
A COMPREHENSIVE REVIEW AND
ANALYSIS ON OBJECT-ORIENTED

SOFTWARE METRICS IN SOFTWARE
MEASUREMENT

K.P. Srinivasan
Associate Professor in Computer Science

C.B.M. College, Kovaipudur, Coimbatore – 641 042, India
kpsrinivasanmail@gmail.com

Dr. T. Devi

Head, Department of Computer Applications
School of Computer Science and Engineering

Bharathiar University, Coimbatore – 641 046, India
tdevi5@gmail.com

Abstract— The software development is dynamic and is always undergoing major changes. Today a huge
number of tools and methodologies are available for software development and software development
refers to all activities that go into producing information system solution. System development activities
consist of system analysis, modeling, design, implementation, testing and maintenance and further the
state of software metrics in software development during the last decade is encouraging and many
researchers are involved in the field of software metrics. The software metrics are being applied and
good results are obtained with criticisms. The use of software metrics has proved the process efficiency
and product effectiveness. In software engineering, recently, software metrics researchers have
introduced new metrics and validated software metrics using empirical and theoretical techniques and
software metrics have been used in decisions-making as well as in various process activities and more
researchers are involved in empirical studies. The eminent researchers guide the software professionals
for evaluating software product effectiveness using software metrics. There are many kinds of software
metrics available from traditional metrics to latest computer science field of web science, i.e., web-related
metrics in software engineering. In order to propose an object-oriented metrics in software engineering, a
thorough understanding of the previous object-oriented metrics is essential in software measurement. A
better understanding of existing metrics would lead to clear ideation and developments of concepts to
solve the problems of ambiguity in object-oriented metrics. This paper analyzes and reviews the most
referred object-oriented metrics in software measurement.

Keywords - Result Based Software Metrics (RBSM); Object-Oriented Metrics; Software Metrics; Software
Quality Assessment; Software Quality Attributes; Software Measurement.

I. INTRODUCTION

The software metrics is a consistent topic and research in software engineering [36, 37, 46, 48, 72, 74, 93,
94, 97, 98]. The role of software metrics is to find significant improvement in software products and directs
management to take managerial and technical decisions [93, 94]. According to Jones, C. (2014) [46], “In order
to solve the problems of software and convert a manual and expensive craft into a modern engineering
profession with a high degree of manufacturing automation, the software industry needs much better metrics and
measurement disciplines and much more in the way of standard reusable components. Better measures and
better metrics are the stepping stones to software engineering excellence” [46]. Today, the software metrics is
unfinished, and currently gives the appearance of being more influenced by “metrics validations” and “object-
oriented design metrics”. The current state of software metrics is still not matured based on standards, new
metrics and “it is identified that software metrics research faced more difficulties towards proving usefulness in
industry, theoretical validity, empirical validity, defining precise metrics, understanding, methodology of
execution, execution time is more to find the metrics values, metrics are executed only by experts, and accuracy
on results” [93, 94]. At present, many researchers are involved in research on process and product metrics
research [2]. They are also involved in proposing metrics for software process and product measurement [74, 93,
94]. Some researchers are involved in research studies finding usefulness and applications in software
environments using software metrics [17, 37, 45, 51, 73, 98]. Few researchers are involved in developing
metrics tools for different environments and applied metrics tools for different applications [76]. The main
milestones and events of software metrics show that in the past many metrics had been proposed and validated

K.P. Srinivasan et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No.07 Jul 2014 247

by eminent researchers but most of the metrics lacked in experimental study and few metrics were accepted and
used. Although there are many metrics in use and under active investigation, a few metrics are more difficult to
apply and execute. As a result, the battle on software metrics is still continuing. The following section discusses
the “Comprehensive Metrics Suite" proposed by Srinivasan, K.P., and Devi, T. Section III analyses the most
referred object-oriented design metrics proposed by Chidamber, S.R., and Kemerer, C.F. Section IV analyses
the most referred object-oriented design metrics called MOOD metrics proposed by F. Brito e Abreu and
Section V discusses another important Design metrics proposed by Lorenz, M. and Kidd, J. Section VI discusses
the reviews of object-oriented metrics and conclusion includes future directions of the research.

II. THE COMPREHENSIVE SOFTWARE METRICS SUITE FOR OBJECT-ORIENTED DESIGN

Recently, Srinivasan and Devi proposed a set of six result based (RBSM) object-oriented design metrics
suite called “Comprehensive Metrics” for measuring object-oriented design attributes [94]. Further, they also
introduced a new kind of software metrics for software coding measurement in software engineering called
“Program Keyword Metrics (PKM)” [93]. This PKM metrics eliminates the ambiguity criticism of most referred
“Halstead Metrics” and “Lines Of Coding (LOC) metrics”. And further they eliminated the main criticism of
“accuracy on results” in software measurement by “Keyword Metrics (KM)” in Software Engineering [93].

The result based set of object-oriented design metrics [94] and their definitions are shown in Table I and the
procedure based metrics system for execution of the object-oriented design metrics is shown in Figure 1.

Table I. A Comprehensive Metrics (RBSM) Suite for Object-Oriented Design

This method is a “straightforward method” for execution of object-oriented design metrics called “procedure

based metrics system” [92, 93, 94] and it adopts the quality attributes of the object-oriented design which are
measured using design properties relationships. This procedure based approach finds the quality effectiveness
of the design and yields a value to each of the attributes.

Figure 1 shows the algorithm for measuring the quality of the object-oriented design in software engineering
[94]. The set of design quality attributes measured by the proposed RBSM suite of metrics are functionality,
understandability, effectiveness, flexibility, extendibility and reusability. This procedure identifies the design
properties of an object-oriented design using the metrics encapsulation, inheritance, coupling, cohesion and
complexity and form the design metrics-quality attribute relationship as shown in Table II. It gives consolidation
of different steps and it shows the relationships of design properties to design attributes, the range values,
desired values and the metrics to quality of design attributes [94].

The Table III shows the computation formula and weighted formula for quality attributes of design derived
from the quality attributes [94] as given in step 6 of Figure 1. This procedure based system closely examines the

Result Based Software
Metric (RBSM)

Definition

MPCF=NPM/ NPM + NNPM
(Methods-Per-Class Factor)

MPCF is defined as the ratio of the Number of Public Methods (NPM)
to the Number of Public Methods (NPM) and Number of Non Public
Methods (NNPM) in the class. Method Per Class Factor excludes
inherited methods.

APCF= NPA/NPA+NNPA
(Attributes-Per-Class Factor)

APCF is defined as the ratio of the Number of Private (Protected)
Attributes (NPA) to the Number of Private Attributes (NPA) and
Number of Non Private Attributes (NNPA) in the class. Attribute-Per-
Class Factor excludes inherited attributes.

MIF= NIM/NIM+NDM
(Method Inheritance Factor)

MIF is defined as the ratio of the Number of Inherited Methods (NIM)
to Number of Inherited Methods (NIM) and the Number of Defined
Methods (NDM) in the class.

AIF = NIA/NIA+NDA
(Attributes Inheritance Factor)

AIF is defined as the ratio of the Number of Inherited Attributes
(NIA) to the Number of Inherited Attributes (NIA) and the Number
of Defined Attributes (NDA) in the class.

CF=NAC/NPC
(Coupling Factor)

NAC is the Number of Actual Couplings with other classes. NPC is
the Number of Possible Couplings of this class with other classes of
the system. Inheritance is excluded in determining the couplings.

LCF=NDMP/NPMP

(Lack-of-Cohesion Factor)

NDMP is the Number of Dissimilar Method Pairs in the class and
NPMP is the Number of Possible Method Pairs in the class. If two
methods access one or more common attributes, then these two
methods are similar. And if two methods have no commonly accessed
attribute then these two methods are dissimilar.

K.P. Srinivasan et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No.07 Jul 2014 248

quality of the design based on design properties to design attributes, computed formula and modifies the
individual classes if necessary and identifies if any class has unacceptable desired values.

Step 1: Select the object-oriented design to measure the quality assessment.
Step 2: Select the quality attributes of the object-oriented design to measure the particular domain.
Step 3: Identify the design properties of an object-oriented design for identifying and related to the
quality attributes selected in step 2.
Step 4: Form the related object-oriented design metrics to design properties and desired values for
quantify the design properties of step 3 and find design metrics-design attributes relationship.
Step 5: Calculate the metric values of each metrics and tabulate their values for each classes of the
entire system for easy operations and find quality assessment of the design.
Step 6: Find the design attribute effectiveness using the obtained metric values from step 5 and further
using computation formula. And check the design attributes using the desired values and design
properties weights.
Step 7: Closely examine the design attributes from computation formula and metrics values, modify and
improve the individual classes of the entire object-oriented system.

