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Abstract— Digital image processing is a subset of the electronic domain, wherein the image is converted to 
an array of small integers, called pixels, representing a physical quantity. Edges characterize boundaries 
and edge detection is one of the most difficult tasks in image processing hence it is a problem of 
fundamental importance in image processing. The problem of edge detection although it is fundamental 
and is existing since years but it is still an area where there is still scope of research. It has been found 
that the previous used algorithms or methods were not able to produce ideal or optimized results. This 
paper presents an efficient techniques based on Non-Shannon measures of  entropy for edge detection. 
Our objective is to find the best edge representation. A set of experiments in the domain of edge detection 
are presented. The experimental  results show that the new technique often yield more efficient results 
comparing with classic methods. 
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I. INTRODUCTION 
 Computer vision is currently finding wide application in a large variety of fields such as aerospace, biology, 
medical science, geology, astronomy, engineering and etc. Since the increasing demands on production 
automation and quality control, industrial application of digital image processing system are also rapidly 
growing. Detection of edge in an image is a very important step toward complete image understanding. Since 
edges are important features of an image, there is a lot of significant information contained in edges of an image. 
Edges often correspond to object boundaries, shadow transition. It helps to extract useful features for pattern 
recognition.  
 Many algorithms for edge detection have been proposed[1-12 ]. In general, edge detection can be classified in 
two categories: gradient operators and second derivative operators[2-10]. Due to an edge in an image 
corresponds to an intensity change abruptly or discontinuity, step edge contain large first derivatives and zero 
crossing of the second. In the case of first derivative operation, edge can be detected as local maximum of the 
image convolved with a first derivative operator[24-27]. Prewitt, Robert, Sobel[9] and Canny[10] implement 
their algorithm using this idea. For the second derivative case, edges are detected as the location where the 
second derivative of the image crosses zero. The using of Laplacian of Gaussian convolution mask is the most 
common method of the second derivative operator[2,5,8].  
The goal of this paper is to introduce a new approach based on information theory, which is entropy based 
thresholding. The proposed method is decrease the computation time as possible as can and the results were 
very good compared with the other  methods.  
The paper is organized as follows: Section 2 describes in brief the basic concepts of Shannon and non-Shannon 
entropies. Section 3 is devoted to the proposed method of edge detection. In Section 4, the details of the edge 
detection algorithm is described. In Section 5, some particular images will be analyzed using proposed method  
based algorithm and moreover, a comparison with some existing methods will be provided for these images. 
Finally, conclusions will be drawn in Section 6.   

II. SHANNON AND NON-SHANNON  ENTROPY 
The entropy is a basic thermodynamic concept that is associated with the order of irreversible processes in the 
universe. Physically it can be associated with the amount of disorder in a physical system. Shannon [13] 
redefined the entropy concept of Boltzmann/Gibbs as a measure of uncertainty regarding the information 
content of a system. He defined an expression for measuring quantitatively the amount of information produced 
by a process. 
 In accordance with this definition, a random event ܣ  that occurs with probability ܲሺܣሻ  is said to contain  ܫሺܣሻ ൌ lnሾ1 ܲሺܣሻ⁄ ሿ ൌ െ lnሾܲሺܣሻሿ units of information. The amount ܫሺܣሻ is called the self-information of event ܣ . The amount of self information of the event is inversely proportional to its probability. The basic concept of 
entropy in information theory has to do with how much randomness is in a signal or in a random event. An 
alternative way to look at this is to talk about how much information is carried by the signal [14]. Entropy is a 
measure of randomness. 
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Let ݌ଵ, ,ଶ݌ ڮ ڮ , ௞ be the probability distribution of a discrete source. Therefore,  0݌ ൑ ௜݌ ൑ 1, ݅ ൌ 1,2, ڮ , ݇ and ∑ ௜݌ ൌ 1௞௜ୀଵ , where k is the total number of states. The entropy of a discrete source is often obtained from the 
probability distribution.  
The Shannon Entropy can be defined as 
ሻ݌ሺܪ                                              ൌ െ ∑ ௜݌ lnሺ ௜ሻ௞௜ୀଵ݌                                                                             (1) 
This formalism has been shown to be restricted to the domain of validity of the Boltzmann–Gibbs–Shannon 
(BGS) statistics. These statistics seem to describe nature when the effective microscopic interactions and the 
microscopic memory are short ranged. Generally, systems that obey BGS statistics are called extensive systems. 
If we consider that a physical system can be decomposed into two statistical independent subsystems ܣ  and  ܤ, 
the probability of the composite system is              ݌஺ା஻ ൌ ஺݌ ڄ  ஻, it has been verified that the Shannon entropy݌
has the extensive property (additive): 
ܣሺܪ                                               ൅ ሻܤ ൌ ሻܣሺܪ ൅  ሻ.                                                                      (2)ܤሺܪ
From  [16] 
ܣఈሺܪ                                ൅ ሻܤ ൌ ሻܣఈሺܪ ൅ ሻܤఈሺܪ ൅ ߰ሺߙሻ ڄ ሻܣఈሺܪ ڄ  ሻ,                                       (3)ܤఈሺܪ
where ψሺαሻ is a function of the entropic index. In Shannon entropy ߰ሺߙሻ ൌ 1. 
Rènyi entropy[17] for the generalized distribution can be written as follows: ܪఈோሺ݌ሻ ൌ 11 െ ߙ ln ෍ሺ݌௜ሻఈ௞

