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The feature ranking and feature selection techniques have been proposed in the machine learning literature.The 
purpose of these techniques is to discard irrelevant or redundant features from a given feature vector.[4,1].In this 
paper, we consider evaluation of the practical usefulness of the following ranking methods: 

 Information Gain (IG) attribute evaluation, 
 Gain Ration (GR) attribute evaluation, 
 Symmetrical Uncertainty (SU) attribute evaluation. 

[1]Entropy is a commonly used in the information theory measure, which characterizes the purity of an 
arbitrary collection of examples. It is in the foundation of the IG, GR and SU attribute ranking methods. 
The entropy measure is considered as a measure of system’s unpredictability. The entropy of Y is. 

ሺܻሻܪ ൌ 	െܲሺݕሻ logଶሺܲሺݕሻሻ
௬ఢ

																																												ሺ1ሻ 

Where  p(y) is the marginal probability density function for the random variable Y. If the observed values 
of Y in the training data set S are partitioned according to the values of a second feature X, and the entropy 
of Y with respect to the partitions induced by X is less than the entropy of Y prior to partitioning, then there 
is a relationship between features Y and X. Then the entropy of Y after observing X is: 

ܪ ൬
ܻ
ܺ
൰ ൌ 	െܲሺݔሻܲሺ

ݕ
ݔ
ሻ logଶ ቆܲ ቀ

ݕ
ݔ
ቁቇ																																	ሺ2ሻ

௬ఢ௫ఢ

 

where p(y/x) is the conditional probability of y given x. 

A. Information Gain 

Given the entropy as a criterion of impurity in a training set S, we can define a measure reflecting 
additional information about Y provided by X that represents the amount by which the entropy of Y 
decreases. This measure is known as IG. It is given by 

IG = H(Y) – H(Y/X) = H(X) – H(X/Y)   (3) 

B. Gain Ration: 
The Gain Ratio is the non-symmetrical measure that is introduced to compensate for the bias of the IG. 
GR is given by  

GR= 
ூீ

ு	ሺሻ
   (4) 

C. Symmetrical Uncertainty: 

The Symmetrical Uncertainty criterion compensates for the internet bias for IG by dividing it by the sum of  

the entropies of X and Y. It is given by 

SU=2 
ூீ

ுሺሻା	ுሺሻ
																																										ሺ5ሻ 

1.2 Classification 

Classificationis a data mining function that assigns objects  in a collection to target categories or 
classes. The goal of classification is to accurately predict the target class for each case in the data. This task 
begins with a data set in which the class assignments are identified.Classification models are tested by 
comparing the predicted values to known target values in a set of test data. The goal of the predictive models is 
to construct a model by using the results of the known data and is to predict the results of unknown data sets by 
using the constructed mode. 
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indexing techniques. As expected, lazy learning methods are faster at training than eager methods, but slower at 
classification since all computation is delayed to that time. Unlike decision tree induction and backpropagation, 
nearest neighbor classifiers can also be used for prediction, that is to return a real-value prediction for a given 
unknown sample. In this case the classifier returns the average value of the real-valued labels associated with 
the k nearest neighbors of the unknown sample. 

4. DATA SET USED 

 These datasets are taken by using the UCI Repository. We are taken 2 datasets like Pima  and 
Wine datasets from the Repository. 

4.1 PIMA DATASET 

To train up the network we used PIMA dataset that contain 768 records and 8 attributes and one class 
variable. 

This data set collects information from patients who are all females over 21-year old of Pima Indian 
heritage.   

The attributes are: 

   1. Number of times pregnant 

   2. Plasma glucose concentration a 2 hours in an oral glucose tolerance test 

   3. Diastolic blood pressure (mm Hg) 

   4. Triceps skin fold thickness (mm) 

   5. 2-Hour serum insulin (mu U/ml) 

   6. Body mass index (weight in kg/(height in m)^2) 

   7. Diabetes pedigree function 

8. Age (years) 

 9. Class variable (0 or 1)  

From this we taken  507(
ଶ

ଷ
rd of preprocessed dataset) are used for training and rest 254 (remaining 

ଵ

ଷ
rd of 

preprocessed dataset) are tested. The preprocessed dataset contain total of 7 attributes which includes 6 features 
and 1 class attribute. There 6 attributes are fed as inputs to the input layer.  

4.2 WINE DATASET: 

To train up the network we used WINE dataset that contain 178 records and 13 attributes and one class 
variable. 

1. Class {1,2,3} 
2. Alcohol REAL 
3. Malic_acid REAL 
4. Ash REAL 
5. Alcalinity_of_ash REAL 
6. Magnesium INTEGER 
7. Total_phenols REAL 
8. Flavanoids REAL 
9. Nonflavanoid_phenols REAL 
10. Proanthocyanins REAL 
11. Color_intensity REAL 
12. Hue REAL 
13. OD280/OD315_of_diluted_wines REAL 
14. INTEGER 

In this we are taken 118(
ଶ

ଷ
rd of preprocessed dataset) are used for training and rest 59 (remaining 

ଵ

ଷ
rd of 

preprocessed dataset) are tested. The preprocessed dataset contain total of 14 attributes which includes 13 
features and 1 class attribute. There 6 attributes are fed as inputs to the input layer. 
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5.EXPERIMENTAL RESULTS FOR NAÏVE BAYES AND KNN: 

DATASETS NAÏVE BAYES ACCURACY KNN ACCURACY 

PIMA  96% 12.76%

WINE 100% 73.03%

 

 

pima dataset graph  for naïve bayes                       wine dataset graph for naivebayes. 

when comparing both the datasets by using naivebayes algorithm its clearly shows that wine dataset is having 
more accuracy when compared to pima dataset. while testing and training dataset its clearly says that the time 
escaped are also taking very less time while comparing the pima dataset. In this graphs it clearing shows that 
how much accuracy it was going to performed.   

 

Pima dataset graph  for KNN                                    Wine dataset graph  for KNN 

When comparing both the datasets by using K-Nearest Neighbor algorithm its clearly show that wine dataset is 
having more accuracy when compared to pima dataset. While testing and training dataset it's clearly says that 
the time escaped are also taking very less time while comparing the Pima dataset. In this graphs it clearly shows  
accuracy when algorithms are implemented on two data sets..   

                            The datasets are compared by using the two algorithms i.e; Naive Bayes and K-
Nearest Neighbor in this its clearly says that naïve bayes is having more accuracy when compare to KNN 
algorithm. 

While applying the general feature selection method it says that the accuracy of both dataset pima and wine it 
says that for pima accuracy is more than knn algorithm and for wine it also having the more accuracy for the 
KNN algorithm. 

 

DATASETS NAÏVE BAYES ACCURACY KNN ACCURACY 

PIMA  67.7% 80.4%

WINE 95.5% 100%
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               Pima dataset graph for KNN                    Wine dataset graph for KNN 

 

PIMA FOR NAÏVE BAYES               WINE FOR NAÏVE BAYES. 

While comparing both feature selection and algorithm it says that KNN algorithm is having more accuracy. 

6. Conclusion: 

 The features with feature selection method are used for classification and accuracy is good when we 
consider these features in the classification process. Hence feature selection plays a vital role in obtaining better 
accuracy when dimension space of data set is more. 
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