Figure 1. Procedure Based Metrics System for Comprehensive Metrics Suite [94]

Table II. Metrics, Ranges, Desired Values, Properties and Attributes for Design

Design
Metric

Range Desired
Value

Design Property Quality Attributes

MPCF 0 to 1 1 Complexity Functionality, Reusability
APCF 0 to 1 1 Encapsulation Understanding, Effectiveness,

Flexibility
MIF 0 to 1 0 Inheritance,

Abstraction
Effectiveness, Extendibility

AIF 0 to 1 0 Inheritance,
Abstraction

Effectiveness, Extendibility

CF 0 to 1 0 Coupling Functionality, Understanding,
Flexibility, Reusability

LCF 0 to 1 0 Cohesion Understanding, Reusability

Table III. Computation Formulae and its Range and Desired Value for Quality Attributes

Quality Attributes Computation Formula Range Desired Value
Functionality (MPCF+(1-CF))/2 0 to 1 1

Understandability (APCF+(1-CF)+LCF)/3 0 to 1 1
Effectiveness (APCF+(1-MIF)+(1-AIF)/3 0 to 1 1

Flexibility (APCF+(1-CF))/2 0 to 1 1
Extendibility ((1-MIF)+(1-AIF))/2 0 to 1 1
Reusability (MPCF+(1-CF)+LCF)/3 0 to 1 1

The comprehensive object-oriented design metrics suite has the following advantages and achievements over
previous metrics available in literature: The complete metrics set having the range and desired values for
measuring the design. The range value for each metric is between 0 and 1 hence result oriented.The
computation formula values between 0 and 1 hence result oriented. The procedure followed is simple, clear,
understandable, unambiguous and consistent. The procedural approach (Straightforward Method) is given for
execution of software metrics in easy manner.

III. THE CHIDAMBER AND KEMERER METRICS FOR OBJECT-ORIENTED DESIGN METRICS

The metrics suite for object-oriented design proposed by Chidamber, S.R., and Kemerer, C.F. [24, 72, 90] is
one of the most widely used and refereed class level object-oriented design metrics [86, 94]. The Chidamber and
Kemerer metrics are often popularly referred to in literature as “C-K metrics” [90]. The C-K metrics suite
invoked great enthusiasm among researchers and software engineers, and an enormous amount of empirical
studies have been conducted to evaluate those metrics. A set of six metrics suite for object-oriented design
proposed by Chidamber and Kemerer is shown in Figure 2. This section analyses the six class-level object-
oriented design metrics and their validations criteria used by them.

K.P. Srinivasan et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No.07 Jul 2014 249

Chidamber and Kemerer adopted Weyuker’s properties of measures for validating their metrics [90, 100].
The Weyuker’s second property and eighth property are automatically satisfied for all object-oriented design
metrics. Weyuker’s seventh property “Permutation” is only for traditional metrics and therefore seventh
property is not considered for design metrics by Chidamber and Kemerer [24]. The remaining six properties are
considered for metrics evaluation criteria for the C-K metrics suite. The properties are changed according to
significant object-oriented design metrics. The six class-level metrics are analyzed and empirical studies had
been conducted by various researchers. These six metrics are called WMC, DIT, NOC, CBO, RFC, and LCOM
and are analysed and empirically evaluated in the different projects.
C-K Metric 1: Weighted Methods per Class (WMC)

Definition: Consider a Class C1, with methods M1, M2…Mn that are defined in the class. Let c1……cn be
the complexity of methods, then the weighted methods per class (WMC) is formally defined as:

All the methods of WMC complexity are considered to be unity, then WMC = n, the number of methods are

weighted methods per class. For the sake of simplicity, Ci is assumed to be unity for all methods of WMC [25].
The Ci is a measure of the complexity of the method, such as the cyclomatic complexity [72]. In order to find
WMC metric, there is no need to count indirect methods available through ancestors, friend, or inherited
methods, as they are defined outside the class under consideration [26]. According to Briand, L.C., et al. the
WMC metric comes under the size metric, which does not satisfy their properties of complexity measures [15].
WMC is not a complexity metric, particularly when Ci is assumed to be unity. The weighted least square model
shows that WMC has a positive relationship with number of defects and indicates that increase in the number of
methods is going to increase the number of defects [94]. According to validation of WMC, WMC metric
satisfies the Weyuker’s properties 1,2,3,4 and 5. WMC metrics do not satisfy the property 6 of Weyuker’s
properties of measures. This metrics give the total methods in the class as the result of WMC metric.
C-K Metric 2: Depth of Inheritance Tree (DIT)

Definition: Depth of inheritance of the class is the DIT metric for the class. In cases involving multiple
inheritances, the DIT will be the maximum length from the node to the root of the tree.

The DIT metric is a measure of number of ancestors’ classes potentially affecting this class [58]. There are
many important research study reports that say that there is almost no DIT inheritance in large projects [11, 25].
This apparent lack of use of inheritance illustrations depicts how care must be taken to actively manage projects
in such a way as to achieve benefits aimed directly by object-oriented designers. The DIT metric will reflect the
maintainability and complexity of the project as well as cost of the software [25]. In projects, when DIT is large,
the probability of fault detection occurrence is more [11]. The DIT metric satisfies the Weyuker’s properties
[100] 1, 2,3,4,5 and the property 6 is not satisfied by DIT metric.
C-K Metric 3: Number of Children (NOC)

Definition: NOC = Number of immediate subclasses subordinated to a class in the class hierarchy.
The NOC metric is a measure of number of subclasses that are going to inherit the methods of the parent

class. According to Singh, P., et al. when the NOC metric value is high, it may require more testing [89].
Surprisingly, large NOC classes are less fault-prone when compared to classes with large DIT. The research

Chidamber–
Kemerer Metrics

(C-K Metrics)

Metric 6: Lack of Cohesion Methods (LCOM)

Metric 5: Response For Class (RFC)

Metric 2: Depth of Inheritance Tree (DIT)

Metric 3: Number Of Children (NOC)

Metric 1: Weighted Methods per Class (WMC)

Metric 4: Coupling Between Object Class (CBO)

Figure 2. Chidamber - Kemerer (C–K) Metrics Suite

K.P. Srinivasan et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No.07 Jul 2014 250

report says that there are no children in many large projects [25, 29]. The reusability increases with increase in
NOC [13]. The NOC metric satisfies the properties 1,2,3,4, and 5 of Weyuker’s properties and the property 6 is
not satisfied by NOC.
C-K Metric 4: Coupling Between Object classes (CBO)

Definition: Coupling Between Object (CBO) for a class is a count of the number of other classes to which it
is coupled.

The CBO metric relates to an object which is coupled with another object if one of them acts on the other, that
is, methods of one use methods or instance variable of another. The couplings are many in number between any
two classes which are treated as single coupling according to CBO. The excessive coupling between object
classes is preventing its reuse and testing of various parts of a design is complex. The high levels of CBO metric
values show managerially poor results and higher rework effort is needed. The significance of CBO is that since
classes that have a large number of interconnections with other classes are likely to require greater understanding,
it can be hypothesized that they will take more time to develop, test and modify [40, 94] and consequently the
productivity levels for such classes may be lower [25].
C-K Metric 5: Response For a Class (RFC)

Definition: RFC = | RS | where RS is the response set for the class.
The response set of a class is a set of methods that can potentially be executed in response to a message

received by an object of that class. RFC specifically includes methods called from outside the class and it is a
measure of potential communication between the class and other classes. If the RFC value is high in projects
then, testing and debugging of class become more complicated. The larger the RFC, the more is the probability
of fault occurrence [56]. The RFC metric satisfies Weyuker’s properties 1,2,3,4 and 5 and the property 6 is not
satisfied.
C-K Metric 6: Lack of Cohesion in Methods (LCOM)

Definition: Consider a class C1 with n methods M1, M2… Mn. Let { Ij } = set of instance variables used by
methods Mi . There are n such sets {I1}... {In}. Let P = { (Ii, Ij) | Ii ∩ Ij= 0 } and Q = { (Ii, Ij) | Ii ∩ Ij ≠ 0 }. If
all n sets {I1}… {In} are 0 then let P = 0.

LCOM = | P | - | Q |, if | P | > | Q | = 0 otherwise
LCOM metric is the count of the number of method pairs whose similarity is 0 minus the method pairs

whose similarity is not zero. The LCOM metric is approximately equal to the count of the number of method
pairs that do not have common instance variable minus the count of method pairs that have common in the
variable.

