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Abstract—in a realm of ever-increasing Internet connectivity, together with swelling computer security
threats, security-cognizant network applications technology is gaining widespread popularity. Packet
classifiers are extensively employed for numerous network applications in different types of network
devices such as Firewalls and Router, among others. Appreciating the tangible performance of
recommended packet classifiers is a prerequisite for both algorithm creators and consumers. However,
this is occasionally challenging to accomplish. Each innovative algorithm published is assessed from
diverse perceptions and is founded on different suppositions. Devoid of a mutual foundation, it is virtually
impossible to compare different algorithms directly. In the interim, it too aids the system implementers to
effortlessly pick the most suitable algorithm for their actual applications.

Electing an ineffectual algorithm for an application can invite major expenditures. This is particularly
true for packet classification in network routers, as packet classification is fundamentally a tough
problem and all current algorithms are constructed on specific heuristics and filter set characteristics.
The performance of the packet classification subsystem is vital for the aggregate success of the network
routers.

In this study, we have piloted an advanced exploration of the existing algorithms to provide a
comparative evaluation of a number of known classification algorithms that have been considered for
both software and hardware implementation. We have explained our earlier suggested DimCut packet
classification algorithm, and related it with the BV, HiCuts and HyperCuts decision tree-based packet
classification algorithms with the comparative evaluation analysis. This comparison has been carried out
on implementations based on the same principles and design choices from different sources. Performance
measurements have been obtained by feeding the implemented classifiers with a large number of random
Rules and Packets in the same test scenario.
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INTRODUCTION

Packet classifiers are extensively used for a variety of network applications, of which several are correlated to
quality of service (QoS) provisions, and therefore in numerous varieties of network devices. Large scale packet
classification has become a key element of network security systems and Firewalls needing to classify packets,
where the speed of decision making, to accept or reject, is of utmost significance.

The foremost task of a firewall is to scrutinize and select the network traffic in accordance with the
designated security policy. Typically, the security policy and rules are encoded manually by a system
administrator to stipulate an action for traffic flows, and, therefore, specify how to process the traffic. The
security policy system spells out the progression of the network traffic. Packet classifiers are extensively
employed in IP networking where procedures customarily comprise one or more packet header fields. A packet
classifier must compare header fields of each inward packet against a set of rules [1][2][3][4]. The packet header
fields generally consist of the source IP address, the destination IP address, the transport protocol, the source
port, and the destination port, which can be an exact prefix and range. Each filter R[i] has an allied action that
governs how a packet P is handled if P matches R[i]. Filters can overlap; hence, a packet can match multiple
filters, but the one with the highest priority among all the equivalent filters is selected as the best matching filter.
Customarily, the filter’s position in an ordered list of filters defines its priority [1][5].
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Another feature that can assist a faster packet classification is using multi-processing and multi-threading.
OpenMP (Open Multi-Processing) is well-thought-out as an execution of multithreading. The threads run
parallel with the runtime environment, assigning threads to varied processors. We have used the OpenMP API
commands and functions that support C programing language to implement the DimCut and called it the
DimCut T [6].

In this study, we have elucidated our erstwhile recommended DimCut packet classification algorithm, and
compared DimCut and DimCut T with the HiCuts, HyperCuts and BV decision tree-based packet classification
algorithms. The proposed improvements have been corroborated by simulated trials.

The rest of the paper is organized as follows: Section One reviews some related works on the various
algorithms studied to capture their advantages and disadvantages. Section Two explains the BV, HiCuts,
HyperCuts, DimCut and DimCut T algorithms. Section Three deals with the implementation objectives. Section
Four tabulates and examines the results of the comparative assessment of our experiments and findings. Section
Five is a summary of our contributions and conclusion.

l. LITERATURE REVIEW

A packet classifier must correlate header fields of all incoming packets against a set of rules containing the
security policies. Packet classification aims at pursuing the best matching filter for a given packet header. In the
multidimensional packet classification, trade memory is used for better speed and performance. When the
number of rules increases, the result is inadequate, either towards search time or memory usage
[71[8]1[9][10][11][12][13].

