
A Scheduling Approach with Processor and
Network Heterogeneity for Grid

Environment

Dr. Vinay Kumar
School of Computer and Systems Sciences

Jawaharlal Nehru University
Delhi, INDIA

vinay2teotia@gmail.com

Prof. C. P. Katti
School of Computer and Systems Sciences

Jawaharlal Nehru University
Delhi, INDIA

Abstract— Processor heterogeneity is an important issue in grid environment. In this paper, a list based
task scheduling algorithm, called “critical path scheduling with t-level” (CPST) for grid computing
system is proposed. There are no. of scheduling algorithms such as HEFT [1] use mean execution time
based b-level for task priority and SHCP [2] use task priority based on simple critical path. In CPST, a
critical path based task sequence is generated with t-level value of tasks, where variance based
computation and communication cost is used. The experimental results show that CPST algorithm
performs better than HEFT, SHCP and HHS algorithm in grid environment for task graphs.

Keywords - Grid Scheduling; Directed Acyclic Graph; Critical Path; Heterogeneity.

I. INTRODUCTION

A grid is a type of heterogeneous computing system for aggregation and management of computational
resources that provides shared access of graphically distributed heterogeneous resources that is inter-connect
over high speed networks and internet. The main idea behind grid environment is to utilize the idle time of
processor cycles. An efficient task scheduling [3] in computational grid environment is essential to obtain the
better utilization of resources and achieving high performance. To obtain a optimal scheduling problem is NP-
complete [8]. The objective of a task scheduling problem is to map tasks onto the suitable resources and to order
their execution on each resource such that precedence relationships between tasks are not violated and the
overall execution time, makespan could be minimized.

In general, a grid consists of heterogeneous resource over large geographical region connected through arbitrary
topology. It causes more challenges for scheduling applications due to processor and network heterogeneity in
grid environment. List-based scheduling algorithms are uses to solve this problem in literature oftenly. In list-
based task scheduling, tasks are ordered and selected in non-increasing order of their priorities and scheduled on
processors to optimize various performance metrics.

II. PRELIMINARY

A grid application is represented by a directed acyclic graph (DAG), G= (V,E), where V is a set of tasks and E is
a set of communication edges between tasks. Each edge (i,j) ϵ E represents the precedence constraint such that
task ݊௜ should complete its execution before task ݊௜ start. In a DAG, a task without any parent is called entry
task and a task without any child is called an exit task. If there is more than one entry (exit) task, they are
connected to a zero cost entry (exit) task with zero cost edges, which does not affect the given DAG. The
computation cost of a task i is represented by ߬௜	and communication cost along the edge (i,j) is represented by
 .௜,௝ܥ

A grid resource model can be represented by G = (P, Q, A, B), where P is the set of available processors [1]

 A = [α (௜ܲ)| α (௜ܲ) ϵ A, i=1, 2……|P|]

Dr. Vinay Kumar et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No. 01 Jan 2014 42

 Q = [q (௜ܲ , ௝ܲ)| q (௜ܲ , ௝ܲ) ϵ Q & i, j=1, 2……|P|]

 B = [β (௜ܲ , ௝ܲ)| β (௜ܲ , ௝ܲ) ϵ B & i, j=1, 2……|P|]

Here A is the set of computation rate for processors ௜ܲ , Q is the set of communication links that connects the
processors and B is the set of data transfer rates between two processors [1].

Some of the efficient list based heuristics are heterogeneous earliest finish time (HEFT) [1], critical path on a
processor (CPOP) [4], hybrid heuristic scheduling (HHS) and scheduling with heterogeneity using critical path
(SHCP) [2]. In some algorithm [1, 2, 4], task node value in heterogeneous system is considered as an average,
median, best or worst value. In [2], author Zhans gives a relative performance comparison of scheduling
algorithms in grid environment. Zhans conclude that HEFT and HHS perform better than level-based scheduling
methods on many combination of computing environments.

