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Abstract—SMT-based Bounded Model Checking (BMC) consists of two primary tasks: (1) encoding a 
bounded model checking problem into a propositional formula that represents the problem, and (2) using 
a SMT solver to solve the formula, that is, finding a set of variable assignments that makes the formula 
true. Solving the formula (namely, SMT solving) involves computation-intensive processes and is thus 
time-consuming. Furthermore, as the model-checking bound increases, the encoded formulas become 
larger in size and harder to solve. The target of this paper is to accelerate SMT solving through 
distributed computation so as to enhance the performance of SMT-based BMC. To this end, we 
implement a multi-CPUs & multi-cores based distributed computation environment, to which different 
SMT solvers can be integrated. In this paper, we describe the implementation details and report our 
preliminary experimental results. 

Keywords-acceleration, distributed smt solving, mpi, openmp 

I.  INTRODUCTION 

Bounded Model Checking (BMC) is a restricted form of model checking [1] that analyzes if a desired 
property hold in bounded execution/behaviors of a system. In a nutshell, BMC can be explicit-state based BMC 
such as the methods described in [2] and symbolic-based BMC such as BDD-based [3] SAT-based [4] or SMT-
based [5] BMC. It has been reported in [6] that symbolic-based methods perform better than explicit-based 
methods for verifying general LTL (Linear Temporal Logic) [7] properties. Among the symbolic-based BMC 
methods, the SMT-based method is more expressible (thanks to its rich background theories) and is able to 
generate more compact formulas, and therefore, is more and more adopted by researchers and engineers. 

SMT-based BMC consists of two primary tasks: (1) encoding a bounded model checking problem into a 
propositional formula that represents the problem, and (2) using a SMT solver to solve the formula, that is, 
finding a set of variable assignments that makes the formula true. Solving the formula (namely, SMT solving) 
involves computation-intensive processes and is thus time-consuming. Furthermore, as the model-checking bound 
increases, the encoded formulas become larger in size and harder to solve. SMT draws on the most prolific 
problems in the past century of symbolic logic: the decision problem, completeness and incompleteness of logical 
theories, and finally complexity theory. The computational complexity of most SMT problems is very high [7], 
[8]. For all that, it is difficult to accelerate the SMT solving process for the engineers engaged in model checking. 
One of the most intuitive ways to accelerate SMT solving is through taking advantage of distributed computation 
and enjoying the power of multi-cores CPU, multi-CPUs, and/or even cloud computing. In this paper, we 
describe our work on making distributed SMT solving available through utilizing MPI [9] and OpenMP [10]. We 
describe a multi-CPUs & multi-cores based implementation to which different SMT solvers can be integrated. 
The preliminary experimental results on a large set of benchmarks demonstrate that SMT solving can be 
accelerated dramatically as expected. 

The rest of this paper is structured as follows. Section II provides necessary preliminary knowledge and a 
brief introduction of the tools and techniques that are used in our work. Section III describes the design and 
implementation of our proposed server-client style distributed computation environment. Section IV presents the 
experiments to evaluate the proposed method and discusses the results. Finally, Section V mentions possible 
extension (application scenarios) of our work and concludes the paper. 

II. BACKGROUND 

A. Bounded Model Checking 

Bounded Model Checking technique was first proposed by Biere et al. in [11]. At the early days, BMC is 
based on SAT solving [12]. It is commonly acknowledged as a complementary technique to BDD-based symbolic 
model checking [4]. Recent years, with the development of modern efficient SMT solvers like Z3 [13] and CVC4 
[14] etc., there is a trend to use SMT solvers instead of SAT solvers in BMC for better expressiveness. 

The basic idea of BMC is to search for counterexamples (i.e., design bugs) in transitions (state space) whose 
length is restricted by an integer bound k. If no bug is found, then k is increased by one and the procedure repeats 
until either a counterexample is found or the pre-defined upper bound is reached. More formally, BMC can be 
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defined as follows: given a finite state transition system M and a temporal property P, BMC is to analyze the state 
space of all possible transitions of M whose length is bounded by an integer k and to find an execution trace of M 
that violates P. A BMC problem in M with P is formulated in the seminal paper [11] like: 
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where I0 represents the initial states of system M, Ti denotes the transition relation of M with step i, and 
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00  represents all possible paths from an initial state of the system M. The negative form of P is a 

formula used to represent the situation that the property is violated. If there exits an assignment to all the variables 
used in formula (1) which makes formula (1) evaluate to true, then a counterexample is founded. Otherwise, the 
property is satisfied by the behaviors of M bounded by k. Although BMC can also be used for proving correctness 
(see [11] for more details), BMC is more often used for finding counterexamples rather than correctness proof. 
The negative form of property is used because the SAT solvers and SMT solvers tend to find the assignments that 
make the formula being evaluated true. 