The bit vector search algorithm is derived on the basis of filter set intersecting, as it is easier to match a part
of filter at a time than to match the entire filter all together. The packet header can be split into substrings and
matched with a subset of rules, whose intersection will give a rule to match the whole packet header [14].

Baboescu, Singh, and Varghese are researchers who have proposed Extended Grid-of-Tries (EGT) which
fundamentally withstands multiple fields. It is notable that the EGT modifies the switch pointers to jump
pointers that maneuver the search to all feasible matching filters, rather than only to the filters with the longest
matching destination and source address prefixes [15]. Woo’s modular packet classification, Multidimensional
Cuttings (HyperCuts) and Hierarchical Intelligent Cuttings (HiCuts), employs filter set splitting method in
algorithms, where the preprocessing of rule sets utilizes the strategy of cutting of the multi-dimensional space
recursively to construct the decision tree [1][12][15].

Tuple Space Search (TSS) is based on filter set grouping, where filters in a set are rearranged into separate
subsets with definite common features. Lookups can be conducted in each of these slighter subsets in parallel.
The proper match is extracted from the results of all the lookups. Lookups in each tuple can be organized
through a basic hash table [16][17].

Many researchers have examined and illustrated the problems of packet classification, and several solution
algorithms have been suggested, but it still remains problematic, leaving innumerable opportunities to improve
algorithm performance in the existing algorithms [4][18][19].

1. BIT VECTOR, HICUTS, HYPERCUTS AND DIMCUT ALGORITHMS

A. Bit Vector

The linear understanding of packet classification divulges some basic concepts in what manner the data
configurations can be created and how to characterize packet filters. In geometric view, several algorithms take
on either ‘cutting’ or ‘projection’ techniques in multidimensional space to preprocess filter sets. The ‘cutting
technique’ portions the space into smaller sections at designated vantage points. This procedure helps to contract
the latitude of the search. The “projection technique’ plans the end-points of ranges to each dimensional axis.
Two contiguous points outline an elementary intermission that is completely encompassed by a distinctive
subset of filters. ‘Projection technique’ has advanced granularity than the ‘cutting technique’ and can, therefore,
distinguish filters in a superior manner. However, locating an elementary interval by this technique is more
challenging than tracing a sub-region by the ‘cutting’ technique. The decision tree-based algorithms typically
apply the “cutting’ technique, while the decomposition-based algorithms customarily utilize the “projection’
technique.

The Bit Vector (BV) algorithm is a decomposition-based algorithm that characterizes the subset of filters for
each partial match by means of bit vectors. The filter set intersecting notion is that it is easier to match a partial
filter, rather than the entire filter, at one time. Therefore, when the packet header is divided into a set of
substrings, then each substring can match a subset of filters. The intersection of these subsets is precisely the
filters matching the total packet header [14].

Consider the example in 2D filter set; shown in “Fig. 1”, each filter appears to be a rectangle on this 2D
plane. The preprocessing step of the algorithm projects the edges of the rectangles to the corresponding axis,
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means project the end points of each rectangle to the axis, and any two adjacent projection points on an axis
defines an elementary interval which is fully covered by a set of filters. In the example shown, the three
rectangles create six intervals in each axis. Then associate a bitmap with each dimension. A bit in the bitmap is
set, if the corresponding rectangle overlaps with the interval that the bitmap corresponds to. Since there are 3
filters in total, each bit vector is 3-bit wide. The bit 0 is for the filter R1, the bit 1 is for the filter R2, and so on,
as is shown in “Fig. 1”. To implement the BV, we used the binary search technique to build the single field
lookup data structure for retrieving the bit vectors.
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Figure 1. Shows the Projection partitiong technige Figure 2. Shows the Cutting partitiong technige
B. HiCuts

The packet classification algorithm, Hierarchical Intelligent Cuttings proposed by Gupta and McKeown. The
concept of “cutting” emanates from observing the packet classification problem geometrically as shown in “Fig.
2”. HiCuts preprocesses the rule set for constructing a decision tree, with its leaves encompassing a specific
number of rules. The number of cuts is determined by the local cutting circumstances and a global configurable
space measure factor, spmf. The largest possible number of cuts is chosen, as long as the following inequality is
satisfied [1].

spmf * number of rules at node r > > number of rules at each child of node r + number of cuts

The threshold is the maximum number of rules allowable in a leaf node. A larger threshold can assist in
decreasing the size and depth of the decision tree, but will take a longer linear search time. In practice, the user
needs to explore all options and possibilities for identifying the appropriate one [13][8].