The cohesiveness is desirable if it is more in the class. LCOM is intimately tied to the instance variable and
methods of a class. Cohesion measure exhibits some anomalies with respect to intuitive understanding of the
attributes [14, 43]. The cohesion measure measures how well the lines of source code within a module work
together to provide a specific piece of functionality. In object-oriented programming, the degree to which
methods that implement a single function are described as having high cohesion [19]. High value of LCOM
implies that classes should properly be split into two or more sub-classes and cohesiveness of methods within
classes is desirable [94]. High LCOM value indicates disparities in functionality provided by the class [39].
High LCOM means higher rework effort will be needed [69]. Metrics that violate class cohesion properties are
not well defined and the relatedness of class members is questionable [27, 28, 53]. A class with a large number
of common parameter types in its methods is more cohesive than a class with less number of common parameter
types in its methods [16, 54]. LCOM metric satisfies the Weyuker’s properties of 1, 2, 3 and 5. The properties 4
and 6 are not satisfied by LCOM. The exploratory analysis of C-K metrics were conducted by Chidamber et al.
The empirical study was conducted for productivity, rework effort, and design effort on three commercial
systems. The empirical study results show that the metrics provided significant explanatory power for variations
in the economic variables [25]. Further, Subramanyam, R.S., and Krishnan, M.S. conducted an empirical
analysis of C-K metrics for design complexity and implications of software defects. They provided empirical
evidence for supporting the role of design complexity metrics of Chidamber and Kemerer metrics for
determining software defects. Their empirical study has been conducted for two popular programming
languages C++ and Java. They found that the effects of C-K metrics on defects vary across the two
programming languages [94]. Shatnawi, R. investigated the acceptable risk levels of object-oriented metrics and
concluded that the classes that exceed a threshold value can be selected for more testing to improve their
internal quality. He assessed the effectiveness of threshold values for the object-oriented metrics. He identified
threshold values for the Chidamber and Kemerer metrics and his empirical results indicate that the C-K metrics
have threshold effects at various risk levels [87]. The object-oriented design metrics proposed by Chidamber
and Kemerer is approximately used in most empirical studies in software metrics field [81]. Salem, A.M., and
Qureshi, A.A. conducted a test on the complexity and cohesion of software. They proved inconsistencies of C-

K.P. Srinivasan et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No.07 Jul 2014 251

K metrics and found out that C-K cohesion metric does not distinguish between two classes which have
different cohesiveness [77]. C-K metrics is one of the oldest and most reliable metrics among all available
software metrics to evaluate object-oriented design. Kumari, R., and Jaspreet. studied Chidamber Kemerer
metrics and identified few flaws of C-K metrics. They demonstrated the flaws of C-K metrics and as well as
refinement of these metrics [61]. The following section describes another most referred object-oriented design
metrics called Metrics for Object-Oriented Design metrics (MOOD).

IV. METRICS FOR OBJECT-ORIENTED DESIGN (MOOD) METRICS SUITE

The Metrics for Object-Oriented Design (MOOD) metrics was proposed by F. Brito e Abreu [1, 91]. These
MOOD metrics set has been evaluated by Harrison, R., et al. [42] using the properties of measures proposed by
eminent researchers Kitchenham, B., et al [57]. The MOOD metrics set is used to measure encapsulation,
inheritance, coupling and polymorphism of the system is shown in Figure 3. These metrics are called MHF,
AHF, MIF, AIF, CF, and PF. These six metrics set could be of use to projects as the metrics operate at system
level, providing an overall assessment of a system [72, 91]. This section discusses the MOOD metrics [1, 91]
and also explains validation criteria of Kitchenham’s properties [57] of measure.
MOOD Metric 1: Method Hiding Factor (MHF)

The Method Hiding Factor (MHF) and Attribute Hiding Factor (AHF) metrics were proposed jointly as
measures of encapsulation. The encapsulation is to be related to compilation facilities and MHF and AHF metrics
could be used for direct and indirect measures of encapsulation. In the MOOD metric set, both MHF and AHF
use code visibility to measure information hiding.

The Method Hiding Factor (MHF) metric is a measure of encapsulation and is formally defined as:

)(
))(1(

1

)(
11

id
TC
i

mi
CM

m
TC
i

CM

MVid

MHF
=

==

−=

Where Md (Ci) is the number of methods declared in a class Ci and TC is the total number of classes and as a
result,

1
)(_

)(1

−

= =

TC

CMvisibleis
MmiV jmi

TC
j

 M callmay C^
 otherwise

1
0

mij{)(_ iiffj

jmi CMvisibleis
≠=

Therefore, for all classes, C1, C2….Cn, a method counts 0 if it can be used by another class and 1 if it cannot.
The total for the system is divided by the total number of methods defined in the system, to give the percentage of
hidden methods in the system. If the value of MHF is high, then it means all methods are private which indicates
very little functionality. Thus it is not possible to reuse methods with high MHF. The MHF with low value
indicates that all the methods are public that implies most of the methods are unprotected [80].
MOOD Metric 2: Attribute Hiding Factor (AHF)

The Attribute Hiding Factor (AHF) metric is to measure the attribute hiding and is formally defined as:

)(
))(1((

1

)(
11

id
TC
i

ai
CA

m
TC
i

CA

AVid

AHF
=

==

−=

Where Md (Ci) is the number of attributes declared in a class Ci and TC is the total number of classes and thus,

1

)(_1
)(

−

= =

TC

CAvisibleis jai
TC
j

aiAV

 A callmay C^
 otherwise

1
0

aij{)(_ iiffj

jaiCAvisibleis
≠=

Therefore for all classes, C1, C2….Cn, an attribute counts 0 if it can be used by another class and 1 if it cannot.
The definitions of MHF and AHF cause discontinuities for systems with only one class. The Method Hiding
Factor and Attribute Hiding Factor metrics are used for measures of encapsulation. Assuming that these metrics
discontinuity is taken into account, MHF and AHF meet three of four criteria for direct measures as proposed by
Kitchenham et al. [57]. Kitchenham’s properties [57] 1, 2 and 4 are satisfied by MHF and AHF metrics. The
property 3 states that ‘each unit of an attribute contributing to a valid metric is equivalent’. This says that all the
methods and the attributes are equivalent, as far as information hiding is concerned. However, MHF and AHF

K.P. Srinivasan et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No.07 Jul 2014 252

are intended to measure the relative amount of information hiding and not the quality of information hiding
design decisions and therefore property 3 is also satisfied. The criteria for indirect metrics are also satisfied by
these two metrics. In the object-oriented system, if the value of AHF is high, it means all attributes are private
which indicates very little functionality. Thus it is not possible to reuse attributes with high AHF. The low value
of AHF metrics indicates that all attributes are public, that means most of the attributes are unprotected [80].

MOOD Metric 3: Method Inheritance Factor (MIF)

The Method Inheritance Factor (MIF) [1, 72] is a measure of inheritance properties and formally defined as:

)(
)(

1

1

ia
TC
i

ii
TC
i

CM

CM
MIF

=

=

=

Where, Ma (Ci) = Md (Ci) + Mi (Ci), TC is the total number of class, Ma (Ci) is the number of methods that can
be involved in association with Ci. Md (Ci) is the number of methods declared in the class, and Mi (Ci) is the
number of methods inherited in the class. In the MIF metric, for each class C1, C2…..Cn, , a method counts as 0 if
it has not been inherited and 1 if it has been inherited.
MOOD Metric 4: Attribute Inheritance Factor (AIF)

The Attribute Inheritance Factor (AIF) is a measure of inheritance properties metric and it is formally defined
as:

)(
)(

1

1

ia
TC
i

ii
TC
i

CA

CA
AIF

=

=

=

Where Aa (Ci) = Ad (Ci) + Ai (Ci) and TC is total number of classes, Aa (Ci) is the number of attributes that can

be involved in association with Ci, Ad (Ci) is the number of attributes declared in the class and Ai (Ci) is the
number of attributes inherited in the class. In AIF metric, for each class C1, C2…Cn,, an attribute counts as 0 if it
has not been inherited and 1 if it has been inherited. The total AIF for the system is divided by the total number
of attributes, including any which have been inherited. The MIF and AIF metrics measure directly the number of
inherited methods and attributes respectively as a proportion of the total number of methods or attributes. The
MIF and AIF satisfy the properties 1, 2, 3 and 4 of direct measures of validation properties. Thus, MIF and AIF
metrics are valid for direct measure of inheritance factor [91].
MOOD Metric 5: Coupling Factor (CF)

The Coupling Factor (CF) metric is a measure of coupling and proposed as a measure of coupling between
classes excluding coupling due to inheritance [1, 42]. The coupling factor metric has been defined as:

[]