The HEFT is an insertion based static list heuristic that assign priorities of task on the basis of top-rank
calculation. The top priority tasks are selected for schedule on processor which finishes its execution at earliest.
The HHS use the hybrid technique of list based and level based scheduling techniques, it partitioned the directed
acyclic graph into levels of independent tasks and tasks in each level are ordered and scheduled. The SHCP
compute the priority of task by consider heterogeneity of processors. The priorities of tasks decide the execution
order of tasks.

In this paper, a new approach for computing the priority of task is adopted considering heterogeneity of
processors and t-level value for critical path of given DAG. A critical path in a DAG is the longest path in the
DAG by considering the computation and communication cost. The t-level of a node ݊௜ is the length of longest
path from entry node to ݊௜ with excluding computation cost of task ݊௜. The priorities of tasks decide the
execution order of task which reflects the schedule length of task graph. The experimental result shows that
CPST algorithm performs better for running large task graphs in grid environment at high CCRs
(communication to computation ratio).

Heterogeneity is a type of variability in characteristics of resources. The resources can be computational and
communicational of any distributed system. Here the means of characteristic of resources are bandwidth,
execution rate etc. we considered a heterogeneity model [2, 5] which define two factor, processor heterogeneity
factor and network heterogeneity factor to estimate the expected computation costs of tasks and expected
communication cost of edges in the given DAG.

The processor heterogeneity factor ρ can be computed as [2]

 ρ =

ଶ	ൈ	ඪ
∑ ሼ஑	ሺ௉೔ିఈഥሺ௉೔ሻሻሽమ
|ು|
೔సభ

|௉|
൘

୫ୟ୶	ሺ஑	ሺ௉೔ሻሻ
 …… (1)

Where αሺ పܲഥሻ is the mean processing rate, which can computed as

 αሺ పܲഥሻ =
∑ ஑	ሺ௉೔ሻ
|ು|
೔సభ

|௉|
 ……. (2)

High heterogeneity among the processor shows by high value of α.

The network heterogeneity factor σ can be computed as [2]

 σ =

ଶ	ൈ	ඪ

∑ ∑ ሼஒ	൫௉೔,௉ೕ൯ିఉഥሺ௉೔,௉ೕሻሽమ
|ು|
ೕస೔శభ

|ು|
೔సభ

ሺ
|ು|మష|ು|

మ
ሻ

൙

୫ୟ୶	ሺஒ	ሺ௉೔,௉ೕሻሻ
 …… (3)

Where ̅ߚሺ ௜ܲ, ௝ܲሻ is the mean transfer rate, which can be calculated as

ሺߚ̅ ௜ܲ, ௝ܲሻ =
∑ ∑ ஒ	ሺ௉೔,௉ೕሻ

|ು|
ೕస೔శభ

|ು|
೔సభ

ሺ
|ು|మష|ು|

మ
ሻ

 …… (4)

Dr. Vinay Kumar et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No. 01 Jan 2014 43

It is assumed that data transfer rate between two processors without any direct link is zero. So, the expected
computation cost of task nodes can be computed as [2]

 = ഥ௜ݓ
ఛ೔

ఘൈ୫୧୬	ሺ஑	ሺ௉೔ሻ	ା	ሺଵି஡ሻൈ୫ୟ୶	ሺ஑	ሺ௉೔ሻሻሻ
 …….. (5)

Similarly, expected communication cost of edge from task ݊௜ to ௝݊ can be computed as [2]

 = ௜௝ߝ
஼೔,ೕ

ఙൈ୫୧୬	ሺஒ	൫௉೔,௉ೕ൯ሻ	ା	ሺଵି஢ሻൈ୫ୟ୶	ሺஒ	ሺ௉೔,௉ೕሻሻ
 …….. (6)

Where ߬௜ is computation cost for task ݊௜ and ܥ௜,௝ is communication cost occurring along the edge (i,j).

III. PROPOSED WORK

In this phase, a critical path based sequence of tasks is generated. The nodes along this path are called CP-
nodes. After constructing critical path, other nodes are added to keep the precedence constraint order of task
execution. In this, the successor nodes are added on the basis of higher t-level and ties being solved randomly as
in [6] and [9]. Other remaining nodes are added using the same priority as assigned to them at the end of task
sequence.

