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Abstract 

With the availability of huge amount of text in internet, news, institutes, organization etc need of automatic text 
classification also increases, The proposed work  comprised to deal with the major challenge of getting labeled 
data for training in classifier, since the availability of labeled data is expensive, time consuming, it also  requires 
the involvement of annotator .  A novel semi supervised test classification algorithm based on Back Propagation 
Neural Network is proposed which makes use of web assisted unlabeled data by Active search, this algorithm is 
compared with standard KNN algorithm on test data and standard data Mini Newsgroup. Experimental results 
state that the proposed algorithm outperforms KNN with     Micro averaged F1measure. 

INTRODUCTION 

A Major issue in the field of text classification is to organize large amount of documents into a number of 
meaningful classes. Text classification has application in the field of security, Bio medical, Company Resource 
Planning [1]. In existing Algorithm of Text classification Documents are represented using Vector space model 
which treats document as bag of words. Text representation is one of the crucial steps of text classification. 

Depending on the data available text classification can be categorized as supervised or unsupervised. Supervised 
learning is learning from labeled examples. It is an area of machine learning that has  reached  development, it 
has generated general purpose and practically successful algorithms[2], whereas learning without the use of 
samples or labeled data is unsupervised learning where one finds an interesting structure with sample 
independently drawn from unknown distribution, Unsupervised learning is closely related to the problem of 
density estimation in statistics[3], major problems of unsupervised learning are minimum domain knowledge, 
noisy data, insensitive to instance order etc. 

The large quantities of data is required to obtain high accuracy, and the difficulty of obtaining labeled data led 
the Research direct towards field where one can use a lot of unlabeled data which are easily available rather than 
labeled data which are manually assigned by experienced analyst which makes it time consuming and labor 
intensive job. 

Semi supervised is a way to make use of this huge amount of easily available unlabeled data and few labeled 
data which makes it perform better than unsupervised algorithm, our proposed algorithm is making use of only 
few root words and easily available relevant data to train the classifier. 

The Novel approach to text classification starts with just few root words using active search we collect web 
assisted data that  undergoes  the pre-processing , efficient text representation  technique is used followed by 
BPNN, Our algorithm is compared with standard KNN on the basis of   Micro averaged F1measure.the rest of 
the paper is structured as  follows. In Section 2 the Pre processing steps are described along with the term 
weighting method. Section 3 proposes the algorithm and comparison with KNN. Section 4 depicts the 
experimental Methodology and results. Section 5 concludes the research and discusses future prospects. 

2. Pre processing in Text classification 

2.1 Tokenization 

Text document is a collection of sentences. In order to extract all words that are used in a given text, a 
tokenization [4] process is required for converting text document into stream of words by removing all 
punctuation marks such as commas, spaces, tabs, special characters etc, all text documents are merged to obtain 
set of different words which are collectively called the dictionary of a document collection.  
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2.2 Filtering Stop words 

Filtering [5] is a method to remove words from the dictionary and thus from the documents. A standard filtering 
method is stop word filtering. The set of different words i.e. dictionary which is output of tokenization phase is 
now taken as input for the stop word filtering. The idea of stop word filtering is to remove words that have little 
or no content related  information, like articles a ,an, the, conjunctions and, but, prepositions on, above, etc. It 
reduces complexity without any loss of information for typical application 

2.3 Stemming 

A stem is a natural group of words with equal meaning. (Andreas Hotho; 2005) [5]. Stemming method identifies 
the root of words for example run is the root word of running and ran. This methods try to construct the basic 
forms of words i.e. to remove ’ing’ from verbs, plural‘s’ from nouns, ‘ed’ from past tense or other affixes. A 
well-known rule based stemming algorithm has been originally proposed by Porter [Por80] [6]. He defined a set 
of production rules to iteratively transform (English) words into their stems. Each document words are 
preprocessed using Porter’s stemming algorithm.  After the stemming process, every word is represented by its 
stem.  

2.4 Supervised Term weighting Method based on Relevance Factor Term Weighting Methods 

The term weighting methods assigns an appropriate weight to the term to improve the performance of text 
classification[7] paper investigates several widely used unsupervised and supervised term weighting methods, a 
new simple supervised term weighting method, tf,rf, (term frequency, relevance frequency)is used to improve 
the terms’ discriminating power for text categorization task, here emphasis has been made on term 
discriminating power analysis ,relevance factor refers to the degree of relevance of the term to the category it 
belongs to as compared with its relevance  to other documents. It has been proved that it has a consistently better 
performance than other term most widely used term weighting methods Term frequency [8].   

In text classification of multiple classes, a term may have high term frequency (t.f) and may belong to almost all 
the classes in this case the term actually do not posses a high discriminating power and so the inverse term 
document frequency factor and its variant has been used, our proposed algorithm uses a supervised term 
weighting method which is a multiplication of t.f and relevance factor r.f. where relevance factor is defined as 

r.f= log (2+ (a/max (1, c))                                        (1) 

Here 

a: total number of document in the positive category that contain this term 

c: number of document in the negative category that contain this term 

Here we assign a term as positive category if it belongs to the document that belongs  to the category and all 
other categories combined together as negative category 

3. Proposed Work 

3.1 Proposed Algorithm 

Labeling large amount of text spans for training systems is time consuming and unrealistic for many 
applications. We consider here the use of semi-supervised techniques, which lets to train a system with only a 
few labeled documents together with large amounts of unlabeled documents, It is difficult to build reliable 
classifier that is able to achieve high classification accuracy with of small number of available labeled 
documents, one way to overcome this problem is by using active search. 