B. Satisfiability Modulo Theories 

Satisfiability Modulo Theories is a research topic that concerns with the satisfiability of formulas with respect 
to some background theories [15]. The development of SMT can be traced back to early work in the late 1970s 
and early 1980s. In the past two decades, SMT solvers have been well researched in both academic and industry, 
and achieve significant improving on performance and capability, and thus it becomes possible to use SMT solver 
in BMC problem solving. 

SMT is an extension of propositional satisfiability (SAT), which is the most well-known constraint-
satisfaction problem [8]. SMT generalizes Boolean satisfiability (SAT) by adding equality reasoning, arithmetic, 
fixed-size bit-vectors, arrays, quantifiers, and other useful first-order theories. An SMT solver is a tool for 
deciding the satisfiability (or dually the validity) of formulas in these theories [13]. In analogy with SAT, SMT 
procedures (whether they are decision procedures or not) are usually referred to as SMT solvers [16]. Actually, 
the SMT problem emerges in many fields, such as intelligence, formal verification for software and hardware, 
static program analysis, scheduling and planning. 

C. MPI and MPICH 

Message Passing Interface (MPI) [9] is a standardized and portable message-passing system. The MPI 
standard defines the syntax and semantics of a core of library routines useful to wide range of user writing 
portable message passing programs in different program languages. It is a language-independent communications 
protocol used to program parallel computers. We choose MPI 2.0 standard in our implementation. 

There are several well-tested implementations of MPI, such as LAM/MPI [17], MPICH and Open MPI [10] 
etc. They are designed for high performance on both massively parallel machines and on workstation clusters. 
MPICH [18] is a high-performance and widely portable implementation of the MPI standard. It provides an MPI 
implementation that supports different communication and computation platforms including commodity clusters, 
high-speed networks and proprietary high-end computing systems. It also provides enable cutting-edge research 
in MPI through an easy-to-extend modular framework for other derived implementations [18]. We use MPICH2 
in our implementation to realize control signals and files transmission among different PCs. In the remaining part 
of this paper, the MPI and MPICH are all referred to MPICH2. 

D. OpenMP 

OpenMP (Open Multi-Processing) [19] is an API that supports multi-platform shared memory 
multiprocessing programming in C, C++, and FORTRAN, on most processor architectures and operating 
systems, including Solaris, AIX, Mac OS X, and Windows platform [20], [21], [22], [23]. It is developed in 1997 
and promoted and supported by a nonprofit organization named OpenMP Architecture Review Board (ARB). The 
members in ARB are AMD, Fujitsu, HP, IBM, Intel, NEC, and Oracle etc. 

OpenMP is different from MPI. MPI is a multi-process mechanism but OpenMP is a multi-thread one. MPI 
supplies the communication ability to the processes even when the processes are in different PCs. The MPI task 
manager allocates independent memory to every MPI process. OpenMP achieves parallel by creating multiple 
threads. The created threads exist in one PC and sharing same memory space. 

E. Z3 

Z3 is a state-of-the art theorem prover from Microsoft Research [13], [24]. It integrates support for variety of 
theories and can be used to check the satisfiability of logic formulas over one or more theories. Z3 is a low-level 
tool so that it is best used as a component of other tools when logical formulas are required to be solved. Z3 
supports linear real and integer arithmetic, fixed-size bit-vectors, extensional arrays, uninterpreted functions, and 
quantifiers. It supplies API for C, C++, .NET, Python etc. Though we choose Z3 as the core solver of our 
framework and experiments, actually it can be replaced by any other SMT solvers. Z3 is recommended as 
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backend solvers by bounded model checking tools like CBMC [25]. In [26], a portfolio approach to deciding the 
satisfiability of SMT formulas is proposed, through which the parallel version of Z3 is implemented. In that 
approach, a sequential solver is parallelized by running multiple solvers and each of them is configured to use 
different heuristics. Lemmas are shared between different solvers periodically. The input is copied to every core 
so that there is no need for locking the formulas during solving, and the shared lemmas are the same. It is reported 
that the parallel Z3 outperforms the sequential Z3 on many benchmarks -- the parallel version beats sequential 
version by orders of magnitude. 

