
Association Rule Mining for Both Frequent

and Infrequent Items Using Particle Swarm

Optimization Algorithm
MIR MD. JAHANGIR KABIR1, SHUXIANG XU2, BYEONG HO KANG3, ZONGYUAN ZHAO4

School of Computing and Information Systems
UNIVERSITY OF TASMANIA, AUSTRALIA.

E-mail: mmjkabir@utas.edu.au1,Shuxiang.Xu@utas.edu.au2,Byeong.Kang@utas.edu.au3,
Zongyuan.Zhao@utas.edu.au4

Abstract-- In data mining research, generating frequent items from large databases is one of the

important issues and the key factor for implementing association rule mining tasks. Mining infrequent

items such as relationships among rare but expensive products is another demanding issue which have

been shown in some recent studies. Therefore this study considers user assigned threshold values as a

constraint which helps users mine those rules which are more interesting for them. In addition, in real

world users may prefer to know relationships among frequent items along with infrequent ones.

The particle swarm optimization algorithm is an important heuristic technique in recent years and this

study uses this technique to mine association rules effectively. If this technique considers user defined

threshold values, interesting association rules can be generated more efficiently. Therefore this study

proposes a novel approach which includes using particle swarm optimization algorithm to mine

association rules from databases. Our implementation of the search strategy includes bitmap

representation of nodes in a lexicographic tree and from superset-subset relationship of the nodes it

classifies frequent items along with infrequent itemsets. In addition, this approach avoids extra

calculation overhead for generating frequent pattern trees and handling large memory which store the

support values of candidate item sets.

Our experimental results show that this approach efficiently mines association rules. It accesses a

database to calculate a support value for fewer numbers of nodes to find frequent itemsets and from that

it generates association rules, which dramatically reduces search time. The main aim of this proposed

algorithm is to show how heuristic method works on real databases to find all the interesting association

rules in an efficient way.

Keywords-Particle Swarm Optimization; Data mining; genetic algorithm;frequentitemsets;lexicographic tree.

I. INTRODUCTION

Data in different type of information databases including business transaction data, scientific data, financial
data, medical data and so on contain hidden information. Analysing and discovering critical hidden information
from these sort of databases have become one of the important issues in recent data mining techniques.A
transactional database consists of set of items and inventing the relationships among these items is the main goal
of association rule mining. The knowledge which comes from application of association rule mining in
industrial databases is useful to explain industrial failures.
Association rule mining includes two steps: first to mine frequent itemsets from large database and second is to
generate association rules or correlation relationship among a large set of data items. Nowadays, huge amounts
of data are collected and stored by industries. The discovery of association rules among large amount of
business transactions helps industries make decisions.
The traditional approaches reveal valid association rules by using support and confidence values of itemsets in a
database. To prune the search space it uses a minimum support value as a threshold. Two main problems arise
because of using such mechanisms. (1) If users set minimum support value too low then it increases the
computational complexity such as generation of candidate itemsets, complexity of designing large number of
tree nodes, testing of nodes and so on. Finally it generates a large number of association rules and traditional
algorithms suffer poor performance because of these large numbers of rules. (2) If users set minimum support
value too high, many interesting rules with low support value are missed. Such association rules are important to
discover relationship among expensive items such as diamond or gold necklaces, ear rings, bracelets. These
rules are also important for identifying such web documents which are identical or similar.
Recently, some researchers developed algorithms to mine association rules without a minimum support value
constraint[1]–[3].The approaches proposed in these papers used confidence based pruning mechanism instead of
support based pruning technique which is adopted by traditional association rule mining methods. Support free
association rule mining techniques discover high, cross and low support based rules. Itemsets with high support

Mir Md. Jahangir Kabir et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No.07 Jul 2014 221

values are well known patterns. Patterns containing items with cross support value have poor correlation. On the
other side, patterns with a low support value provide precious insights.