C. HyperCuts

HyperCuts is a decision tree-based packet classification algorithm similar to HiCuts with some differences.
The algorithm recursively cuts the space into smaller areas, on multiple dimensions per step. Each smaller area
ends up with fewer overlapped hyper cubes which to a point allow a smaller linear search to find the best
matched rule. HyperCuts allows cutting on multiple dimensions rather than only one dimensionvin HiCuts, and
also it presents some additional optimization improvements such as: node merging, rule overlap, region
compaction, pushing common rule subsets upwards [1].

To decide about the number of cuts, assume each chosen dimension would receive nc(i) cuts, then the
possible number of child nodes, NC, is IT nc(i). It chooses the largest possible NC that is bound by spfac*sqrt
(N), where spfac is a configurable parameter, N is the number of rules of the specific node. The bucket size
decides that when should terminate the decision tree construction. A larger bucket size can help decrease the
size and the depth of the decision tree, but it cause to a longer linear search time.

D. DimCut

The DimCut algorithm is fortified with certain alterations and enhancements on the HiCuts algorithm. It has
two disconnected levels, pre-processing level (tree construction) and search level. The algorithm pre-processes
the rule set inferred to create a decision tree, and it is well expounded that the leaves contain a subset of rules
with the number of rules bound by a predefined threshold. Packet header fields hunt for the proper leaf, and
then linearly search for a corresponding rule fitting to that leaf [5] “in press” [20].

The DimCut utilizes a heuristic for selecting the correct dimension to scan and pick the appropriate number
of partitions (cut) to be made, with the objective of distributing the rules inside the partitions in a balanced
manner, and with minimum repetition of feasible rules. The process of cutting is implemented at each level, and
recursively on the child nodes of that level, until the number of rules linked with each node become lower than
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the threshold (maximum number of rules that can be at a leaf node). We have endeavored to discover heuristics
and techniques that can transform the algorithm for a higher performance with equitable memory consumption.

In DimCut, the GL (H) is the geometric length associated with column H in the rule set. To choose the best
cut dimension, two fields Ha, Hb are selected which have the least GL (') values. Statistical regression analysis
is used to estimate the best number of cuts. Based on several tests with reference to efficiency and performance ,
it is found that the best Number of cuts can be computed with the formula, NC = 495.22 + (.034 * N) + (9 * 10-
7 * N2) + (6.23*10-12 *N3), the Bucket size (The threshold) set as, B = 2 if N<=10000 and B=5 if
10000<N<40000 and B= 8 if 40000<=N<=100000, Here, N = Total Number of rules.

The Array Pointer structure is used which works with a large amount of rules. All rules have been arranged in
priority order, in accordance with the network administrator policy. The decision tree will extend across to
search the buckets covering the incoming packet and will jump to the first bucket regions of its origin. To arrive
at the proper node by using the following method, it’s possible to jump to the proper node rather than traversing
the tree, which is the main key for the high performance and efficiency of our algorithm. The index table
indexes a reference number to the proper bucket that covers the incoming packet after the optimization, such as
eliminating the empty nodes, region compaction, node merging etc.

1. EXPERIMENTAL METHODOLOGY

Our basic involvement in this work is an unprejudiced comparison with shared standards and valuation
circumstances, by giving a homogeneous review of these three classification algorithms which have been
executed with common principles and evaluated in a common trial environment.