It should be noted that our implementation is different from the Z3's parallel mode. The parallel mode of Z3 is 
used for solving one SMT file in a parallel way while our method is solving multiple SMT files distributed at the 
same time. 

III. IMPLEMENTATION 

A. Overview 

We have implemented distributed SMT solving in C language, using Z3 SMT solver for satisfiability 
verification. The system has a Client/Server (C/S) architecture. The topology of the network is shown in Fig. 1. 
All clients are connected to a center server, data is transmitted between server and clients. The server responses 
the requirement of acquiring file from clients. If there exist enough SMT files, then the files will be sent to the 
target client. The SMT solving procedure happens on the clients after receiving SMT files from the server. 
OpenMP is used to create multiple threads, each thread invokes a Z3 SMT solver to solve specific SMT files. The 
solving process will be finished until the server has no file to send. 
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   Fig. 1: Network Topology             Fig. 2: Architecture of the Distributed Environment 

In our implementation, both MPICH and OpenMP are used to gain the purpose of taking best advantage of 
clients' computing capacity. The architecture of the implementation is shown in Fig. 2. The MPI task managers 
which is running on different hosts, create severer and clients processes independently. They have the unique 
names in int type, which can be used to distinguish these processes, numbered from 0 to n. The MPI task 
managers set up every process on different hosts assigned by user deterministically from the server. One PC has 
only one MPICH process running on it. The server and clients need to communicate with each other when the 
server dispatches workloads to the clients. MPI supplies the message passing mechanism which allows us to send 
control signals and files among hosts in a network. At this point, we are ready to apply distributed computing. 
OpenMP is used to perform further parallel SMT solving. In a MPICH process, OpenMP is utilized to create 
multiple threads which communicate with each other using shared variables. It should be noted that, on each 
client, the OpenMP threads are not created at the beginning of the process. They are created after the file 
transmission finished, only for parallel SMT solving. The file receiving and dispatching are completed by MPICH 
processes. One client creates 4 threads by default running in parallel. Each thread invokes a Z3 SMT solver to 
solve specific SMT files dispatched to it. Generally speaking, we use MPICH to achieve distributed computing and 
communication, use OpenMP to achieve parallel SMT solving as well. 

B. Server 

The server takes charge of responding the requirement from clients and dispatching the SMT files to clients. If 
there exits enough files, they will be sent to the clients one by one. Every time four files are sent to one client by 
default. The default value can be changed by user as their wish. The server denoted by the MPI process_0 in 
our implementation. The pseudocode of server is shown in Algorithm 1. 
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The server is running in a do while loop until there is no SMT file to be transferred to the clients. It starts 

with checking and receiving messages from any clients in the entire MPI communication domain using MPI 
function MPI_Recv(). It is paired with a blocked message sending function MPI_Send() invoked by clients at 
the beginning. The request receiving followed by determining the request_type which represents the type the 
message. If it is a message of requiring SMT files from a client, the function seek_file(process_id) is 
invoked. This function explores the local directory of the server, try to find whether there exit SMT files can be 
sent to the client. If so, they will be sent to the client which require files. If not, the server will send a message to 
notify the client that the server does not have enough files. If the received message is not a file request message, 
the variable terminate will plus one. When terminate bigger than the number of the process, it means that all 
clients are terminated, the server (process_0) will stop loop and terminate. A timer, which is used to calculate 
the whole parallel solving procedure, is set at the beginning of the solving process and will stop after all processes 
finished their solving. The control flow graph is shown in Fig. 3. 