TCTC

CCclientis
CF ji

TC
j

TC
i

−

= ==
2

,11)(_

 Where,

ssc CCiffC

scCCvisibleis
≠= cC^
 otherwise

1
0{)(_

And the Cc => Cs represents the relationship between a client class Cc and a supplier class Cs. The coupling
factor is calculated by considering all possible pairwise sets of classes, and whether the classes in the pair are
related, either by message passing or by semantic association links. These relationships are considered to be

Metrics for
Object-

Oriented
Design

(MOOD)

MOOD Metric 6: Polymorphism Factor (PF)

MOOD Metric 5: Coupling Factor (CF)

MOOD Metric 2: Attribute Hiding Factor (AHF)

MOOD Metric 3: Method Inheritance Factor (MIF)

MOOD Metric 1: Method Hiding Factor (MHF)

MOOD Metric 4: Attribute Inheritance Factor (AIF)

Figure 3. Metrics for Object-Oriented Design (MOOD) Metrics

K.P. Srinivasan et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No.07 Jul 2014 253

equivalent as far as coupling is concerned. The coupling factor metric satisfies properties of direct measures.
Therefore CF is a direct measure of the size of a relationship between two classes and for all pairwise
relationships between classes in a system. A high level interclass coupling will have a high CF value. The
coupling between modules is more difficult to understand, change, and correct these modules and thus making the
software system more complex. A good software system should exhibit low coupling between its units [55].
There are different programs that could have the same CF value then in which case they could exhibit the same
amount of coupling. Thus coupling factor satisfies the valid direct measure of inter-class coupling also.
MOOD Metric 6: Polymorphism Factor (PF)

The Polymorphism Factor (PF) metric is proposed for a measure of polymorphism in object-oriented
environment. The PF metric is formally defined as:

Md (Ci) = Mn (Ci) + Mo (Ci) and TC is the total number of classes and Mn (Ci) is the number of new methods
and Mo (Ci) is the number of overriding methods and DC (Ci) is the descendants count. In the MOOD metrics,
polymorphism factor is the number of methods that redefine inherited methods, divided by the maximum number
of possible distinct polymorphic situations. The denominator includes, as a multiplier, the number of descendant
classes of a base class. Therefore, the value of PF for a system without any inheritance will always be undefined.
Thus, the metric exhibits an unexpected discontinuity, giving an undefined result where a result of 0 would have
been expected. Thus, PF is not a valid metric. If the PF metric discontinuity is removed, then it would be
theoretically a valid metric. These six object-oriented design metrics refer to a basic structural mechanism of the
encapsulation - MHF and AHF metrics, inheritance - MIF and AIF metrics, message-passing- CF metric and
polymorphism - PF metric, for system level object-oriented design measurement. Olague, H.M., et al. (2007),
conducted an empirical study of MOOD metrics suite. They conducted an empirical research and they also
empirically validated MOOD metrics. They have implemented metrics in commercial tools. They compared
individual MOOD metrics with the Chidamber and Kemerer metrics also [70]. Sarkar, S., et al. conducted
research study on MOOD metric set and they identified attribute hiding factor and method hiding factor metrics
are measuring the extent of encapsulation and both are defined as the ratio of the attributes and methods that are
visible in a class [78, 79]. Jassim, F., and Altaani, F. conducted the study on MOOD metrics using a statistical
approach and they used linear regression model to find the relationship between factors of MOOD metrics and
their influences on object-oriented software measurements [44].

V. THE LORENZ AND KIDD OBJECT-ORIENTED METRICS

The Lorenz and Kidd proposed a set of metrics to measure object-oriented systems [64, 65, 72]. This section
discusses the Lorenz and Kidd metrics and their significance on object-orientation. Lorenz and Kidd proposed
class based metrics into four categories as size, inheritance, internals and externals (Figure 4). The size metrics
are proposed for object-oriented class and which count the attributes and operations for individual class and
average values for system. The inheritance metrics are proposed for operations, internals metrics are proposed
for cohesion and external metrics are proposed for coupling [82]. Lorenz and Kidd metrics are called AC, MC,
NOO, NOA, SI, AOS and ANP.
L-K Metric 1: Attribute Count (AC)

The Attribute Count (AC) metric is the total number of attributes in a class. Both inherited attributes and the
attributes defined in the class are counted for AC. A large number of attributes indicates that the class has too
many properties in it.
L-K Metric 2: Method Count (MC)

The Method Count (MC) metric is the total number of methods in a class. Both inherited methods and the
methods defined in the class are counted for MC.
L-K Metric 3: Number of Operation Overridden by a Subclass (NOO)

The Number of Operation Overridden by a subclass (NOO) metric is the total number of operations
overridden by a subclass. There are occasions, a subclass replaces an operation inherited from its superclass with
a specialized version of its own use and it is called as “overriding”. The large value of NOO indicates that there is
a problem in design and this should result in unique new method names. The number of operations overridden by
a subclass metric value is high then testing is more in object-oriented software and that can be difficult to
modify it. NOO metric of Lorenz and Kidd [64, 65, 72] is similar to polymorphism metric of the MOOD set [1].

[])()(
)(

1

1

iin
TC
i

io
TC
i

CDCCM

CM
PF

×
=

=

=

K.P. Srinivasan et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No.07 Jul 2014 254

Figure 4. Categories of L-K Metrics

L-K Metric 4: Number of Operations Added by a Subclass (NOA)

The Number of Operations Added by a subclass (NOA) metric is the total number of specialized methods and
attributes added by a subclass.

The large values of NOA generally indicate that the subclass drifts away from the abstraction implied by the
super class. In general, as the depth of the class hierarchy increases, the value for NOA at lower levels in the
hierarchy should go down.
L-K Metric 5: Specialization Index (SI)

The Specialization Index (SI) metric is proposed for indication of degree of specialization of each of
subclasses in system. The Specialization Index (SI) metric can be defined as:

Where NOO is the number of operations overridden by a subclass and Level is the level in the class hierarchy
at which the class resides and MC is the total number of methods for the class. This is same as DIT metric of
Chidamber and Kemerer metrics [24]. Specialization can be achieved by adding or deleting operations or by
overriding. A high value of SI indicates that the class hierarchy has classes that do not conform to the superclass
abstraction.
L-K Metric 6: Average Operation Size (AOS)

The Average Operation Size (AOS) metric is the average of the number of messages sent by each method of
the class. This metric is quite similar to RFC metric of Chidamber and Kemerer metric [24]. As the number of
messages sent by a single operation increases, it is likely that responsibilities have not been well allocated within
a class.
L-K Metric 7: Average Number of Parameters per method (ANP)

The Average Number of Parameters per method (ANP) metric is the average of the number of parameters
passed to each of the methods of the class. The larger the number of operation parameters, the more complex the
collaboration between objects. In general, average number of parameters per operation should be kept as low as
possible.

VI. REVIEWS ON OBJECT-ORIENTED METRICS AND SOFTWARE MEASUREMENT IN
SOFTWARE ENGINEERING

The improvement of the management process depends upon ability to identify, measure, and control
essential parameters of the development process. This is achieved through effective software metrics and the
measurement of the essential parameters of software development. The demand for efficient software is
increasing day by day and object-oriented design technique is able to fulfill this demand because it is the most
powerful mechanism to develop efficient software systems. This section reviews the major object-oriented
metrics and their significances. Most of the work in software industry is related to maintenance. The
maintainability of a software system is desirable and it is an important characteristic [34, 35]. Kanmani, S., et al.
proposed external system characteristics assessment using object-oriented inheritance metrics. They proposed
the methodology to measure the C++ source code through inheritance matrix representation [49].

Bansiya, J., and Davis, C.G. proposed a set of metrics for object-oriented design called “Quality Model for
Object-Oriented Design (QMOOD)" [10, 94]. This is a hierarchical model for the assessment of high level
design quality attributes of object-oriented design which is called as QMOOD. This model evaluates the
structural and behavioral design properties of classes, objects and their relationships using a suite of object-
oriented design metrics. This hierarchical model relates design properties of encapsulation, modularity,

Categories of Lorenz
and Kidd Metrics

Inheritance

Internals

Size

Externals

K.P. Srinivasan et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No.07 Jul 2014 255

coupling, and cohesion to high-level quality attributes such as flexibility, reusability and complexity. The
relationship from design properties to quality attributes are weighted in accordance with their influence and
importance. A key attribute of the model is that it can be easily modified to include different relationships and
weights. The model is empirically validated on large commercial object-oriented systems.