The t-level of task ݊௜ is the longest directed path considering computation and communication cost from entry
node to node ݊௜ with excluding computation cost of ݊௜. It can be calculated as

௝ݐ) ௜ = maxݐ ൅	ߝ௜̅௝), ∀ ௝݊ ϵ pred (݊௜) ……. (7)

Where pred (݊௜) represent the immediate predecessor of task node ݊௜ in the DAG. The first unscheduled task in
the task sequence is known as candidate task. The unscheduled selected candidate task is mapped to the
processor in the processor matrix which allows it to finish at earliest. The task ݊௜ can start its execution on the
candidate processor if data arrive from all of its immediate parents so as to meet precedence constraints.

To select best processor for the candidate task , it is necessary to define the earliest start time (EST) and earliest
finish time (EFT) of task ݊௜ on processor ݌௝. For entry task node

 EST (݊௘௡௧௥௬ ,݌௝) = 0 ..….. (8)

For other tasks, the EST and EFT can be calculated as

 EST (݊௜ ,݌௝) = max [avail (j),
ݔܽ݉

݊௠	ϵ	pred	ሺ݊௜ሻ
	ሺܶܨܣሺ݊௠ሻ 	൅	

஼೘,೔

ஒ	൫௉ೖ	,	௉ೕ൯
ሻ] ….. (9)

 EFT (݊௜ ,݌௝) =
ఛ೔
௣ೕ

 + EST (݊௜ ,݌௝) ….. (10)

Where AFT (݊௠) is the actual finish time of task ݊௠, avail(j) is the time when processor ݌௝ is ready to execute
new task in non-insertion based scheduling policy [10]. After assignment of all tasks in a DAG, the makespan of
the schedule will be

 Makespan = max [AFT(݊௘௫௜௧)] ……. (11)

Here, a task scheduling algorithm (CPST) for grid environment presented. The pseudo code of the algorithm is
presented in Fig. 1. CPST algorithm use t-level approach for minimizing makespan of a DAG, because t-level
not include the computation time of current task. So algorithm is free to assign this task to best processor,
whenever other algorithms HEFT, CPOP and SHCP are not free to assign the current task to any best processor.

The CPST algorithm works in two phases, in first phase a task sequence generated on basis of critical path with
t-level for computing priorities of tasks using processor and network heterogeneity factor. In second phase select
the tasks in order of their priorities and schedule to a processor which minimizes the task’s completion time.

As an illustration, Fig. 3 presents the schedules obtained by CPST algorithm for a sample DAG of Fig. 2. The
schedule length, which is 80, is shorter than the schedule lengths of other related work. The Table 1 and 3 gives
mean processing rate for processors and t-values for all tasks. The scheduling order of the tasks with respect to
CPST algorithm is {݊ଵ, ݊ସ, ݊ହ, ݊ଷ, ݊଺, ݊ଶ, ଼݊, ݊଻, ݊ଽ, ݊ଵ଴}.

Dr. Vinay Kumar et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No. 01 Jan 2014 44

 From

equ (1) and (3

1)

2)
3)
4)
5)
6)
7)
8)
9)
10

3)

 processor h

 network he

compute th
(3)
set the weig
set the weig
construct a
while there
select first u
for each pro
compute EF
assign task	

) end while

Figu

 Figure 2: DA

Table

heterogeneity

eterogeneity fa

 processo

ଵ݌

 ଶ݌

 ଷ݌

e computation

ght of tasks in
ght of edges in
critical path w

e are unschedu
unscheduled ta
ocessor ݌௜ሺ݌௜߳
FT (݊௜ ,݌௝) wit
݊௜ to processo

ure 1: CPST Algo

AG form of a task

1: mean processi

factor ρ = 0.