 

 

 

Algorithm 1. Pseudocode of the Server 
1. Process_0(nTasks){ 
2.     Initialization and definition of variables; 
3.     Timer(start); 
4.     Terminate == 0; 
5.     do{ 
6.           MPI_Recv (request_type from any client); 
7.           if (require_type is files request){ 
8.               search_result=seek_file(process_id); 
9.                  if (search_result == no file found) 
10.                     MPI_Send( no file founded to process_id); 
11.           } 
12.           else 
13.               terminate++; 
14.      }while (terminate < (nTask-1)); 
15.      Timer(stop); 
16.      compute time consuming; 
17.      return 0; 
18. } 

Algorithm 2. Pseudocode of seek_file(process_id) 
1. seek file (process_id) { 
2.     Initialization and definition of variables; 
3.     Construct the path of files to be sent; 
4.     if (no file is founded) 
5.         return 1; 
6.     else{ 
7.             MPI_Send(file_founded, to Process_id); 
8.             Acquire the files number: send_counter; 
9.             MPI_Send(send_counter, to Process_id); 
10.             do { 
11.                 if (not reach the send counter threshold) 
12.                     break; 
13.                 Construct the path_of_file;  
14.                 f_open(path_of_file); 
15.                 Acquire file_size; 
16.                 MPI_Send(file_name to Process_id); 
17.                 MPI_Send(file_size to Process_id); 
18.                 MPI_Send(file to Process_id); 
19.                 Delete the file has been sent; 
20.               } while (exit another file to be sent); } 
21.     return 0; } 
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Fig. 3: Control Flow Graph of the Server 

The file sending procedure takes place in the function seek_file(). The function searches and sends files to 
the target process (denoted by process_id). The pseudocode of seek_file() is shown in Algorithm 2. It 
starts from trying to find at least one file in the directory, if so, the function will inform the client that files are 
founded (Line 7). Then, it counts how many files can be transferred to the client, send_counter in Algorithm 2. 
Initially, we give the default value 4 to the send_counter_threshold. It is the upper bound of the number 
which counts the number of files sent to the client every time. Since there are more than one clients in the system 
and we cannot decided the quantity of SMT files, it is necessary to determine the number of files to be sent 
(sometimes it will be less than send_counter_threshold). If the number is less than the 
send_counter_threshold, the do while loop (Line 19) will ensure that the file sending procedure will finish 
within the threshold. Conversely, Line10-Line11 will guarantee that only threshold files will be sent to the client. 
Secondly, the quantity of files is sent to the client by MPI_Send() function from the server (Line 9). At every 
sending round (Line 10 - Line 20), the file name, file size and the file itself are sent separately in sequence. We 
use blocked MPI communication mechanism to send files. It means that after the server invokes a MPI_Send(), 
it suspends until the client received the message. 

C. Client 

The client is implemented by MPI process numbered from 1 to n depending on user requirements. The main 
process of the client is requiring and receiving SMT files to local machines, then invoking Z3 SMT solver to do 
the verification. After SMT solving, client will report to the server if a counterexample is found. At the beginning, 
the client require and receive four (or less than four) SMT files from server, if there exist such files on server. Then 
the client verifies these files. We call this process as a solving round. After a solving round is finished, the client 
will require new files until there is no file could be transferred. In a single solving run, we utilize OpenMP to 
accomplish parallel SMT solving on a PC to exploit the full computation resources. We suppose that the client in 
our implementation is equipped a CPU with four cores consequently we set 4 threads using OpenMP in each MPI 
process as default setting. The pseudocode of client n is shown in Algorithm 3. 

The flow of a client is as follows: (1) the client sends file requirement to the server (Line 4), and then waits 
for the response of the server. If the server has no files to send, this client will receive a no_file signal and 
terminate, otherwise, the client will receive the number of files which will be sent later. (2) Line 10 to Line 17 are 
the file receiving procedure. The file name, size and the file itself are received respectively. The procedure is a 
while loop, and will be executed many loops which equal to the number of the files. The buffers to receive the 
data mentioned above will be clear after a file is received successful. (3) After the all the files are received 
successful, the client invokes the function smt_solving() to do the parallel verification SMT solving 
procedure. We will describe the parallel solving procedure in the following paragraph. (4) After the SMT solving 
procedure is finished, the client will check the saved solving results. If a counterexample is found, it will be sent 
to the server. (5) The client will send request to the server unless the server returns no file founded message to the 
client. (6) The client sends the finish_signal to the server in order to notice that it will be terminated soon. 
The whole control flow of the client is shown in Fig. 4. 
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Algorithm 3. Pseudocode of the Client 
1. Process_n () { 
2.     Initialization and definition of variables; 
3.     do { 
4.         MPI_Send (request files, to process_0); 
5.         MPI_Recv (file_existence_condition from server); 
6.         if (no file is founded) 
7.             break; 
8.         MPI_Recv(file_num from server); 
9.          j = 0; 
10.          while (j < file_num) { 
11.             MPI_Recv(file_name  from server); 
12.             MPI_Recv (file_size  from server); 
13.             MPI_Recv (file to  from server); 
14.             fwrite (file to local HDD); 
15.             rename(file); 
16.              clear receiving buffers; 
17.               j++; } 
18.         invoke smt_solving(); 
19.         if (a counterexample is founded) 
20.            report solving result to the server; 
21.         clean local files; 
22.      }while (there still exists files to be received) 
23.      MPI_Send(finish_signal to the server); 
24.      return 0; 
25. } 