Aggarwal, K.K., et al. proposed a model for integrated complexity measurement for measuring the software
complexity based on lines of code, average variable statement, cyclomatic complexity and degree of control
nesting [3]. Chae, H.S., et al. presented an approach for improving the cohesion by considering the
characteristics of the dependent instance variables in an object-oriented program. They investigated the effects
of dependent instance variables on cohesion metrics for object-oriented programs and they proposed an
approach to identifying the dependency relations among instance variables [18]. Aggarwal, K.K., et al. proposed
two design metrics for object-oriented software and these metrics are analytically evaluated against Weyuker’s
properties of measures [4].

Aggarwal, K.K., et al. conducted an investigation on 22 metrics proposed by various researchers and applied
these metrics on projects for empirical study [5]. Sarkar, S., et al. proposed a set of metrics that measure the
quality of modularization of a non-object-oriented software system. They proposed design principles to capture
the notion of modularity and they defined metrics centered on principles. Their metrics characterize the software
from a variety of perspectives as structural, architectural, and notions such as the similarity of purpose and
commonality of goals. Their metrics are based on information-theoretic principles and tested their metrics on
popular open-source systems [79]. Aggarwal, K.K., et al. conducted effect of design metrics on fault proneness
in object-oriented systems. They empirically investigated the relationship between object-oriented design
metrics and fault-proneness of object-oriented systems [6].

Sarkar, S., et al. proposed 13 metrics for measuring the modularization of large-scale object-oriented
software. Their 13 metrics characterise the quality of modularisation with respect to such object-oriented inter-
module dependencies [78]. Alghamdi, J.S. presented a scheme for measuring coupling between program
components. His scheme makes the measurement of coupling easier by breaking it down into two major steps
and provides a systematic procedure for each step [8]. Kaur, K., and Singh, H. validated component based
software development on reuse of software components. They have validated object-oriented metrics to measure
structural properties of commercial software components [52]. Bawane, N., and Srikrishna, C.V. proposed a
metric for software and the process of selecting the metrics that support the goal of measuring design and code
quality [12]. Kaur, K., and Singh, H. conducted a study on system behavior for object-oriented systems using
metrics. They conducted empirical studies using two object-oriented languages [53]. Object-oriented metrics
can play an important role in object-oriented software development. The object-oriented metrics are important in
the development of successful software applications [31]. Ma, Y.T., et al. (2010), proposed a hierarchical set of
metrics for coupling and cohesion. They conducted empirical study on 12 open-source object-oriented software
systems for validating their set. Their experimental results show the correlations between cross-level metrics and
they provided more effective information about fault-prone classes in practice [66]. Kumar, S.A., et al. proposed
the significance of software metrics to quantify design and code quality and discussed on the needs of
development and implementation of metrics [62].

Okike, E. presented a pedagogic evaluation about the Chidamber Kemerer LCOM metric using field data
from three industrial systems. They suggested that the LCOM metric measures class cohesiveness and
appropriateness in the determination of properly and improperly designed classes [68]. Babu, S., and Parvathi,
R.M.S. proposed an approach to the computation of dynamic coupling measures in distributed object-oriented
systems. The motivation of measures is to complement existing measures that are based on static analysis by
actually measuring coupling at runtime in the hope of obtaining better decision and prediction models [9].
Ahmed, M., and Shoaib, M. proposed design metrics to measure real time environment and the aim of the set of
new metrics is to measure the design before handing over to the implementation team [7]. The measurement can
distinguish the characteristics of entity from another by analysis and drawing the conclusion that software
metrics are used to measure the attributes of an entity. It is accepted that quality of software product is strongly
dependent on the quality of its design [83, 88] Yadav, A., and Khan, R.A. proposed coupling metrics for
complexity normalization. They proposed a method to improve reliability of object-oriented design by
normalizing complexity which is closely correlated with coupling and coupling complexity normalization
(CCN) metric is used to minimize complexity of object-oriented design [99].

Chhikara, A., and Chhillar, R.S. proposed an aspect-orientated object-oriented metrics. Aspect-Oriented
Paradigm is the emerging paradigms that promise to enhance software design and promotes reuse. Their
research studies the object-oriented metrics and how the introduction of aspects affects these metrics [22].
Chhikara, A., et al. conducted the impact of different types of inheritance on the object-oriented software. Their
research paper focused on effects of inheritance on object-oriented environment [23]. Gandhi, P., and Bhatia,
P.K. proposed two metrics called Message Received Coupling (MRC) and Degree of Coupling (DC) metrics for
the automatic detection of design problems along with an algorithm to apply these metrics to redesign an object-

K.P. Srinivasan et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No.07 Jul 2014 256

oriented source code. They designed a Method Calling Graph for calculating the value of proposed metrics [38].
Sharma, R., and Chhillar, R.S. discussed the merits and demerits of various metrics. They proposed a new
system for measuring the goodness of implementation phase. The concept of object-oriented metrics has also
been explored [84]. Sharma, A.H., et al. presented a review of the quality metrics suites of CK, MOOD, and LK
metrics. They select some metrics and discard other metrics based on the definition and capability of the metrics
[86].

Reda, S., et al. presented a methodology for software design quality assessment. Their methodology helps
the designer to measure and assess the changes in design due to design enhancements. They illustrated the
methodology using practical software design examples and analyzed its utility in industrial projects [75].
Kumar, R., and Gupta, D., proposed heuristics for object-oriented metrics. They proposed heuristics for CK,
MOOD, and LK object-oriented metrics [60]. Krishnaiah, R.V., and Prasad, B.S. (2012), studied a suite of
metrics for object-oriented design. The metric values have been calculated using a semi-automated tool. They
analyzed the resulting values of CK and MOOD metrics and provided significant insight about the object
oriented characteristics of the projects [59].

Dubey, S.K., and Rana, A. proposed a fuzzy model to quantify maintainability of object-oriented software
system using Chidamber and Kemerer object-oriented metrics. The model takes object-oriented projects and
evaluates its maintainability and fuzzy model is validated by using analytical hierarchy processing technique
[32]. Dubey, S.K., et al. (2012), reviewed object-oriented metrics and they analyzed the difference between the
object-oriented metrics and they studied object-oriented metrics which assures to reduce cost and the
maintenance effort by serving as early predictors to estimate software faults [33]. Dash, Y, et al. (2012), studied
artificial neural network and they explored the application of evaluate maintainability of the object-oriented
software and they studied maintenance effort [30].

Chawla, M.K., and Chhabra, I. (2012), has conducted mapping of program characteristics into five structural
complexity metrics and behavior of an information system. They applied and obtained results from three java
based sorting programs [21]. Jyothi, V.E., et al. (2012), have studied agile software development refactoring to
improve software quality and improve software internal structure without changing its behavior. They proposed
an object-oriented software metric tool called “Metric Analyser” and the tool was tested on different codebases
[47]. Gupta, A., et al. discussed the most commonly used metrics suite of CK, MOOD and LI on the basis of
characteristic they measure. Further, they identified strengths and weaknesses of these metrics and concluded
that none of the metrics suite is foolproof. Moreover, there is no single metric that can measure all the aspects of
an object-oriented System [41]. Sharma, A.K., et al. reviewed the metrics of CK, MOOD, and LK metrics. They
analyzed the metrics and recommended that are useful in evaluation of software quality [85].

Patidar, K., et al. (2013), presented a measurement of the coupling and cohesion between objects that
measures the association between numbers of classes, check the direct dependencies, indirect dependencies, I/O
dependencies, number of out and in metrics in object-oriented programming [71]. Michura, J., et al. proposed a
set of metrics to quantify and measure the attributes. They proposed complexity metrics which are used to
determine the difficulty in implementing changes through the measurement of method complexity, method
diversity, and complexity density [67]. Lamrani, M., et al. (2013), presented an approach to express software
design metrics based on a formal definition of the UML Meta model. They applied their approach to the well
known suite of metrics called the CK metrics and MOOD metrics [63]. Chawla, S. (2013), has reviewed the set
of MOOD and QMOOD metrics sets and they discussed the usefulness of each metrics [20]. Kaur, A., and Kaur,
P.J. (2013), studied class cohesion metrics measured during the design phase to predict software quality. They
used cohesion to evaluate class based on the information that is available during design phases [50].

VII. CONCULSION

The design metrics play an important role in helping designer and developers to understand design aspects of
software and it improves the software quality and productivity. In general, object-oriented metrics serve many
purposes for software engineers and software metrics are used by the project manager, developer, and tester in
assuring the quality of the software products. In today’s software development environment, object-oriented
design and development is important and there is strong relationship between the object-oriented metrics and the
testability efforts in object-oriented system. This paper has analyzed the most referred object-oriented design
metrics proposed by Chidamber and Kemerer, MOOD metrics set, and Lorenz and Kidd metrics. This paper also
discussed the recently proposed “Comprehensive Metrics” suite for object-oriented design quality assessment
and the review of object-oriented metrics proposed by various researchers and their significances are also
outlined. The use of existing metrics and development of new metrics will be important factors in future
software engineering process and product development [37, 46, 93, 94]. In future, research work will be based
on using software metrics in software development for the improvement of the time schedule, cost estimates and
quality and can be improved through software metrics.