II. BASIC CONCEPTS AND TERMINOLOGY

Let { } be the database, where are the number of transactions in the
database. Each transaction is a set of items { }, where is item number 1, is item
number n and so on. Transaction is represented as a binary vector. If [] it means that bought the
item , otherwise [] . Let X be a set of few items in i.e. .The set is true for all items
in itemset for transaction . The support value of an item is how many times the item appears in the
transaction database as a subset. The support value of an itemset is denoted by |{
 }| | |. Here gives the binary value. If the examined itemset X appears as a
subset in a transaction , then = 1, otherwise = 0. An itemset with 1 item is called 1- itemset, an itemset
with k-items is called k-itemset. An itemset is called frequent if its support value is more than or equal to the
user defined threshold value is denoted by min_supp(minimum support) i.e. . We denote the
frequent itemset by FI. If an itemset X is frequent and no superset of X is frequent then we can conclude that X
is a maximal frequent itemset and we denote the set of all maximal frequent itemsets by MFI. If X and Y are
sets of items, the confidence value of itemsetX and Y is how many times itemset X appears as well as Y with
regard to the total number of transactions in the database containing X. An association rule is an expression of
the form X→Y, where , and . A rule is valid or strong if the support and confidence value
of that rule are greater than the predefined threshold value set by the user. Most association rule mining
approaches consider support-confidence framework to disclose interesting rules.

 Table: 1 Purchase of Science Fiction and Books in a Supermarket

 Science fiction ¬Science Fiction

Books 300 200 500
¬Books 150 100 250
 450 300 750

If we transform this table into its binary form it then looks like the following table:

Table: 2 Purchase of Science Fiction and Books in a Supermarket (Binary Form)

Transaction ID Science Fiction Books ¬Science Fiction ¬Books

1 1 1 0 0
2 1 0 0 1
3 0 1 1 0
4 0 0 1 1

… … … … …
1000 0 1 1 0

Support Value 450 500 300 250

If users set a minimum support of 30% and a minimum confidence of 65% then we get the following 8 rules.
1) Science Fiction → Books[sup = 30%, conf = 67%]
2) Books → Science Fiction [sup = 30%, conf = 60%]
3) Science Fiction → ¬Books[sup = 15% , conf = 33%]
4) ¬Books → Science Fiction[sup = 15%, conf = 60%]
5) Books → ¬Science Fiction[sup = 20%, conf = 40%]
6) ¬Science Fiction → Books[sup = 20%, conf = 67%]
7) ¬Science Fiction → ¬Books[sup = 10%, conf = 33%]
8) ¬Books → ¬Science Fiction[sup = 10%, conf = 40%]

To generate association rules based on user interest form a large database is a most time consuming task in the
present day. We present a novel approach to find association rules from large databases by using the principles
of particle swarm optimization algorithm.
The main contributions of this research paper are as follows: (1) We propose a new algorithm including
traditional particle swarm optimization algorithm to mine association rules from frequent itemsets, (2) These
frequent itemsets are searched from lexicographic trees which are based on user define threshold fitness values,
and (3) Our scheme mines interesting rules not only for two or three itemsets but also for large itemsets.

Mir Md. Jahangir Kabir et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No.07 Jul 2014 222

III. RELATED WORKS

It is well known that Apriori algorithm generates a candidate set and tests it in a breadth fast manner. It
discovers all the frequent itemsets at level k before moving to its next level (k+1). It counts the support value of
each node in level k and prunes those nodes if the support values of those nodes do not satisfy a user define
support value. It generates candidate itemsets at each level and scans the database so frequently that it is costly,
especially when there exists a long pattern [4]. After generating frequent itemsets, Apriori algorithm generates
association rules. If the confidence values of frequent itemsets are greater than the predefined minimum
confidence, association rules under these frequent itemsets are generated.
Sampling algorithm[5] is proposed by Toivonen in 1996. This algorithm finds association rules by reducing
database activity. Level-wise method is applied to samples by considering the minimal support threshold value.
This approach generates exact association rules but in a few cases it does not guarantee that it will generate all
the association rules. In most cases this approach needs one full pass over the database, but in a worst case it
needs two passes.
Brin et al. proposed a new approach called dynamic itemset counting algorithm[6] in 1997. The design
motivation of this algorithm is to limit accessing the main database. This approach partitions the whole database
into several blocks labelled by starting point and scans the database repeatedly. This algorithm generates
association rules which are normalized and it provides profound intuitive results with respect to other methods.
Finally they showed the effect of real data sets on the performance of the system.
Pincer-Search algorithm [7]traverses a lattice through a bi-directional method that follows both top-down and
bottom-up approaches. To find maximal frequent itemsets it applies pruning methods by the following two
properties:

1) All the subsets of frequent itemsets are pruned
2) All the supersets of infrequent itemsets are pruned