௜ୀଵ ߙ   , ൐ 0 , 
this expression meets the BGS entropy in the limit ߙ ื 1.  Rènyi entropy has a nonextensive property for 
statistical independent systems, defined by the following pseudo additivity entropic formula ܪఈሺܣ ൅ ሻܤ ൌ ሻܣఈሺܪ ൅ ሻܤఈሺܪ ൅ ሺߙ െ 1ሻ ڄ ሻܣఈሺܪ ڄ  .ሻܤఈሺܪ
Tsallis[18,19] has proposed a generalization of the BGS statistics,  and it is based on a generalized entropic 
form, ܪఈ் ሺ݌ሻ ൌ ଵି∑ ሺ௣೔ሻഀೖ೔సభఈିଵ  ,                                                                                                    
where k is the total number of possibilities of the system and the real number α is an entropic index that 
characterizes the degree of nonextensivity. This expression meets the BGS entropy in the limit ߙ ื 1. The 
Tsallis entropy is nonextensive in such a way that for a statistical independent system, the entropy of the system 
is defined by the following pseudo additive entropic rule ܪఈሺܣ ൅ ሻܤ ൌ ሻܣఈሺܪ ൅ ሻܤఈሺܪ ൅ ሺ1 െ ሻߙ ڄ ሻܣఈሺܪ ڄ                                ሻܤఈሺܪ
The generalized entropies of Kapur of order α and type β [20,21] is 

ሻ݌ఈ,ఉሺܪ                   ൌ ଵఈିఉ ln ቆ∑ ௣೔ഀೖ೔సభ∑ ௣೔ഁೖ೔సభ ቇ ߙ  , ് ,ߙ ,ߚ ߚ ൐ 0                                          (4) 

In the limiting case, when α ื 1 and β ื 1, H஑,ஒሺpሻ reduces to ܪሺ݌ሻ and when β ൌ 1, H஑,ஒሺpሻ reduces to ܪఈோሺ݌ሻ. Also, H஑,ஒሺpሻ is a composite function which satisfies pseudo-additivity as: 

ܣఈ,ఉሺܪ               ൅ ሻܤ ൌ ሻܣఈ,ఉሺܪ ൅ ሻܤఈ,ఉሺܪ ൅ ሺ1 െ ሻሺ1ߙ െ ሻߚ ڄ ሻܣఈ,ఉሺܪ ڄ  ሻ.                     (5)ܤఈ,ఉሺܪ

III.  IMAGE THRESHOLDING BASED ON KAPUR ENTROPY  

A gray level image can be represented by an intensity function, which determines the gray level value for each 
pixel in the image. Specifically, in a digital image of  size ܯ ൈ ܰ an intensity function ݂ሺݔ, ,ݔሻ ሼ ݂ሺݕ ݔ |ሻݕ ,ሼ1,2א ڮ , ݕ  ,ሽܯ א ሼ1,2, ڮ , ܰሽሽ, takes as input a particular pixel from the image, and outputs its gray level value, 
which is usually in the range of 0 to 255 (if 256 levels are used). 
Thresholding produces a new image based on the original one represented by f. It is basically another function ݃ሺݔ,  ሻ, which produces a new image (i.e. the thresholded image). A threshold is calculated for each pixelݕ
value. This threshold is compared with the original image (i.e. ݂) to determine the new value of  the current 
pixel. ݃ can be represented by  the following equation [22,23]. ݃ሺݔ, ሻݕ ൌ ൜ 0,       if    ݂ሺݔ, ሻݕ ൑ ,ݔif     ݂ሺ       ,1ݐ ሻݕ ൐ ,   ݐ  .is the thresholding value ݐ