K.P. Srinivasan et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No.07 Jul 2014 257

REFERENCES
[1] Abreu, F.B., and Melo, W., “Evaluating the Impact of Object-Oriented Design on Software Quality,” Proceedings of the 3rd

International Software Metrics Symposium, IEEE, Berlin, Germany, March, 1996.
[2] Alemneh, E., “Current States of Aspect Oriented Programming Metrics,” International Journal of Science and Research, Volume 3

Issue 1, January 2014, pp. 142-146.
[3] Aggarwal, K.K., Singh, Y., and Chhabra, J.K., “A Multiple Parameter Software Complexity Measure,” The Journal of Computer

Society of India, Vol. 33, No 1, March 2003, pp. 22-30.
[4] Aggarwal, K.K., Singh, Y., Kaur, A., and Malhotra, R., “Software Design Metrics for Object-Oriented Software,” Journal of Object

Technology, Vol. 6, No. 1, January-February 2006, pp. 121-138.
[5] Aggarwal, K.K., Singh, Y., Kaur, A., and Malhotra, R., “Empirical Study of Object-Oriented Metrics,” Journal of Object

Technology, Vol. 5. No. 8, November-December 2006, pp. 149-173.
[6] Aggarwal, K.K., Singh, Y., Kaur, A., and Malhotra, R., “Investigating effect of Design Metrics on Fault Proneness in Object-

Oriented Systems”, Journal of Object Technology, Vol. 6, No. 10, November-December 2007, pp. 127-141.
[7] Ahmed, M., and Shoaib, M., “Novel Design Metrics to Measure Real Time Environment Application Design,” Journal of American

Science, 7(7), 2011, pp. 222-226.
[8] Alghamdi, T.S., “Measuring Software Coupling,” The Arabian Journal for Science and Engineering, Vol. 33, No. 1B, April 2008 ,

pp. 119-129.
[9] Babu, S., and Parvathi, R.M.S., “Design Dynamic Coupling Measurement of Distributed Object Oriented Software Using Trace

Events,” Journal of Computer Science, 7 (5), 2011, pp. 770-778.
[10] Bansiya, J., and Davis, C.G., “Hierarchical Model for Object-Oriented Design Quality Assessment,” IEEE Transactions on Software

Engineering, Vol. 28, No. 1, January 2002, pp. 4-17.
[11] Basili, V.R., Briand, L.C., and Melo, W.L., “A Validation of Object-Oriented Design Metrics as Quality Indicators,” IEEE

Transactions on Software Engineering, Vol. 22, No. 10, October 1996, pp. 751-761.
[12] Bawane, N., and Srikrishna, C.V., “A Survey of Quality Assessment through Object-Oriented Metrics,” CSI Communications, Vol.

33, No 7, October 2009, pp. 21-25.
[13] Bhatia, P.K., and Mann, R., “An Approach to Measure Software Reusability of OO Design,” Proceedings of 2nd National

Conference on Challenges and Opportunities in Information Technology, RIMT-IET, Mandi Gobindgarh, March 2008, pp. 26-30.
[14] Bieman, J.M., and Ott, L, M., “Measuring Functional Cohesion,” IEEE Transactions on Software Engineering, Vol.20, No.8,

August 1994, pp. 644-657.
[15] Briand, L.C., Morasca, S., Basili, V.R., “Property-Based Software Engineering Measurement,” IEEE Transactions on Software

Engineering, Vol. 22, No.1, January 1996, pp. 68-85.
[16] Chae, H.S., and Bae, D.H., “Improving Cohesion Metrics for Classes by Considering Dependent Instance Variables,” IEEE

Transactions on Software Engineering, Vol. 30, No. 11, November 1998, pp. 826-832.
[17] Chauhan, R., Singh, R., Saraswat, A., Joya, A.H., Gunjan, V.K., “Estimation of Software Quality using Object Oriented Design

Metrics,” International Journal of Innovative Research in Computer and Communication Engineering, Vol. 2, Issue 1, January 2014,
pp. 2581-2586.

[18] Chae, H.S., Kwon, Y.R., and Bae, D.H., “Improving Cohesion Metrics for Classes by Considering Dependent Instance Variables,”
IEEE Transactions on Software Engineering, Vol. 30, No. 11, October 2004, pp. 826-832.

[19] Chandrika, S.M., Babu, E.S., and Srikanth, N., “Conceptual Cohesion of Classes in Object Oriented Systems,” International Journal
of Computer Science and Telecommunications, Volume 2, Issue 4, July 2011.

[20] Chawla, S., “Review of MOOD and QMOOD Metric Sets,” International Journal of Advanced Research in Computer Science and
Software Engineering, Vol. 3, Issue 3, March 2013, pp. 448-451.

[21] Chawla, M.K., and Chhabra, I., “A Multiple Parameter Software Complexity Measure,” International Journal of Engineering
Research and Technology, Vol. 1 Issue 5, July 2012, pp. 1-5.

[22] Chhikara, A., and Chhillar, R.S., “Impact of Aspect Orientation on Object Oriented Software Metrics,” International Journal on
Computer Science and Engineering, Vol. 2 No. 3, June-July 2011, pp. 466-469.

[23] Chhikara, A., Chhillar, R.S., and Khatri, S., “Evaluating the Impact of Different Types of Inheritance on the Object Oriented
Software Metrics,” International Journal of Enterprise Computing and Business Systems, Vol.1 Issue 2 July 2011.

[24] Chidamber, S.R., and Kemerer, C.F., “A Metrics Suite for Object-Oriented Design,” IEEE Transactions on Software Engineering,
Vol. 20, No. 6, June 1994, pp. 476-493.

[25] Chidamber, S.R., Darcy, D.P., and Kemerer, C.F., “Managerial use of Metrics for Object-Oriented Software: An Exploratory
Analysis,” IEEE Transactions on Software Engineering, Vol.24, No. 8. August 1998, pp. 629 – 639.

[26] Churcher, N.I., and Sheppard, M.J., “Comments on a Metrics Suite for Object – Oriented Design,” IEEE Transactions on Software
Engineering, Vol.21, No.3, March 1995, pp. 263-265.

[27] Dallal, J.A., “Mathematical Validation of Object-Oriented Class Cohesion Metrics,” International Journal of Computers, Issue 2,
Vol. 4, 2010, pp. 45-52.

[28] Dallal, J.A., “Measuring the Discriminative Power of Object-Oriented Class Cohesion Metrics,” IEEE Transactions on Software
Engineering, Vol. 37, No. 6, November-December 2011, pp. 788-804.

[29] Dange, A.S., Joshi, S. D., “ Fault Prediction in Object Oriented System Using the Coupling and Cohesion of Classes,” International
Journal of Computer Science and Management Studies, Vol. 11, Issue 02, August 2011, pp. 48-51.

[30] Dash, Y, Dubey, S.A., and Rana, A., “Maintainability Prediction of Object Oriented Software System by Using Artificial Neural
Network Approach,” International Journal of Soft Computing and Engineering, Vol. 2, Issue. 2, May 2012, pp. 420-423.

[31] Dubey, S.K., and Rana, A., “A Comprehensive Assessment of Object-Oriented Software Systems Using Metrics Approach,”
International Journal on Computer Science and Engineering, Vol. 2, No. 8, 2010, pp. 2726-2730.

[32] Dubey, S.K., and Rana, A., “A Fuzzy Approach for Evaluation of Maintainability of Object Oriented Software System,”
International Journal of Computer Applications, Vol. 49, No 21, July 2012, pp. 1-6.

[33] Dubey, S.K., Sharma, A., and Rana, A., “Comparison Study and Review on Object- Oriented Metrics,” Global Journal of Computer
Science and Technology, Vol. 12, Issue 7, April 2012, pp. 38-47.

[34] Emam, K.E., and Melo, W., “The Prediction of Faulty Classes Using Object-Oriented Design Metrics,” Institute for Information
Technology, National Research Council, 1999, Canada.

[35] Emam, K.E., Melo, W., and Machado, J.C., “The Prediction of Faulty Classes Using Object-Oriented Design Metrics,” The Journal
of Systems and Software, 56(2001), 2001, pp. 63-75.

[36] Fenton, N.E., and Pfleeger, S.L., Software Metrics: A Rigorous and Practical Approach, Thomson Asia, Singapore, 2004.