This approach is used to maintain and update the data structure which is designed for this study named
maximum frequent candidate set. Through bottom up approach it prune the candidate itemsets. Another
important characteristic of this algorithm, it does not need to explicitly test all the frequent itemsets.
Breadth first traversal (a level by level search strategy on a search space) is applied for a MaxMiner search
algorithm. To prune the branches of a tree it performs a look-ahead method. MaxMiner uses breadth first
approach for limiting the number of passes over the database but look-ahead, which involves superset pruning,
works better for depth first search methods[8].
DepthProject performs depth first traversal on a lexicographic tree along with variations of superset pruning. To
order child nodes, it applies dynamic reordering methods. By trimming infrequent items out of each node’s tail,
it reduces the size of the search space. To eliminate non-maximal frequent itemsets DepthProject would require
post pruning methods[9].
MAFIA, proposed by Burdick, Calimlim, and Gehrke[10], extends the idea of DepthProject. Similar to
DepthPorject, MAFIA also uses vertical bitmap representation where the support value/count of an itemset is
based on AND operations among the itemsets. For example, if there are 4 items in a data tuple and the database
is as follows

A B C D
1 0 1 1
0 1 1 1
1 0 1 0
1 0 1 1
1 1 0 1

Figure 1: Vertical bitmap representation

Bitvectors for itemset A,B,C,D of Figure 1 are 10111, 01001, 11110, 11011 respectively. To get the support
value/count of the itemset it needs to apply bitwise AND (&) operation between the bitvectors of the itemsets.
For the above example, the result of bitwise AND operation of bitvectors of items A and C is 10111 & 11110,
which equals to 10110. The support value or count of an item is the number of 1’s in the bitvector. Here the
support value of itemset {A, C} is 3. If we want to add another bitvector D with the previous result of bitwise
AND operation of bitmap {A,C}, it equals to 10110 & 11011, which equals to 10010. The support value of the
itemset {A,C,D} is 2. The search strategy of MAFIA integrates depth first method to traverse the tree to find
maximal frequent itemsets along with effective pruning methodology. Look-ahead pruning methodology which
was first used by MaxMiner is also used by MAFIA. The last checking method of MAFIA is easy to test.
Without counting , it allows us to conclude that {A,C} is frequent. This technique is defined as Parent
Equivalence Pruning.

Mir Md. Jahangir Kabir et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No.07 Jul 2014 223

In[11], Gouda and Zaki proposed a novel approach called GENMAX to find maximal itemsets. In this approach
they used a novel technique called Progressive Focusing. This technique maintains local maximal frequent
itemsets (LMFI) which is used for making comparison with newly found frequent itemsets (FI). Non maximal
frequent itemsets are identified through this step and it decreases the number of subset testing. GENMAX uses
vertical representation of a database and stores transaction identifier set (TIS) for each itemset instead of
bitvector. The support value of an itemset is defined by the cardinality of an itemset’s TIS. Researchers of
GENMAX concluded that, through experimental results this algorithm performs better than existing algorithms
on different types of databases.
Bilal Alataş and Erhan Akin [12] designed an efficient genetic algorithm as a search strategy to mine both
positive and negative quantitative association rules. Association rules are deduced from frequent patterns. Their
approach is different than other methods. This method mined the association rules without generating frequent
itemsets. The proposed genetic algorithm does not depend on minimum support and confidence value which is
hard to define for a database. A new genetic operator named uniform operator is used in this approach which
ensures genetic diversity.
To mine quantitative association rules researchers proposed a new algorithm which is based on genetic
algorithm named QUANTMINER[13], [14]. By optimizing support and confidence value, this system
dynamically identify good intervals in association rules. Researchers applied this algorithm in different data sets
and showed the usefulness of this algorithm as a data mining tool.
R.J.kuo and C.W.Shih used new meta-heuristic technique name ant colony system[15] to mine large database
for efficient searching of association rules. Multi-dimensional constraints are considered in this approach. In
addition this approach also considered user’s assign constraint. The results showed that it gave more condensed
rules than Apriori algorithm. The computational time of this approach is less than Apriori algorithm. Though
this system provides promising results but this system still faces some issues which need to resolve. After
analysing the results it found that lots of similar rules are generated so the researchers suggested another
technique like fuzzy approach to merge those similar rules into one class.
To mine association rules most researchers focused on ameliorating computational efficiency. To determine the
threshold values of support and confidence which are the key factors for association rule mining task,
researchers proposed a new approach which is based on particle swarm optimization technique. Suitable fitness
values and their corresponding support and confidence values of identified swarms are searched through this
approach. Their result showed that particle swarm optimization algorithm quickly finds suitable threshold
fitness values of itemsets and quality rules are obtained through this way. Users can mine specific rules from a
large database by setting support or fitness value. Since this technique free from support constraint, the main
problem of this approach is users have no control over mining techniques. Apart from this their result only
showed two or three dimensional rules instead of more dimensional rules which could be interesting for the
policy makers of the industry[16].