 
The parallel SMT solving is accomplished by the function smt_solving() which utilize OpenMP to 

achieve parallel. The pseudocode is shown in Algorithm 4. OpenMP can create specified number of threads 
which can communicate with each other by sharing variables (the variable is named as signal in Algorithm 4). 
Line 2 sets the number of thread to be created. In consideration of all our PCs have quad-core CPU, in our 
implementation, we set the value to four to exploit all the compute resources of a client. The smt_solving() 
function will be invoked after the file receiving procedure. This function will create 4 threads, every thread uses C 
function system() to execute Z3 solving SMT files one by one. The verification results are written to four files 
separately on local hard disk driver. 
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Fig. 4: Control Flow Graph of a Client 
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Algorithm 4. Pseudocode of the Function smt_solving() 
1. smt_solving () { 
2.     omp_set_num_threads(m); 
3.     omp_init_lock(&lock signal); 
4. #pragma omp parallel { 
5.         switch (omp get threadnum()) {  
6.         case 0: { 
7.                Exploring all files belonging to thread_0 { 
8.                   Construct command to invoke Z3; 
9.                      system (command); 
10.                   goto next file; 
11.                   } 
12.          } 
13.              break; 
14.         case 1: { 
15.                  Exploring all files belonging to thread_1 { 
16.                      ... // same as case 01 
17.                } 
18.         } 
19.              break; 
20.          ... // case 3 and case 4 are omitted 
21.         default: break; 
22.         } 
23.    } 
24.       return 0; 
25. } 

D. Communication Protocol 

We describe the communication protocol of the system in this section. In our implementation, there are two 
types of communication. The first type is controlling signal transmission between the server and clients. It 
happens in the beginning and terminate stages. The other type is SMT file transmission from the server to clients. 
There is no communication among different clients. 

1) Control Signal Transmission: In our program the control signal is an int array (denoted by power[n]) 
with two elements. The first element power[0] used to indicate the signal's meaning. The value and its 
corresponding meaning are shown in TABLE. I. The second element is power[1] whose value is the source of 
the signal. The MPICH process ID is used to mark the source of the control signal. power[0] = 0 and power[0] 
= 1 can only be generated by a client. Furthermore, power[0] = 2 can only be dispatched by the server. 

Table I: Meanings of the Signal power[0] 

 
 

 

 

The distributed SMT solving system starts from a client sends the file request to the server, and the server 
search its local directory to determine whether there exist enough files. Then send the result as a control signal to 
request client. It can be power[0] = 0 (files exit) or power[0] = 2 (no file). It should be noted that the control 
signal has two int value so that the file request from the client is power[] = {0, process_id} (value scope of 
process_id is 1 to n) and the files exit signal is power[] = {0, 0}. If the client receives the power[] = {0, 
0}, it will turn to file receiving process. Otherwise it will send power[] = {1, process_id} to server. The 
control signal protocol is shown in Fig. 5. The dash line of step 2 and step 3 will occur when the server has no 
files to send. The filled line denoted step 2 and the dash line denoted step 2 do not happen all at once. If the filled 
line step 2 happens, the client will turn to file receiving process immediately. After a client finishes the SMT 
solving process, it will request new files, if the server sends the signal in step 2 denoted by the dash line, the client 
will execute the step 3 to inform the server its termination. 