actor σ = 0.57

or α ሺ ௜ܲሻ

 127

 130

 143

n and commu

 DAG with ex
n DAG with ex
with t-level ba
uled tasks in ta
task, ݊௜ from s
߳ܲሻ do
ith insertion-b
or ݌௝which mi

orithm

scheduling probl

ing rate

.713

71

αሺ పܲഥሻ

 42.3

 43.3

 47.6

unication hete

xpected compu
xpected comm

ased sequence
ask sequence
sequence

ased task sche
inimize EFT o

lem

erogeneity fac

utation cost us
munication cos

using equ (7)
in task sequen

eduling using
of task ݊௜

ctor by equ (1

sing equ (5)
st using equ (6
)
nce (݊௜ఢே) do

equ (10)

1) and

6

Dr. Vinay Kumar et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No. 01 Jan 2014 45

 Table 2: Computation Cost Matrix Table 3: t-values of tasks

 Figure 3: Scheduling length by CPST

Sort task ݐ௜ values in increasing order. That is ݊ଵ, ݊ସ, ݊ହ, ݊ଷ, ݊଺, ݊ଶ, ଼݊, ݊଻, ݊ଽ, ݊ଵ଴. Now calculate EFT (݊௜ ,݌௝)
for each task and assign this task to processor that has minimum value for it. By this we get minimum makespan
80 with heterogeneity factors ρ and σ.

IV. EXPERIMENTAL RESULT AND SIMULATION

In the section, we give the comparative evaluation of CPST algorithm with other algorithms like HHS, HEFT
and SHCP. Performance of CPST algorithm is evaluated by using experiments on MATLAB platform (version
R2009a). We have implemented the CPST algorithm and compared the schedule produced on a variety of
random task graphs in heterogeneous grid environment as described in [7].

The following performance metrics are the basis of comparison of algorithms.

Schedule Length Ratio: since a large set of task graphs is used. So it’s necessary to normalize the schedule
length to a lower bound. That is called schedule length ratio (SLR) and define as [11]

 SLR =
௠௔௞௘௦௣௔௡

∑
௠௜௡
௣ೕఢ௉

ሺ
ഓ೔
೛ೕ
ሻ೙೔ച಴ು೘೔೙

ሾ	 ሿ
 …….. (12)

The denominator is the summation of minimum execution costs of tasks on the ܥ ௠ܲ௜௡ (minimum critical path).

 ଷ݌ ଶ݌ ଵ݌

 ݊ଵ 14 16 9

݊ଶ 13 19 18

݊ଷ 11 13 19

݊ସ 13 8 17

݊ହ 12 13 10

݊଺ 13 16 9

݊଻ 7 15 11

଼݊ 5 11 14

݊ଽ 18 12 20

 ݊ଵ଴ 21 7 16

 task t-level ݐ௜

 ݊ଵ 0 0

݊ଶ 31 1.8

݊ଷ 25 1.2

݊ସ 22 .9

݊ହ 24 1.1

݊଺ 27 1.4

݊଻ 62.3 5.3

଼݊ 66.6 4.8

݊ଽ 63.6 6.3

 ݊ଵ଴ 93.2 9.01

0 20 40 60 80

 ଵ݌

 ଶ݌

 ଷ݌

݊ଶ ݊଻

݊ଷ ݊ସ ݊ଽ ݊ଵ଴

݊ହ ݊଺ ଼݊
݊ଵ

Dr. Vinay Kumar et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No. 01 Jan 2014 46

Speedup:
time[12].

The resu
result is o

: it can be c
.

ults are obtain
obtained with

calculated by

 Sp

Fig

ned with respe
h respect to gr

dividing min

peedup =

௠௜௡
௣ೕఢ௉

௠

ure 4: average sp

 Figure 5: A

ect to average
aph size in an

nimal sequen

௡
௉ሾ∑ ሺ

ഓ೔
೛ೕ
ሻ೙೔ചಿ ሿ

௠௔௞௘௦௣௔௡

peedup with respe

Average SLR with

e SLR and sp
n average of 1

ntial execution

ect to number of t

h respect to CCR

peedup over d
100 graphs an

n time with

tasks

different task
d with respec

the parallel

 ……. (13)

sizes and CC
ct to CCR in a

execution

)

CRs. Each
an average

Dr. Vinay Kumar et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No. 01 Jan 2014 47

of 100 graphs. The experimental results (Fig. 4 and Fig. 5) show that CPST algorithm gives better or equal
result in comparison of HEFT, HHS and SHCP algorithm for large task graphs and high CCRs.