IV. DATABASE REPRESENTATION

A. Bipartite Graph and Bitmap representation

If U and V are disjoint sets of vertices and E is the set of edges which connect the vertices U and V, then we can
represent a bipartite graph as a triple, i.e. where .
A binary matrix is a matrix of , where each entry consists of a value which is either 0 or 1. Mapping
between binary matrices and databases of transactions can be done in a straight forward way. Consider a
database D which consists of transactions { } corresponding to rows and Items
{ } corresponding to columns. The database D is a matrix, where each entry is defined
as . The value of is 1, if transaction contains item otherwise it is 0. Now we are mapping each
transaction as a set of items from the binary matrices.
Example 1: Consider a database D which consists of the following transactions and
items , where { }, { }, { }, { } and { }.
Here all the items are different. Figures 2 and 3 show the bipartite graph and the binary matrix of the database
D:

Figure 2: Bipartite Graph Representation of the Database D

Mir Md. Jahangir Kabir et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No.07 Jul 2014 224

 1 1 1 0

 1 1 1 1

 1 0 1 1

 1 0 1 1

 1 1 1 1

Figure 3: Binary Matrix Representation of the Database D

From Figure 2, if we map each transaction by items then the transactions are as follows:
 { }
 { }
 { }
 { }
 { }

B. Lexicographic Tree

Our research problem here is to find frequent itemsets from large databases using Particle Swarm Optimization
Algorithm. Itemset consists of n items, i.e. { }. represents an itemset containing k-items ,
where k = 1,2,…,n and . If k=1, then contains a 1-item, i.e., { }. If k=2, then contains 2-
items, i.e., { }, and so on. An itemset is called frequent if its support value satisfies a user defined
support value and it is denoted FI. In this paper we will consider a search space which consists of all feasible
solutions. A Lexicographic tree [10], [17]is the search space for this study. This tree maintains lexicographic
ordering of items I in a database D. If item i occurs before item j of in a database D, then it maintains
lexicographic ordering, i.e., . If two subsets and , where then it maintains the
following lexicographic order . There is no lexicographic ordering relationship between two subsets
 and if and are disjoint subsets.
Figure 4 shows an example of a lexicographic tree which considers lexicographic ordering for four items. The
root of the tree is an empty set and each k-level contains k-items. In each level, k-itemsets maintain
lexicographic ordering with the tail nodes containing items lexicographically larger than elements of the head
node. The support value of the head node is more than that of the tail node. It can be seen that the nodes closer
to the root are more frequent than those far from the root. There is a non-linear line (called a cut) in the tree
which separates frequent itemsets from infrequent ones. The nodes which are above the cut are frequent itemsets
and the elements below this cut are infrequent ones [10].

Level

0

1

2

3

4

Figure 4: Lexicographic tree of four items

For this study, we consider a lexicographic tree [18] which is based on user define support values. The line is
defined by a user define support value and the area above the line is referred to as a positive area and the area
below the line is referred to as a negative area. All the nodes in a positive area are frequent whereas all the nodes
in a negative area are infrequent. If we redesign the tree of Figure 4, the lexicographic tree of these four items
would be as follows:

3

{}

1 2 4

1,2 1,3 1,4 2,3 2,4 3,4

1,2,3 1,2,4 1,3,4

1,2,3,4

cut

Mir Md. Jahangir Kabir et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No.07 Jul 2014 225

 Support value (%)