2) File Transmission: The file transmission process is much easier. This process starts from the client 
receives the file exists signal power[] =  {0, 0} sending by the server. The file transmission protocol is shown in 
Fig. 6. The MPI blocked communication mechanism is used, so we simplify the file receiving process. The 
confirmation after message receiving is eliminated. After step 2, the client knows that how many files will be 
sent. The sending and receiving processes both run in a loop. Step 3 to step 5, which is boxed by a dashed 
rectangle, will be repeated until all files have been sent. To make the 3 message sending and receiving in 
sequence, we use different message tags so that the client can distinguish them and receive them correctly. The 

power[0]   Meaning 
0 
1 
2 

  Request files from a client or server has files to send. 
  This client will be terminated. 
  There is no file on the server. 
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file size is sent for establishing receiving buffer dynamically to save memory. The dashed line represented step 6 
is an optional step. If a counterexample was found after the parallel SMT solving, the client will report the 
counterexample to the server. If not, the client will require new file from the server with entering control signal 
transmission process. 

Client

1. power[0] = 0, power[1] = process_id

2. power[0] = 0,  power[1] = 0

2. power[0] = 2, power[1] = 0

3. power[0] = 1, power[2] = process_id Server

 

Client

2. send the number of the files

Server

1. power[0] = 0,  power[1] = 0

3. send the file name

4. send the file size

5. send the file

6. couterexample

Repeat

 
Fig. 5: Control Signal Transmission Protocol                     Fig. 6: File Transmission Protocol 

IV. EXPERIMENT AND ANALYSIS 

To evaluate the efficiency of our distributed SMT solving, we conduct a serial experiments on six groups of 
benchmarks downloaded from the Satisfiability Modulo Theories Library (SMT-LIB) [27] that conform to 
version 2.0 of the SMT-LIB format. The benchmarks are AUFNIRA, QF_UFLRA, AUFLIA, QF_UFLIA, 
QF_LRA‐1, and QF_LRA‐2. Due to space limitations, we will not go into details of those benchmarks here. Please 
refer to [27] for the meaning of those benchmarks. We deploy the program of the above described algorithms in 
four PCs running Windows 7 Enterprise Edition with MPICH 2.0 installed. One of the PCs is used as the server 
and the others are as clients. The hardware of the PCs are as follows: PC1 has a quad-core Intel Xeon CPU 
(2.66GHz) with 8GB RAM; PC2 and PC3 have a quad-core Intel i7 CPU (2.7GHz) with 8GB RAM; PC4 has an 
Intel Core2 Duo dual-core CPU (1.8GHz) with 2GB RAM. All the four PCs are connected to 100MB Ethernet. 
To evaluate the effective of our framework, we use our prototype to solve those benchmarks. 

            
Fig. 7: Influence of the Server’s Computation                             Fig. 8: Influence of the Client’s Computation 

Ability on Solving                                                                         Ability on Solving 

In our experiments PC4 is designated as the server. Actually, the server in our implementation only responses 
the requests from different clients in a message queue sequentially and transfers SMT files. This work is I/O 
intensive rather than computation intensive. Otherwise, using PC4 or other faster PCs as a server takes almost the 
same time consumption. This is proved by our following experiments shown in Fig. 7. Two experiments are 
conducted to investigate whether the server's computation ability will effect on the final solving results. We use 
PC4 as a server and PC1 as a client firstly, then we use PC2 as a server, PC1 as a clients. Six groups of 
benchmarks are verified in each experiment. In Fig. 7, the gray rectangular denotes the result when PC4 used as 
the server. The blue rectangular represents using PC4 as a client. It can be seen from the figure that, the two 
rectangular almost denote the same value although the compute ability of the PC2 and PC4 are considerable 
difference. Meanwhile, the target files are smaller than 1MB, the server does not need enormous computing 
ability. 
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Fig. 9: The Distributed SMT Solving Results 

On the other hand, compared with other PCs, using PC4 as a client will slow down the whole solving 
processing. The workloads (easy ones or complex ones) are dispatched to the client randomly. It is inevitable to 
assign a complex work to PC4. In that case, the solving process will take more time than using PC4 as a server. 
We conducted two experiments to preliminary inquire the effect that is taken by the different compute ability of 
the clients. In Fig. 8, the gray rectangular denotes the solving time when PC4 is used as one of the two clients. 
The blue rectangular represents the condition that PC4 is a server and PC1 and PC2 are clients. Also the six 
groups of benchmarks are used. The benchmarks ANFNIRA, QF_UFLRA and AUFLIA consist with a great deal of 
small size SMT files. In general, these files are easy to solve. Using PC4 as a client, it takes 13s, 35s and 54s to 
solve ANFNIRA, QF_UFLRA and AUFLIA. It takes 10s, 23s and 31s to solve them when we do not use PC4 as 
one of the clients. With solving QF_UFLIA, QF_LRA‐1 and QF_LRA‐2, the gaps are more apparent. When 
solving QF_LRA‐1, using PC4 as one client takes nearly four time longer. Under the random task dispatch 
strategy, it is a much better alternative to using machines with similar hardware. 