V. CONCLUSION

This paper presents a new approach of task scheduling in grid environment when heterogeneity of resources and
heterogeneity of network are two important factors in a task scheduling problem. The CCR value is more in
heterogeneous environment. The result shows that the CPST algorithm improves with increase of task sizes and
CCRs. So for large task graphs at higher CCRs, CPST gives good results as compare to HHS, HEFT and SHCP.

REFFERENCES
[1] G.C. Sih and E. A. Lee, “A Compile-Time Scheduling Heuristic for Interconnection-Constrained Heterogeneous Processor

Architectures”, IEEE Trans. Parallel and Distributed System vol. 5, no. 2, Feb. 1994, pp. 113-120.
[2] H. Casanova, A. Legrand, D. Zagorodnov and F. Berman, “Heuristics for Scheduling Parameter Sweep Applications in Grid

Environments”, In. Proc. Of the 9th heterogeneous Computing Workshop, Cancun,Mexico, 2000, pp. 349-363.
[3] M. Iverson, F. Ozguner, and G. Follen, “Parallelizing Existing Applications in a Distributed Heterogeneous Environment”, Proc.

Hetrogeneous Computing Workshop, 1995, pp. 93-100.
[4] H. El-Rewini and T.G. Lewis,”Scheduling Parallel Program Tasks onto Arbitrary Target Machines”, Journal of Parallel and

Distributed Computing, vol. 9, 1990, pp. 138-153.
[5] A. Khokhar, V. K. Prasanna, M. Shaaban, and C. L Wang, “Heterogeneous computing: Challenges and opportunities”, IEEE

Computer, Vol. 26, No. 6, June 1993, pp. 18-27.
[6] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen. and R. F. Freund, “Dynamic Matching and Scheduling of a Class of Independent

Tasks onto Heterogeneous Computing Systems”, International Journal of Parallel and Distributed Computing, Vol. 59(2), 1999,
pp.107-131.

[7] H. Topcuoglu, S. Hariri, Min-You Wu, “Performance effective and low complexity task scheduling for heterogeneous computing”,
IEEE Trans. Parallel and Distributed System vol. 13, no. 3, Mar. 2002, pp. 260-274.

[8] H. J. Siegel, J. K. Antonio, R. C. Metzger, M. Tan, and Y. A. Li, “Heterogeneous computing”, in Parallel and Distributed Computing
Handbook, A. Y. Zomaya, ed., McGraw-Hill, New York, NY, 1996, pp. 725-761.

[9] I. Foster and C. Kesselman (editors), “The Grid: Blueprint for a Future Computing Infrastructure”, Morgan Kaufmann Publishers,
USA 1999.

[10] R. Braun, H. Siegel, N. Beck, L. Boloni, M. Maheswaran, A. Reuther, J. Robertson, M. Theys, B. Yao, D. Hensgen and R. Freund, “A
Comparison of Eleven Static Heuristics for Mapping a Class of Independent Tasks onto Heterogeneous Distributed Computing
Systems”, International Journal of Parallel and Distributed Computing, Vol.61(6), 2001, pp. 810-837.

[11] H. S. Stone, “Multiprocessor Scheduling with the aid of network flow algorithms”, IEEE Trans. Software Eng. 3, 1977, pp. 85-93.
[12] H. J. Siegel, H. G. Dietz, and J. K. Antonio, “Software support for heterogeneous computing”, in The Computer Science and

Engineering Handbook, A. B. Tucker, Jr., ed., CRC Press, Boca Raton, FL, 1997, pp. 1886-1909.

	

Dr. Vinay Kumar et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No. 01 Jan 2014 48

	A Scheduling Approach with Processor andNetwork Heterogeneity for GridEnvironment
	Abstract
	Keywords
	I. INTRODUCTION
	II. PRELIMINARY
	III. PROPOSED WORK
	IV. EXPERIMENTAL RESULT AND SIMULATION
	V. CONCLUSION
	REFFERENCES