30%

Figure 5: Lexicographic tree of four items based on a user define support value

In Figure 5, the nodes within the positive boundary area have a minimum support value which is 30%. This
proposed method searches frequent nodes within a positive area and try to converge to a solution: finding all the
frequent itemsets as early as possible. Figure 5 verifies the following statement, if there are 4 items, and it
enumerates nodes including the root node. With Apriori algorithm, one would test all the nodes in
a specific level and generate a candidate set. This candidate set generation needs a long time for finding
maximal frequent itemsets. For example, in Figure 5 it tests the itemsets {1},{2},{3},{4} in level 0 and find that
all the itemsets are frequent since these nodes meet the minimum support value. Then it goes to next level to
scan the database to get the support values of {1,2},{1,3}, {1,4}, {2,3},{2,4},{3,4} and so on. On the next level
it prunes the itemsets {1,4},{2,4},{3,4} since these nodes have support values which are less than the user
define support value. On the other hand, unlike apriori algorithm, this algorithm does not need to test all the
nodes, which saves huge amount of time even when the database is very large. For the current example, if the
initially generated itemset is {1,2,3} then it scans the database and calculates the support value. If the support
value of the generated itemset {1,2,3} is ≥30%, then it stores this itemset in a frequent itemset array called
FI_Superset_Member. In the future it will not scan the database for {1},{2},{3},{1,2}, and {1,3} since these
itemsets are the subsets of the previously generated itemset {1,2,3}. If the generated itemstes are {1},{2},{3} or
{1,2} then it always checks the array FI_Superset_Member. If it finds any superset in FI_Superset_Member
then this approach will discard theses subsets, which substantially reduces the time for scanning the database to
calculate the support values correspondingly.
The main advantage of this approach is its ability to quickly converge to a solution, and find all the supersets in
a positive boundary area closer to the cut as fast as possible. In the above example, if {1,2,3} is generated before
all of its subsets ({1},{2},{3},{1,2}, {1,3}, {2,3}) and found to be a frequent itemset, then it will discard those
subsets (which are also frequent itemsets). If the next generated itemset is {1,3,4} it will check the
NFI_Subset_Member array and does not find any subset there. PSO based algorithm will scan the database for
this itemset to find its support value and store it in NFI. In the future all the supersets of {1,3,4} will be
discarded. Figure 6 shows the graphical view of the behaviour of proposed method.

3

{}

1 2 4

1,2 1,3 1,4 2,3 2,4 3,4

1,2,3 1,2,4 1,3,4

1,2,3,4

Mir Md. Jahangir Kabir et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No.07 Jul 2014 226

Figure 6: Behaviour of Proposed Method

V. APPLICATION OF PSO ALGORITHM TO ASSOCIATION RULE MINING

Particle swarm optimization algorithm is an evolutionary computational technique where swarm describes the
behaviour of particles. It was first introduced by Kennedy and Eberhart in 1995 [19]. To get the optimum
solution, this technique considers population based searching mechanism where particles change their positions
in a given space with respect to time. The particles are flying in a multidimensional space to find the solution in
PSO system. When particles fly in a multidimensional space, each particle considers two experiences to modify
its current position. One is the best fitness value it has achieved called “pbest” and another is the best fitness
value achieved by any particle of the generated population called “gbest”. If is the velocity of i-th particle
at time t, then for calculating the new velocity of i-th particle at time t+1, which considers two best values pbest
and gbest and it is
 () ()

 (1)
 (2)

Where is the position of particle i at time t, is the personal best position found by the i-th particle.
To balance global and local search, Shi and Eberhart in 1998 introduced another method named “inertia
weight”. In this method the following equations are used to modify the position of a particle I[20].
 () () (3)

Here w acts as an inertia weight which can be a constant or time function. Constriction factor is added in PSO
technique by Clerc et al in 1999[21]. This factor increases the social interaction among the particles which is a
major factor for improving the performance of PSO algorithm.
A. Itemsets Mapping to Chromosomes

The porposed method maps itemsets onto a chromosome code. Each node in the lexicographic tree represents
different itemsets and all the nodes in the tree get a unique chromosome code. The main feature of
choromosome coding is

1) It is easy to calculate the support value since it uses bitmap representation of the database.
2) Generate all the possible nodes.

If there are n items, it enumerates itemsets or nodes in the lexicographic tree. Theoretically, This
proposed approach does not need to generate, store and traverse all the nodes in its lifetime.
The length of a chromosome is fixed. If a database contains n items, then the length of all the generated
chromosomes are always n. The chromosomes look like the following:

 …
 …

 Figure 7: Mapping items onto chromosomes
 []

Mir Md. Jahangir Kabir et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No.07 Jul 2014 227

For example: A database D contains 4 items and 1000 transactions. These 4-items can generate
nodes in a lexicographic tree with each node representing one or more transactional patterns among 1000
transactions of database D. Let’s say, transaction k contains and . This transaction represents the
node (2,4) and the chromosome coding of this node is:

0 1 0 1
B. Population generation

The evolution starts with randomly generated individuals called particles. Each particle class contains 5
variables named support: support value of the particle; velocity: velocity of that particle; best_support; position:
particle’s current position; bestposition: particle’s best position it has achieved so far, it is equivalent to “pbest”.
Here position is the itemests in a lexicographic tree. At time t, each particle’s support value is compared with
each other and the particle is chosen as a best particle, the support value of that particle is close to the user
defines support value. The support value of best particle is called here “gbest”. All other particles change its
position with respect to best particle’s position. When the particles are traversed in tree, all the traversed nodes
are classified into frequent and infrequent itemsets. Through this way the search space became narrow for the
swarm particles.
C. Lifetime of proposed method

The lifetime of proposed method depends on the fixing of all the particles position. The search space become so
narrow that the swarm particles will not get the new solution after a certain amount of time and the program will
be terminated.