We use a single Z3 SMT solver to solve those six groups of benchmarks in a serial way separately. PC1 is 
used to carry out the serial solving experiments. All the distributed solving experiments use PC4 as the server, the 
other machines as clients. For every benchmarks, we repeat the solving in the following order: (1) serial solving; 
(2) one client; (3) two clients; (4) three clients. The results are shown in Fig. 9. Each sub-graph in Fig. 9 
represents the 4 solving results on each benchmark. The vertical axis denotes the solving time in terms of 
seconds. The horizontal axis denotes four types of solving described above. They are serial solving, 1 client, 2 
clients, and 3 clients in the order from left to right. Generally speaking, our preliminary distributed SMT solving 
prototype shows significant improvement on solving different benchmarks especially for some complex SMT 
problem, e.g. QF_LRA‐1 and QF_LRA‐2. Furthermore, the improvement seems less noticeable when solving the 
easier problems than the complex ones, e.g. QF_UFLIA and QF_UFLRA. When we increase the number of clients, 
the solving time is decreased dramatically before increased to 3 clients. Nonetheless, when we increase the client 
from 2 to 3, it gets small changes of solving time. The reason may be that when solving complex problems, the 
total solving time is close to the time solving the most critical single SMT file. Meanwhile, comparing the time 
delay brought by files and control signal, the time solving easy and small SMT files are small enough. We will 
investigate that in our future work. 
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V. DISCUSSION AND CONCLUSION 

The point of our work on parallel SMT solving is to make SMT solving distributed and ultimately to 
accelerate SMT-based BMC. In general, two procedures are involved for this purpose: (1) decomposing a whole 
BMC problem (formula) into sub-problems (sub-formulas), each of which is relatively smaller in size, easier to 
solve, and can be solved in parallel. In our previous work, we have done work in this aspect [28], [29]; (2) 
paralleling SMT-based BMC, as described above in this paper. The classic SMT-based BMC encodes the system 
and properties into a single formula at specific bound. Restricted by the computation ability of a single PC, the 
efficiency of SMT-based BMC will decrease sharply. On the basis of decomposition, we can use the parallel 
SMT solving framework to solve the sub-problem parallel. Obviously, in this way, not only the 
capacity/scalability, but also the solving speed of model checking can be increased significantly. However, note 
that this is not to say our framework can increase BMC in all circumstances. Consider a situation where the SMT 
files in the server are all of small size. This means generally the files are easy to solve. Taking network latency 
into account, the time consumption here can be much higher than the SMT solving time. The final solving time of 
the parallel solving with multiple PCs may become longer than serial solving with a single PC. 

Another issue we are going to discuss is about load balance. The server sends files to the client, and the client 
will arrange the work to different threads. For instance, there are four SMT files: {f1, f2, f3, f4} and two threads T1 
and T2. The solving time of the files f1 to f4 are 1s, 2s, 4s and 5s separately. If f1 and f2 are assigned to T1 and the 
others are assigned to T2, the solving time is 9s in total. But if f1 and f4 assigned to T1 and the others are assigned 
to T2, the solving time is 6s in total. The situation will be worse when the clients have different compute capacity. 
Considering the worst case that the most complex workload is dispatched to the lowest client, the total solving 
time depends on the lowest client's compute capacity. How to arrange the workload for different clients impacts 
directly on the final solving time. In our implementation, we dispatch the SMT files with a random strategy. We 
will investigate the load balance problem in our future work. 

In this paper, we propose an environment to apply distributed SMT solving. The environment is solver 
independent with a C/S architecture. We use MPI and OpenMP to implement a prototype of the environment, and 
conduct a series of experiments to evaluate its effectiveness. The experimental results on six groups of 
benchmarks demonstrate that our environment can offer significant improvement on solving speed. Such an 
environment can be utilized to accelerate SMT-based bounded model checking for verification of large-scale 
software and/or hardware designs. We have been extending our previous work on verification of embedded 
software designs [30] to this proposed environment. The results will be reported in other opportunities. 
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