K.P. Srinivasan et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No.07 Jul 2014 258

[37] Fernando, W.K.S.D., Wijayarathne, D.G.S.M., Fernando, J.S.D., Mendis, M.P.L., and Guruge, I., “The Importance of Software
Metrics: Perspective of a Software Development Projects in Sri Lanka,” Proceedings of the SAITM Research Symposium on
Engineering Advancements, Sri Lanka, April 2014, pp. 91-95.

[38] Gandhi, P., and Bhatia, P.K., “Optimization of Object-Oriented Design using Coupling Metrics,” International Journal of Computer
Applications, Vol. 27, No 10, August 2011, pp. 41-44.

[39] Gelinas, J.F., Badri, M., and Badri, L., “A Cohesion Measure for Aspects,” Journal of Object Technology, Vol. 5, No. 7, September-
October 2006, pp. 97 - 114.

[40] Goyal, G., and Patel, S., “Analysis of Object Oriented Class Inheritance and Interfaces Using Coupling Measures,” International
Journal of Engineering and Social Science, Vol. 2, Issue5, 2012, pp. 93-103.

[41] Gupta, A., Batra, G., and Vijaylaxmi., “Analyzing Theoretical Basis and Inconsistencies of Object Oriented Metrics,” International
Journal on Computer Science and Engineering, Vol. 4, No 5, May 2012, pp. 803- 808.

[42] Harrison, R., Counsel, S.J. and Nithi, R.V., “An Evaluation of the MOOD Set of Object-Oriented Software Metrics,” IEEE
Transactions on Software Engineering, Vol.24, No.6, June 1998, pp.491-496.

[43] Hitz, M., and Montazeri, B., “Chidamber and Kemmerer’s Metrics Suite: A Measurement Theory Perspective,” IEEE Transactions
on Software Engineering, Vol.22, No4, April 1996, pp.267-271.

[44] Jassim, F., and Altaani, F., “Statistical Approach for Predicting Factors of MOOD Method for Object Oriented,” International
Journal of Computer Science Issues, Vol. 10, Issue 1, No. 1, January 2013, pp. 589- 593.

[45] Jayalakshmi, N and Satheesh, N., “Software Quality Assessment in Object Based Architecture,” International Journal of Computer
Science and Mobile Computing, Vol. 3, Issue. 3, March 2014, pg.941 – 946.

[46] Jones, C., “Evaluating Software Metrics and Software Measurement Practices,” Version 4, Namcook Analytics, March 2014.
(http://Namcookanalytics.com).

[47] Jyothi, V.E., Srikanth, K., and Rao, K.N., 2012, “Effective Implementation of Agile Practices – Object Oriented Metrics Tool to
Improve Software Quality,” International Journal of Software Engg. and Applications, Vol. 3, No 4, pp. 13-24.

[48] Kan, S.H., Metrics and Models in Software Quality Engineering, Pearson Education, India, 2006.
[49] Kanmani, S., Sankaranarayanan, V., and Thambidurai, P.,“External System Characteristics Assessment Using Object-Oriented

Inheritance Metrics,” The Journal of Computer Society of India, Vol. 32, No 2, June 2002, pp. 5-12.
[50] Kaur, A., and Kaur, P.J.,“Class Cohesion Metrics in Object Oriented Systems,” International Journal of Software and Web Sci.,

3(2), Dec 2013, pp. 78-82.
[51] Kapila, H., and Singh, S., “Bayesian Inference to Predict Smelly classes Probability in Open Source Software,” International Journal

of Current Engineering and Technology, Vol.4, No.3, June 2014, pp. 1724-1728.
[52] Kaur, K., and Singh, H., “Metrics to Evaluate Object-Oriented Software Components” CSI Communications, Vol. 31, No 11,

February 2008, pp. 23-26.
[53] Kaur, K., and Singh, H., “Exploring Design Level Class Cohesion Metrics,” Journal of Software Engineering and Applications, Vol.

3, 2010, pp. 384-390.
[54] Kaur, K., and Singh, H., “An Investigation of Design Level Class Cohesion Metrics,” International Arab Journal of Information

Technology, Vol. 9, No. 1, 2012, pp. 66-73.
[55] Kaur, M., Batra, P., and Khare, A., “Static Analysis and Run-Time Coupling Metrics,” International Journal of Information

Technology and Knowledge Management, Vol. 3, No. 2, July-December 2010, pp. 707-710.
[56] Kaur, P.J., Verma, A., and Thapar, S., “Software Quality Metrics for Object-Oriented Environments,” Proceedings of National

Conference on Challenges and Opportunities in Information Technology, RIMT-IET, Mandi Gobindgarh, 2007, pp. 13-16.
[57] Kitchenham, B., Pfleeger, S.L., and Fenton, N., “Towards a Framework for Software Measurement Validation,” IEEE Transactions

on Software Engineering, Vol. 21, No.12, December 1995, pp. 929-943.
[58] Koh, T.W., Selmat, M.H., Ghani, A.A.A., and Abdullah, R., “Review of Complexity Metrics for Object Oriented Software

Products,” International Journal of Computer Science and Network Security, Vol.8, No.11, November 2008, pp. 314-320.
[59] Krishnaiah, R.V., and Prasad, B.S., “Analysis of Object Oriented Metrics,” International Journal of Computational Engineering

Research, Vol. 2, Issue 5, September 2012, pp. 1474 – 1479.
[60] Kumar, R., and Gupta, D., “Heuristics Based on Object Oriented (OO) Metrics,” International Journal of Emerging Technology and

Advanced Engineering, Vol. 2, Issue 5, May 2012, pp. 393-395.
[61] Kumari, R and Jaspreet., “Implementation of Hybrid Metrics to Evaluate Software Performance Encapsulating CK Metrics,”

International Journal of Engineering Research and Technology, Vol. 2, Issue 3, March 2013, pp. 1-4.
[62] Kumar, S.A., Kumar, T.A, and Swarnalatha, P., “Significance of Software Metrics to Quantify Design and Code Quality,”

International Journal of Computer Applications, Vol. 11, No.9, December 2010, pp. 36-42.
[63] Lamrani, M., Amrani, Y.E., and Ettouhami, A., “A Formal Definition of Metrics for Object Oriented Design: MOOD Metrics,”

Journal of Theoretical and Applied Information Technology, Vol. 49, No 1, March 2013, pp. 1-10.
[64] Lorenz, M., 1993, Object-Oriented Software Development, A practical guide, PTR prentice Hall, Englewood Cliffs, New Jersey,

1993.
[65] Lorenz, M., and Kidd, J., Object-Oriented Software Metrics, Prentice Hall, Englewood Cliffs, New Jersey.
[66] Ma, Y., He, K., Li, B., Liu, J., and Zhou, X., “A Hybrid Set of Complexity Metrics for Large-Scale Object-Oriented Software

Systems,” Journal of Computer Science and Technology, 25(6): November 2010, pp. 1184–1201.
[67] Michura, J., Capretz, M.A.M., and Wang, S., “Extension of Object-Oriented Metrics Suite for Software Maintenance,” ISRN

Software Engineering, Vol. 2013, pp. 1-14.
[68] Okike, E., “A Proposal for Normalized Lack of Cohesion in Method (LCOM) Metric Using Field Experiment,” International

Journal of Computer Science Issues, Vol. 7, Issue 4, No 5, July 2010, pp. 19-27.
[69] Okike, E., “A Pedagogical Evaluation and Discussion about the Lack of Cohesion in Method (LCOM) Metric Using Field

Experiment,” International Journal of Computer Science Issues, Vol. 7, No 3, March 2010, pp. 36-43.
[70] Olague, H.M., Etzkorn, L.H., Gholston, S., and Quattlebaum, S., “Empirical Validation of Three Software Metrics Suites to Predict

Fault-Proneness of Object-Oriented Classes Developed Using Highly Iterative or Agile Software Development Processes,” IEEE
Transactions on Software Engineering, Vol. 33, No. 6, June 2007, pp. 402-419.

[71] Patidar, K., Gupta, R., and Chandel, G.S., “Coupling and Cohesion Measures in OO Programming,” International Journal of
Advanced Research in Computer Science and Software Engineering, Vol. 3, Issue 3, March 2013, pp. 517-521.

[72] Pressman, R.S., Software Engineering a Practitioner’s Approach, 5th Edition, McGraw Hill, India, 2001.
[73] Pasupathy, S and Bhavani, R, “Analyzing the Efficiency of Program Through Various OOAD Metrics,” Journal of Theoretical and

Applied Information Technology, Vol. 61 No.2, March 2014. pp. 346-351.
[74] Rajnish, K., “Another New Complexity Metric for Object-Oriented Design Measurement,” International Journal of Hybrid

Information Technology, Vol.7, No.2, 2014, pp.203-216.