VI. PROCEDURES OF PROPOSED ALGORITHM

A. Algorithm Design for ARM using PSO

Input D: database; numberofParticles; min_supp: minimum support; min_conf: minimum confidence;
Output AR: Association Rules

1) Scan the database D and find the support value of all 1- itemsets and store it in a matrix named
Itemset_1_support

2) Prune those 1-itemset which do not satisfy min_supp threshold
3) Let freq is a matrix which store all frequent 1-itemsets
4) For each 1-itemset from matrix itemsets_1_support set IR_front and calculate IR_remaining =

number_of_items – IR_front, this will finally give a search space for specific 1-itemsets
5) Generate random position of the particles and the positions must be in specific 1-itemset range search

space
6) Check the FI_Superset_Member and NFI_Subset_Member array for superset and subset checking of

these generated particles.
7) If it finds any superset or subset of a particle in FI_Superset_Member or NFI_Subset_Member

respectively, then it assigned this particle position as invalid position and go to Step 4.
8) All the support values of particles are considered and compared it to the user define threshold support

value name min_supp. Support value of a particle which is close to the min_supp is assigned as
best_particle.

9) IF best_particle.support<min_support
Since the itemsets closer to the root are more frequent, so the search space of that particle is above the
current position in lexicographic tree. Perform NFI_Member_Add, and if any infrequent itemsets are
found then update NFI_Subset_ Member.

 10) IF best_particle.support>min_support
 Since the itemsets far from the root are less frequent, so the search space of that particle is below the
 current position in lexicographic tree. PerformFI_Member_Add, and if any frequent itemsets are found
 then updateFI_Superset_Member.
 // The search space for swarm particles become narrow through step 9 and 10 and all the solutions
 would be near the cut which was shown in lexicographic tree

11) All other particles follow the position of best particles and change their positionrandomly to avoid
local optima.

 12) For each frequent k-itemset
 If generate association rules for this itemset

Mir Md. Jahangir Kabir et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No.07 Jul 2014 228

B. Mining the superset in a positive boundary area

For an itemset X, if there is any subset of X in FI_Superset_Member, then this method is called to replace that
subset by its superset X. This method is also applicable if X is a new frequent item with no subset in
FI_Superset_Member.

// Invocation: FI_Member_Add(FI_Superset_Member)
1. If any subset of is in FI_Superset_Member
2. Delete the Subset of
3. Add in FI_Superset_Member
4. Else add in FI_Superset_Member

C. Mining the subset in negative boundary area

For an itemset X, if there is any superset of X in NFI_Subset_Member, then this method is called to replace that
superset by its subset X. This method is also applicable if X is a new infrequent item and it has no superset in
NFI_Subset_Member.

// Invocation: NFI_Member_Add(NFI_Subset_Member)
1. If any superset of is in NFI_Subset_Member
2. Delete the Superset of
3. Add in NFI_Subset_Member
4. Else add in NFI_Subset_Member

D. Pruning Methods

// Invocation: Check_Member_for_Item (I, FI_Superset_Member NFI_Subset_Member)
1. If any superset of I is in FI_Superset_Member
2. Discard I
3. Else if any subset of I is in NFI_Subset_Member
4. Discard I
5. Else scan the database to calculate support value for I
6. If support value ≥ user define support value
7. Invoke FI_Member_Add
8. Else invoke NFI_Member_Add

Check_Member_for_Item function incorporates three techniques:
1) Superset Checking Techniques

Checking to see whether a given chromosome is a superset in a positive boundary area. Further pruning
happens if a given itmeset is not a superset in the positive boundary area.

2) Subset Checking Techniques
Checking to see whether a given chromosome is a subset in a negative boundary area. Further pruning
happens if a given itmeset is not a subset in the negative boundary area.

3) Unchecked itemset checking techniques:
If an itemset is neither a superset in a positive boundary area and nor a subset in a negative boundary
area, then this itemset is referred to as an “unchecked” itemset and needs to be tested. For this
unchecked itemset, this algorithm scans the database and sets the itemset in FI_Superset_Member or
NFI_Subset_Member according to the user define support value.