All the trials have been steered on standard PCs with 8 cores Intel Xeon 3.00 GHz, RAM 8.00 GB, using the
Oracle VM Virtual Box to provide an insulated background, using GCC 4.7.1 compiler. Search performance is
evaluated by directing it through a large number of packets and rules; and to reach the best valuation, the worst
case scenario is used while providing identical settings for all tests.

For these tests, the 1000, 5000, 10000 ... 100000, numbers of random rules and the 20000 numbers of
random packets have been generated, with packet size of 20 Byte and the rule size of 52 Byte.

In the “Fig. 3”, the blueprint of the simulated experiment is shown.
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Figure 3. simulated experimented methodology model setup.

The rule’s headers are Source IP (32 bit) and Destination IP (32 bit): (Exact/prefix), Source Port (16 bit) and
Destination Port (16 bit): (Exact value, any, ranges), Protocol (8 bit): (TCP, UDP, ICMP, ANY, IGMP, GRE,
IGP, EGP ...) and the Actions (8 bit): (Accept; Deny, Log, Forward, Nothing).

The evaluation metrics and parameters institute the Cut Dimension, Number of Cut, Rule Classification
Time, Packet Classification Time, Rule Memory Access, Number of Search, RTSC (Read Time Stamp Counter
or number of CPU clock cycles ticks from the machine bootstrap).

It is significant to note that our cited applications are only for the purpose of replication and assessment, and
therefore the source code is not augmented as software. We have prudently picked the formations that show the
way to the best inclusive accomplishment.

V. EXPERIMENTAL RESULTS
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The worst case scenario is provided for tests and tests have been conducted multiple times to calculate the
average. The DimCut tests run in two execution models, Normal Run (Single Thread) and OpenMP (Multi
Threads - Parallel) that called the DimCut T. The OpenMP is an API that supports multi-platform shared
memory multiprocessing programming in C and it’s an implementation of multithreading, a method of
parallelizing by using Omp.h header file, gomp and pthread library.

The following graphs display evaluation result of the HiCuts, HyperCuts, DimCut, DimCut T and the Bit
Vector packet classification algorithms.

“Fig. 4”7, presents that, while the rules are increasing the rule classification time also increases. The both
DimCut act better with respect to time consumption and DimCut is faster than the others during the progress of
rule classification process. The HyperCuts rule classification time consumption is more reasonable than the
HiCuts and BV.
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Figure 4. A comparison between the HiCuts, HyperCuts, DimCut, DimCut T and the Bit Vector, to measure the rule classification time
(second).
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Figure 5. A comparison between the HiCuts, HyperCuts, DimCut, DimCut T and the Bit VVector, to measure the rule memory access
(Byte).

“Fig. 5”, shows the rule memory access, where, as the rules number increases, the number of memory access
bytes is increases. However, the DimCut algorithm appears to be more competent than others. The HiCuts and
HyperCuts are reasonable in case of rule memory access measurement, but the BV has the worst action. “Fig.
6", shows when the rules increase the packet classification time also increases, but the DimCut T is acting better
with respect to time consumption. DimCut T and DimCut are faster than other ones; the BV is slower than the
others during packet classification action. “Fig. 7”, shows the comparison in case of the number of CPU time
stamp per packet during classification process, which counts the number of cycles for each packet during the
packet classification.

“Fig. 8”, shows the comparison in case of total number of search during packet classification process. In case
of total number of searches the HyperCuts is acting well, the HiCuts is acceptable but the BV is the worst and
the both DimCuts have lesser total number of searches, which explains DimCut efficiency and performance that
need to search lesser number of rules during packet classification process.
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Memory usage is far higher in case of the HiCuts and Bit Vector algorithms when compared to HyperCuts
and DimCut algorithms, as can be seen from “Fig. 9”. The DimCut maximum memory consumption according
to this test format, for at least 100000 rules, would be near to 15 MB which is a very equitable amount.
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Figure 6. A comparison between the HiCuts, HyperCuts, DimCut, DimCut T and the Bit VVector, to measure the packet classification
time (Milli second).
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Figure 7. A comparison between the HiCuts, HyperCuts, DimCut, DimCut T and the Bit Vector, to measure the RTSC per packet.
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Figure 8. A comparison between the HiCuts, HyperCuts, DimCut, DimCut T and the Bit Vector, to measure the total number of search.
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Figure 9. A comparison between the HiCuts, HyperCuts, DimCut, DimCut T and the Bit Vector, to measure of memory usage (M)