Active search is a way to first identify a number of important keywords, root words belonging to different 
category and then utilize search engines to retrieve from the web a multitude of relevant documents [9], we use 
Google to get relevant documents. 

Though initially we have unrelated keywords, query word the web data or document collected will undergo 
effective Preprocessing and feature selection term weighting method  to remove the irrelevant words and 
proceed for training. This data undergoes through the pre processing method of tokenization, stop word removal 
, application of porter stemming , we reduce the dimension by considering only those words that appear in more 
than one document usually words appearing in only one document has its correlation with that document 
example  names ,such words do not specifically have discriminating power, such word are not considered. 

Our Algorithm applies Supervised Term weighting Method based on Relevance Factor, it posses high 
discriminating capability of text words to the category. This data is fed to Neural Network classifier based on 
Back Propagation Neural Network. One of an efficient and popular approach for text categorization is Neural 
network, it can handle linear and nonlinear problems for text categorization, and both of linear [10] and 
nonlinear [11] classifier can achieve good results. There have been different neural networks applications to text 
categorization. Perceptron is the earliest and simple form of neural networks, which has only one input and an 
output layer, Ng, Goh, and Low first used the perceptrons to construct a text classifier, and reported a 
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surprisingly high performance [12]. Nakayama and Shimizu developed a training procedure for subject 
categorization using multilayer perceptrons [13]. The nonlinear neural networks are the more sophisticated 
neural networks with some hidden layers between the input and the output layers. Ruiz and Srinivasan compared 
the back propagation learning mechanism and counter propagation learning mechanism[14]. Back propagation 
neural network (BPNN) is the most popular in all of the neural network applications. It has the advantages of 
yielding high classification accuracy. 

Back Propagation Neural Network based Classifier 

Multilayer feed forward network which uses a supervised learning method, a generalization of delta rule is 
known as back propagation learning algorithm .Back propagation neural network. The training of a network by 
back propagation involves three stages: the feed-forward of the input training pattern, the calculation and back-
propagation of the associated error, and the adjustment of the weight and the biases. 

Input pattern feed-forward. Calculate the neuron’s input and output. For the neuron j, the input Ij and output Oj 
are 

Ij=∑Wij * Oj;         (2) 

Oj=f(Ij+ ߠj)       (3) 

where wij is the weight of the connection from the ith neuron in the previous layer to the neuron j, f(Ij+ ߠj)is an 
activation function of the neurons, Oj is the output of neuron j, and  ߠj is the bias input to the neuron. In this 
paper, we use a tanh(n )sigmoid activation function defined with the  equation: 

tansig(n) = 2/(1+exp(-2*n))-1;     (4) 

 This function is a good trade off for neural networks. The error, E, is calculated in this paper, the mean absolute 
error function is used in the output layer The mean absolute error is used to evaluate the learning effects and the 
training will continue until the mean absolute error falls below some threshold or tolerance level. 
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Here n is the number of training patterns,l  is the number of output nodes, and Onl and Tnl are the output value 
and target value ,respectively. The mean absolute error is used to evaluate the learning effects and the training 
will continue until the mean absolute error falls below some threshold or tolerance level. The back propagation 

errors both in the output layer, l  and the hidden layer, j , are then calculated with the following formulas:  
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Here Tl is the desired output of the lth output neuron, Ol is the actual output in the output layer, Oj is the actual 
output value in the hidden layer, and k is the adjustable variable in the activation function. The back propagation 
error is used to update the weights and biases in both the output and hidden layers. 

Weights and biases adjustment : The weights, wji, and biases, ߠi, are then adjusted using the following 
formulas: 
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Here k is the number of the epoch and g is the learning rate. 

The back propagation error is used to update the weights and biases in both the output and hidden layers. 

3.2 KNN Algorithm 

KNN algorithm 

KNN is also known as instance based learning algorithm, Nearest Neighbor classifier are based on learning by 
analogy that is by comparing a test data with training data that is similar to it[15], after preprocessing each text 
document is now represented as a set of words and its corresponding numerical value specifying  weightage of 
that term in document. 

KNN algorithm [16] is a stable and efficient method of classification based on examples. Using KNN algorithm 
the process of document classification are as follows: In document set, we find the most similar K training 
documents for one given test documentation d. Then give each document class a value that is the similarity sum 
between the test documentation and the documentation in the K training documents belonging to the class. That 
is to say, if there are some documentation belonging to this class in the K documents, the value of this class is 
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Figure 3 shows the performance of proposed algorithm and KNN on the basis of Micro Averaged F1 measure on standard Mini Newsgroup 

data on random sets of 10 to 50 documents of computer and sports category of standard Mini newsgroup. 

5. Conclusion and Prospects 

The proposed work has been initiated to address various problems identified in the field of Text Classification 
i.e. unavailability of labeled documents, Using Active search , few numbers of keywords are used to get the 
relevant data of the categories of Computers, sports and Medicine. Efficient supervised Term weighting method 
based on Relevance factor is used for Text representation, this input is fed to BPNN, the algorithm output is 
calculated on different set of test data and standard mini newsgroup data with KNN algorithm on the basis of 
Micro Averaged measure F1measure.It has been found that proposed algorithm outperforms KNN algorithm. 
Improvement in training time could be done by modifying BPNN. 
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