VII. EXPERIMENTAL RESULTS

The experiments were performed on an Intel(R) core i5-3210M CPU @2.50GHz, 4 GB RAM running on
Windows 7 Enterprise. The algorithm was written in C++ language. Microsoft Visual Studio 2012 was used to
compile the code. Initially we tested our algorithm ona small database. It contains 5 items for a large number of
transactions. We considered a few parameters for this experiment which was shown in Table III.

TABLE III. PARAMETERS FOR ASSOCIATION RULE MINING ALGORITHM USING PSO

Specification Value

Number of particles 2
User define support value 40%
User define confidence value 50%
Selection of the path Randomly select the next path by following the

movement message of gbest and pbest

Mir Md. Jahangir Kabir et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No.07 Jul 2014 229

For selecting the next path of a particle, particle depends on the movement message of “gbest” and the direction
of current “pbest” value. For this experiment after getting “gbest” and “pbest” value, particle changes its
position randomly and updates its “pbest” accordingly. This random position change will help avoid the “local
optima” problem. Table IV shows the frequent itemsets that are generated under a user define support value.
From this result we see that, itemsets {1,2,3,4}, {1,3,4,5} contain maximum items. Item column in Table IV
means for which item the position is fixed. For item 1, the particle’s search space considers all the superset
which will be generated from 1. For item 3, the search space contain {3,4}, {3,5} and {3,4,5} positions. If we
look at the results we will see that for item 1, the generated frequent itemsets are {1,2,3,4},{1,3,4,5}. Whereas
for item 2, the generated frequent itemset is {2,3,4} which is the subset of the generated frequent itemsets of
item 1. This approach considers the pruning strategies that, all the subset of frequent itemset will be pruned. If
we do not subdivide the whole search space by the item number then we could miss some interesting rules. For
example, the confidence value of itemset {1,2,3,4} is 40%. On the otherhand, the confidence value of itemset
{2,3,4} which is the subset of itemset {1,2,3,4} is 70%. That is,itemset {2,3,4} can generate strong rule. For this
reason we subdivide the whole search space by the item number. Otherwise it could miss some interesting rules.

TABLE IV. FREQUENT ITEMSETS WITH SUPPORT AND CONFIDENCE VALUE

Database Records Items Support

(%)

Item Frequent

Itemsets

Confidence Remarks

1000×5

1000

5

40

1 {1,2,3,4},
{1,3,4,5}

{40%},{40%}

2 {2,3,4} {70%}
3 {3,4,5} {40%}
4 {4,5} {50%}
5 {5} Single

item, does
not
generate
rules

Table V shows the generated strong rules which satisfy the user define support and confidence values. This
mining approach for each item number generates frequent and infrequent itemsets. Table VI shows the
infrequent itemsets. Users can generate association rules from infrequent ietmsets.

TABLE V. GENERATED STRONG RULES

Database Frequent

Itemsets

Confidence Remarks

1000×5

{1,2,3,4},
{1,3,4,5}

{40%},{40%}

No rules
generated

{2,3,4} {70%} 2→3,4
2,3→4

{3,4,5} {40%} No rules
generated

{4,5} {50%} 4→5
{5} Single

item, does
not
generate
rules

TABLE VI. INFREQUENT ITEMSETS

Database Support

(%)

Item Infrequent

Itemsets

1000×5

 ˂40%

1 {1,2,3,4,5}
2 {2,3,4,5}
3 None
4 None
5 None

Mir Md. Jahangir Kabir et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No.07 Jul 2014 230

VIII. CONCLUSIONS AND SUMMARY

In this paper we propose a new approach based on Particle Swarm Optimization Algorithm to mine association
rules for both frequent and infrequent itemsets in an efficient way. The experimental results demonstrate several
advantages of our algorithm in comparison with other existing algorithms.
1) It generates frequent and infrequent itemsets near the cut in the lexicographic tree.
2) Previous researchersalso applied PSO for association rule mining,however, their studies showed the mining
results for only two or three items. This approach can mine association rules for more than three items if it
satisfies user defined threshold confidence values. In addition, this approach considers user define threshold
values which helps users mine those rules which are interesting to them.
2) It shows the power of using a heuristic algorithm for generating association rules for frequent itemsets along
with infrequent ones from a lexicographic tree.
3) The experimental analysis of this approach shows the effect of generations of particles in a search space and
pruning all the subsets and supersets in both positive and negative boundary areas, which dramatically reduces
search space and cost of counting support value of itemsets.
The goal of the future research is to apply this algorithm for real large databases to see the effect of this
approach. From the testing results it can be concluded that, for a small number of items random generation of
population can give good results. For large number of items, hybrid PSO which can merge genetic algorithm for
population generations could give more interesting results which would be the focusing point for further studies.

