. Particle 
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Swarm Optimization was alsoapplied recursively to a multi-robot search task, where the parameters of the PSO-
inspired search were optimized by anexternal PSO algorithm [9]. The effect of including aspectsof multi-robot 
search in PSO has been partially explored[10]. Additionally, PSO was used as an inspiration for asolution to a 
multi-animal foraging task [11], which could beapplied to multi-robot systems as well. However, none of 
theseapplications extend the inspiration to use PSO as an effectivemodel of the robot group performance. 

II. TECHNIQUES 

By Modifying the PSO algorithm and applying on the multi-robot search system we can generate an effective 
search algorithm.In this paper we exchange the particles, Fitness function and Continues Search space in Basic 
PSO to Robots, Camera of the robots and Discrete Search space. 

A. Discrete Search space 
 
The real space has transformed into two-dimensional search space that are divided into squares. Each 
square, which is called a cell, represents a square in the real world with a selected size (for the algorithm 
itself, the size does not play any important role). The environment in this paper contains a single target and 
there are no obstacles in the search space. Each cell in the search space is marked as a safe cell or unsafe 
cell. If a cell is occupied by a robot or target this cell is marked as an unsafe cell otherwise is marked as a 
safe cell. To prevent the collision between the robot and other robots, the robot should move to the safe 
regions. When the robot stands in a cell, it visits the center of that cell and is considered as a visited cell, 
therefore that cell in that timestep is marked as an unsafe cell. The search space in this study has a boundary 
and the robots cannot go out the search space. If the next position of the robot is placed out of the search 
space then by reversing the direction of the robot velocity, the next position of it is placed into the search 
space. 

B. Particles versus Robots in multi-robot system 

The particles in the PSO are matched with robots in the multi-robot system. In this paper we assumed that 
each robot by accessing to the map of the search has complete knowledge about its location. The 

geometrical shape of the robot is assumed to like a circle with the determined radius ( ) and has the same 
size as a cell. The state of each robot in the search space is represented by six variables (x, y, v, ߠ௥,  (௖, tߠ
that are the position of the robot in the 2-D dimensional search space, speed of the robot, head of the robot, 
the determined direction of the robot to move to the next position and time in that position respectively. The 
robot is supposed to move toward 8 different directions (ߠ௖) therefore the robot can move to the adjacent 
cells (green cells) around its current position. As described the search space is discretized and therefore the 
path planning of the robot from its current cell to the goal cell is also discretized and the robot must cross 
through the center of the cells on its route. For a single path the environment is considered as a static world 
and the problem is solved by the A* algorithm ([12]). Traditional A* method computes the optimal path 
from the start position to the goal position among the static obstacles but it fails in a dynamic environment. 

Each particle can update its position by using the PSO equitation at every iteration. Then with appropriate 
velocity in a fixed amount of time move toward the next position. The robots are synchronized in this 
method so that the iterations match between robots. The Particles in Basic PSO do not have the limited 
acceleration and velocity but the robots in the real world have limitation on how quickly can move. 
Therefore, the velocity is discretized into discrete values that enable it executes just one action at each time 
step. The velocity is limited between [− ௠ܸ௔௫, ௠ܸ௔௫] where the ݒ௠௔௫ represent the maximum velocity of the 
robot along its direction and the െݒ௠௔௫ is the maximum velocity of the robot but in the reverse direction. 
When the velocity of the robot reach higher than the maximum velocity value then it is assigned the 
maximum velocity value. 

Another important factor, which has to be considered for adopting Basic PSO algorithm on multi-robot 
search system, is about the collision between robots. In multi-robot system, robots and the target have some 
volume therefore they have to prevent to collide with each other or static obstacles. Using the standard PSO 
particle displacement at each iteration, we will be unable to detect any collisions that might occur along the 
path. To detect the collision between robots we need to divide the continuous movement of them into 
multiple steps and check their movement at each step. In order to prevent from the possible collision 
between robots in the search space we use the method that is introduced by ([13]). In this new method each 
robot generate its route independently and then checks the collision between them. There are separate paths 
for each robot from the initial position to the goal position. The aim of this method is to find the optimal 
path, which is the path with the lowest total cost. In this new method each robot replan their route as 
optimality as possible. 

C. Robot Camera as a Fitness function  
 
In this paper it is assumed that each robot is equipped with one camera that capture the picture from it’s 
surrounding.  At every iteration, each robot applies its camera to calculate its fitness function. If the desired 
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