The number of cuts, and the dimension selection to cut at each internal decision tree node, is the key criterion
for the HiCuts, HyperCuts and DimCut algorithms performance. A larger bucket size, or lesser number of cuts,
can enable reduction of the size and depth of a decision tree, but it can provoke a longer linear search time.
Experimenting could determine the appropriate bucket size for the best trade off of storage and throughput.
Generally, a larger bucket size means a worse search processing but this does not always sustain. According to
the above tests, it’s clear that the BV algorithm performance is relatively insensitive to the number of rules.
Since each Bit Vector is n number of bits equal to number of rules (each bit represent a rule), and each field
should make a binary search tree, a very long bit vector needs more time and memory consumption.

The performance studies show that DimCut can provide an improvement of up to 99.1% of the given rules
in Read Time Stamp Counter per Rule calculation over the HiCuts, 99.3% over the Bit Vector and 80.2% over
the HyperCuts as can be seen from Table 1.

TABLE 1. The percentage of improvement of DimCut rather than HiCuts, HyperCuts and BV for the given Rules in worst case scenario.

Rule Counts _ Read Time Stamp Counter per Rule _
HiCut HyperCut Bit Vector
1000 99.13821855 80.25957701 94.29717247
5000 91.10609912 42.00853274 96.91425508
10000 91.38404495 48.22476657 98.98292358
50000 94.23203546 35.26882999 98.94734536
100000 97.64946636 57.35461234 99.28746719

The results of this test corroborate that the HiCuts and Bit Vector are slower than DimCut. Both algorithms
show the trend is more or less linear on the number of rules up to 10000 rules.

Through a series of experiments, we found that the algorithm reliably exhibits improved performance and
accessibility with the proposed parameters and formula setting. The evaluation results are regulated in a directly
analogous manner. As most packet classification algorithms are based on heuristics, different rule sets with
different structures and sizes are inclined to offer very diverse results.

According to the data analysis and graphs, it is, therefore, substantiated that the proposed algorithms, based
on decision tree, make packet classification faster, as compared to HiCuts, HyperCuts and BV algorithms. The
HyperCuts has higher performance rather than the HiCuts and BV and the HiCuts is acting better rather than
BV.

V. CONCLUSION

This paper aims at the evaluation concerns for high performance packet classification algorithms, which is a
vital feature in Firewalls, routers, network security and quality of service (QoS) assurance. To accomplish a
reliable performance, an algorithm should be conceived to blend the best characteristics of all approaches,
besides optimizing the time-space transaction.

Our work’s main contribution rests in the comprehensive and uniform appraisal of HiCuts, HyperCuts, Bit
Vector and DimCut classification algorithms that have been implemented with common principles and
evaluated in a common test bed, by measuring the Packet Classification Time, Number of Packet per Second

ISSN : 0975-3397 Vol. 6 No.0O5 May 2014 200



Hediyeh AmirJahanshahi Sistani et.al / International Journal on Computer Science and Engineering (IJCSE)

Classification, Number of Search, Rule Memory access, Depth of the tree structure and Threshold. Each test has
been repeated three times to work out the average amount for the final results.

Multi-threading is a well-known programming and execution model that permits multiple threads to exist
within the setting of a single process. We utilized multi-threading by using OpenMP to implement the DimCut
and achieved better performance and results.

The concluding findings and contributions have been illustrated in graphics for operational demonstration.
We opine that DimCut can be a viable Packet Classification algorithm that delivers a robust execution, besides
allowing room for system designers to substitute components, and as a result aid the research and design
community overall.

Further studies would, therefore, be necessitated to delve into more orderly systems for honing the
configurable parameters, in order to upgrade the adaptive decision-tree construction procedures and rule set
structure.
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