References
[1] E. Cohen, M. Datar, S. Fujiwara, and I. C. Society, “without Support Pruning,” IEEE Trans. Knowl. Data Eng., vol. 13, no. 1, pp. 64–

78, 2001.
[2] K. Wang, D. W. Cheung, and F. Y. L. Chin, “Mining Confident Rules Without Support Requirement *,” in Proceedings of the tenth

international conference on Information and knowledge management, 2001, pp. 89–96.
[3] H. Xiong and P.-N. Tan, “Mining strong affinity association patterns in data sets with skewed support distribution,” Third IEEE Int.

Conf. Data Min., pp. 387–394, 2003.
[4] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association Rules,” in 20th International Conference on Very Large Data

Bases, 1994, pp. 487–499.
[5] H. Toivonen, “Sampling Large Databases for Association,” in Proceeding of the 22nd VLDB Conference, 1996, pp. 134–145.
[6] S. Birn, R. Motwani, J. . Ullman, and S. Tsur, “Dynamic Itemset Counting and Implication Rules for Market Basket Data,” in

Proceeding of the ACM SIGMOD, 1997, pp. 255–264.
[7] D.-I. Lin and Z. M. Kedem, “Pincer-Search: A New Algorithm for Discovering the Maximal Frequent Set,” in 6th International

Conference on Extending Database Technology.
[8] R. J. Bayardo, “Efficiently Mining Long Patterns from Databases,” ACM SIGMOD, pp. 85–93, 1998.
[9] R. C. Agarwal, C. C. Aggarwal, and V. V. V. Prasad, “Depth first generation of long patterns,” Proc. sixth ACM SIGKDD Int. Conf.

Knowl. Discov. data Min. - KDD ’00, vol. 2, pp. 108–118, 2000.
[10] D. Burdick, M. Calimlim, and J. Gehrke, “MAFIA: a maximal frequent itemset algorithm for transactional databases,” Proc. 17th Int.

Conf. Data Eng., no. X, pp. 443–452.
[11] K. Gouda and M. J. Zaki, “GenMax : An Efficient Algorithm for Mining,” Data Min. Knowl. Discov., vol. 11, no. 3, pp. 223–242,

2005.
[12] B. Alataş and E. Akin, “An efficient genetic algorithm for automated mining of both positive and negative quantitative association

rules,” Soft Comput., vol. 10, no. 3, pp. 230–237, Apr. 2005.
[13] A. Salleb-aouissi, C. Vrain, C. Nortet, X. Kong, and D. Cassard, “QuantMiner for Mining Quantitative Association Rules,” Mach.

Learn. Res., vol. 14, no. 1, pp. 3153–3157, 2013.
[14] A. Salleb-aouissi, C. Vrain, and C. Nortet, “QuantMiner : A Genetic Algorithm for Mining Quantitative Association Rules,” in 20th

International Joint Conference on Artificial Intelligence, 2007, pp. 1035–1040.
[15] R. J. Kuo and C. W. Shih, “Association rule mining through the ant colony system for National Health Insurance Research Database in

Taiwan,” Comput. Math. with Appl., vol. 54, no. 11–12, pp. 1303–1318, Dec. 2007.
[16] R. . Kuo, C. . Chao, and Y. . Chiu, “Application of Particle Swarm Optimization to Association Rule Mining,” Appl. Soft Comput.,

vol. 11, no. 1, pp. 326–336, 2011.
[17] J. Huang, Y. Che-tsung, and C. Fu, “A Genetic Algorithm Based Searching of Maximal Frequent Itemsets,” in International

conference on artificial intelligence, 2004.
[18] M. M. J. Kabir, S. Xu, B. H. Kang, and Z. Zhao, “A Novel Approach to Mining Maximal Frequent Itemsets Based on Genetic

Algorithm,” in Accepted in International Conference on Information Technology and Applications (ICITA), 2014.
[19] R. C. Eberhart, “Particle Swarm Optimization : Developments , Applications and Resources,” in Proceeding of the 2001 Congress on

Evolutionary Computation, 2001, pp. 81–86.
[20] Y. Shi and R. . Eberhart, “A Modified Particle Swarm Optimizer,” in IEEE International Conference on Evolutionary Computation,

1998, pp. 69–73.
[21] M. Clerc, “The swarm and the queen: towards a deterministic and adaptive particle swarm optimization,” in Proceeding of the

Congress of Evolutionary Computation, 1999, pp. 1951–1957.

Mir Md. Jahangir Kabir et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No.07 Jul 2014 231