K.P. Srinivasan et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No.07 Jul 2014 259

[75] Reda, S., Ammar, H., and Hegazy, O., “A Methodology for Software Design Quality Assessment of Design Enhancements,”
International Journal of Computer Science and Network, Vol. 1, Issue 6, December 2012, pp. 101-109.

[76] Singh, H, Kumar, A, “A Novel Approach to Enhance the Maintainability of Object Oriented Software Engineering During
Component Based Software Engineering,” International Journal of Computer Sci. and Mobile Computing, Vol. 3, Issue 3, Mar 2014,
pp.778 – 786.

[77] Salem, A.M., and Qureshi, A.A., “Analysis of Inconsistencies in Object Oriented Metrics,” Journal of Software Engg. and
Applications, 4, 2001, pp. 123-128.

[78] Sarkar, S., Kak, A.C., and Rama, G.M., “Metrics for Measuring the Quality of Modularization of Large-Scale Object-Oriented
Software,” IEEE Transactions on Software Engineering, Vol. 34, No. 5, September-October, 2008, pp. 700-720.

[79] Sarkar, S., Rama, G.M., and Kak, A.C., “API-Based and Information-Theoretic Metrics for Measuring the Quality of Software
Modularization,” IEEE Transactions on Software Engineering, Vol. 33, No. 1, January 2007, pp. 14-32.

[80] Sastry, J.S.V.R.S., Ramesh, K.V., and Padmaja, M., “Measuring Object-Oriented Systems Based on the Experimental Analysis of
the Complexity Metrics,” International Journal of Engg. Sci. and Technology, Vol. 3, No. 5, 2011, pp. 3726-3731.

[81] Saxena, P., and Saini, M., “Empirical Studies to Predict Fault Proneness: A Review,” International Journal of Computer
Applications, Vol. 22, No.8, May 2011, pp. 41-45.

[82] Shaik, A., Reddy, C.R.K., and Damodaran, A., “Object Oriented Software Metrics and Quality Assessment: Current State of the
Art,” International Journal of Computer Applications, Vol. 37, No, 11, 2012, pp. 06-15.

[83] Sharma, M., Singh, G., Arora, A., and Kaur, P., “A Comparative Study of Static Object Oriented Metrics,” International Journal of
Advancements in Technology, Vol. 3 No.1, January 2012, pp.25-34.

[84] Sharma, R., and Chhillar, R.S., “Novel Approach to Software Metrics,” International Journal of Soft Computing and Engg., Vol. 2,
Issue 3, 2012, pp. 232-236.

[85] Sharma, A.K., Kalia, A., and Singh, H., “Empirical Analysis of Object Oriented Quality Suites,” International Journal of
Engineering and Advanced Technology, Vol.1, Issue-4, 2012, pp. 163-167.

[86] Sharma, A.K., Kalia, A., and Singh, H., “Metrics Identification for Measuring Object Oriented Software Quality,” International
Journal of Soft Computing and Engineering, Vol. 2, Issue 5, November 2012, pp. 255- 258.

[87] Shatnawi, R., “A Quantitative Investigation of the Acceptable Risk Levels of Object-Oriented Metrics in Open-Source Systems,”
IEEE Transactions on Software Engineering, Vol. 36, No. 2, March-April 2010, pp. 216-225.

[88] Shoaib, S.M., Shah, A., and Majeed, F., “Software Design Quality Metrics for Web Based Applications,” Pakistan Journal of Sci.,
Vol. 63, No. 1, 2011, pp. 19-25.

[89] Singh, P., Chaudhary, K.D., and Verma, S., “An Investigation of the Relationships between Software Metrics and Defects,”
International Journal of Computer Applications, Vol. 28, No.8, August 2011, pp. 42-45.

[90] Srinivasan, K.P., Devi, T., and Thiagarasu, V., “An Analysis of Chidamber - Kemerer Metrics for Object-Orientation Design,”
Proceedings of National Conference on Emerging Trends in Computer Science, Avinasilingam University for Women, Coimbatore,
March 2009.

[91] Srinivasan, K.P., and Devi, T., “Design and Development of a Procedure to Test the Effectiveness of the Object-Oriented Design,”
International Journal of Engineering Research and Industrial Applications, Vol. 2, No.VI, 2009, pp. 15-25.

[92] Srinivasan, K.P., and Devi, T., “Design and Development of a Procedure for new Object-Oriented Design Metrics,” International
Journal of Computer Applications, Vol.24, No.8, June 2011, pp. 30-35.

[93] Srinivasan, K.P., and Devi, T.,“A Novel Software Metrics and Software Coding Measurement in Software Engineering,”
International Journal of Advanced Research in Computer Science and Software Engineering, Vol. 4, Issue 1, January 2014, pp.
303-308.

[94] Srinivasan, K.P., and Devi, T., “A Complete and Comprehensive Metrics Suite for Object-Oriented Design Quality Assessment,”
International Journal of Software Engineering and Its Applications, Vol. 8, No. 2, February 2014, pp.173-188. (This paper is
recognized as a “Quality Paper” by SERSC, Republic of Korea and Published with Free of Cost).

[95] Subramanyam, R., and Krishnan, M.S., “Empirical Analysis of CK Metrics for Object-Oriented Design Complexity: Implications
for Software Defects,” IEEE Transactions on Software Engineering, Vol. 29, No. 4, April 2003, pp. 297-310.

[96] Thirugnanam, M., and Swathi J.N., “Quality Metrics Tool for Object Oriented Programming,” International Journal of Computer
Theory and Engineering, Vol. 2, No. 5, October 2010, pp. 712-717.

[97] Torkamani, M.A., “Metric Suite to Evaluate Reusability of Software Product Line,” International Journal of Electrical and Computer
Engineering, Vol. 4, No. 2, April 2014, pp. 285-294.

[98] Umamaheswari. E., Ghosh, D.K., “Software Quality: Dual Experts Opinion and Conditional Based Aggregation Method,”
International Journal of Engineering and Technology, Vol. 6 No. 2, Apr-May 2014, pp, 1167-1175.

[99] Yadav, A., and Khan, R.A., “Coupling Complexity Normalization Metric-An Object Oriented Perspective,” International Journal of
Information Technology and Knowledge Management, Vol. 4, No.2, July-Dec. 2011, pp. 501-509.

[100] Weyuker, E.J., “Evaluating Software Complexity Measure,” IEEE Transactions on Software Engineering, Vol. 14, No. 9,
September 1988, pp. 1357-1365.

AUTHORS PROFILE

K.P. Srinivasan received his Master of Computer Applications Degree from Bharathiar
University, Coimbatore, India in 1993 and M.Phil Degree in Computer Science from the
Bharathiar University, Coimbatore, India in 2001. Presently, he is working as an Associate
Professor in Computer Science in C.B.M. College, Kovaipudur, Coimbatore under
Bharathiar University, Coimbatore, India since 1997. He is doing his research work in
Software Engineering. He has published five conference papers and six journal papers. He
has received the best paper award from a conference and “quality paper” recognition from
a reputed journal. His current research interests are in the areas of Software Engineering
and Object-Oriented Systems.

K.P. Srinivasan et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No.07 Jul 2014 260

Dr T. Devi received Master of Computer Applications Degree from P.S.G. College of
Technology, Coimbatore, India in 1987 and the Ph.D. Degree from the University of
Warwick, United Kingdom in 1998. Presently, she is working as an Associate Professor
and Head of the Department of Computer Applications, School of Computer Science
Engineering, Bharathiar University, Coimbatore, India. Prior to joining Bharathiar
University, she was an Associate Professor in Indian Institute of Foreign Trade, New
Delhi, India. She has contributed more than 140 papers in various Journals and
Conferences. Her current research interests are in the areas of Software Engineering and
Concurrent Engineering.

K.P. Srinivasan et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No.07 Jul 2014 261

	A COMPREHENSIVE REVIEW ANDANALYSIS ON OBJECT-ORIENTEDSOFTWARE METRICS IN SOFTWAREMEASUREMENT
	Abstract
	Keywords
	I. INTRODUCTION
	II. THE COMPREHENSIVE SOFTWARE METRICS SUITE FOR OBJECT-ORIENTED DESIGN
	III. THE CHIDAMBER AND KEMERER METRICS FOR OBJECT-ORIENTED DESIGNMETRICS
	IV. METRICS FOR OBJECT-ORIENTED DESIGN (MOOD) METRICS SUITE
	V. THE LORENZ AND KIDD OBJECT-ORIENTED METRICS
	VI. REVIEWS ON OBJECT-ORIENTED METRICS AND SOFTWARE MEASUREMENT INSOFTWARE ENGINEERING
	VII. CONCULSION
	REFERENCES