When Entropy applied to image processing techniques, entropy measures the normality (i.e. normal or 
abnormal) of a particular gray level distribution of an image. When a whole image is considered, the  Kapur 
entropy as defined in (4) will indicate to what extent the intensity distribution is normal. When we extend this 
concept to image segmentation, i.e. dealing with foreground(Object) and background regions in an image, the 
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entropy is calculated for both regions, and the subsequent entropy value provides an indication of the normality 
of the segmentation. In this case, two equations are need for each region, each of them called priori. 
In image thresholding, when applying maximum entropy, every gray level value is a candidate to be the 
threshold value. Each value will be used to classify the pixels into two groups based on their gray levels and 
their affinity, as less or greater than the threshold value (ݐ).  
Let ݌ଵ, ,ଶ݌ … . , ,௧݌ ,௧ାଵ݌ … . ,  ௧ is the݌ ௞ be the probability distribution for an image with k gray-levels, where݌
normalized histogram i.e. ݌௧ ൌ ݄௧ ሺܯ ൈ ܰሻ⁄  and ݄௧ is the gray level histogram. From this distribution, we can 
derive two probability distributions, one for the object (class A) and the other for the background (class B), are 
shown as follows:  ݌஺ ଵܲ஺݌ : , ଶܲ஺݌ , … . . ,  , ௧ܲ஺݌

஻݌ (6)                             ௧ାଵ஻ܲ݌ : , ௧ାଶ஻ܲ݌ , … . . ,  , ௞ܲ஻݌
where ஺ܲ ൌ ∑ ௜௧௜ୀଵ݌  , ஻ܲ ൌ ∑ ௜௞௜ୀ௧ାଵ݌ ,  t is the threshold value.                                                    (7) 

In terms of the definition of Kapur entropy of order ߙ and type  ߚ, the entropy of  Object  pixels and the entropy 
of background  pixels can be defined as follows: 

ఈ,ఉ஺ܪ ሺݐሻ ൌ ߙ1 െ ߚ ln ൮∑ ቀ݌௜஺ܲቁఈ௧௜ୀଵ∑ ቀ݌௜஺ܲቁఉ௧௜ୀଵ ൲ ߙ  , ് ,ߙ ,ߚ ߚ ൐ 0 

                                                                                                                                                 (8) 

ఈ,ఉ஻ܪ ሺݐሻ ൌ ߙ1 െ ߚ ln ൮∑ ቀ݌௜஻ܲቁఈ௞௜ୀ௧ାଵ∑ ቀ݌௜஻ܲቁఉ௞௜ୀ௧ାଵ ൲ ߙ  , ് ,ߙ ,ߚ ߚ ൐ 0  . 
The Kapur entropy ܪఈ,ఉሺݐሻ  is parametrically dependent upon the threshold value ݐ  for the object and 
background. It is  formulated as the sum each entropy, allowing the pseudo-additive property for statistically 
independent systems, as defined in (5). We try to maximize the information measure between the two classes 
(object and background). When ܪఈ,ఉሺݐሻ  is maximized, the luminance level ݐ that maximizes the function is 
considered to be the optimum threshold value. This can be achieved with a cheap computational effort.              ݐ௢௣௧ ൌ Arg max  ቂܣߚ,ߙܪ ሺݐሻ ൅ ܤߚ,ߙܪ ሺݐሻ ൅ ሺ1 െ ሻߙ · ሺ1 െ ሻߚ · ܣߚ,ߙܪ ሺݐሻ · ܤߚ,ߙܪ ሺݐሻቃ .                    (9) 

When ߙ ื  1 and   ߚ ื  1 , the threshold value in (4), equals to the same value found by Shannon Entropy. 
Thus this proposed method includes Shannon’s method as a special case. The following expression can be used 
as a criterion function to obtain the optimal threshold at ߙ ื  1 and   ߚ ื ௌ௛௢௣௧ݐ                                     .1  ൌ Arg max  ቂܣߚ,ߙܪ ሺݐሻ ൅ ܤߚ,ߙܪ ሺݐሻቃ .                                                               (10) 

Now, we can describe the Kapur Threshold algorithm  to determine a suitable threshold value ݐ௢௣௧ and  α and β 
as follows:  

 

Algorithm 1: Threshold Value Selection (Kapur Threshold) 

1. Input: A digital grayscale image I of size ܯ ൈ ܰ. 
2. Let ݂ሺݔ, ,ݔሻ be the original gray value of the pixel at the point ሺݕ ,ሻݕ ሺݔ ൌ 1,2, ڮ , ,ܯ ݕ ൌ 1,2, ڮ , ܰሻ  
3.  Calculate the probability distribution ݌௜,   0 ൑  ݅ ൑  255 . 
4.  For all א ݐ  ሼ0,1, … ,255ሽ,   

I. Apply Equations (6)  and (7) to calculate ஺ܲ,  ஻ܲ, ݌஺ and ݌஻. 
II. if   0 ൏ ߙ ൏ 1 and  0 ൏ ߚ ൏ 1 then 

Apply Equation (9) to calculate optimum threshold value ݐ௢௣௧. 
else 

Apply Equation (10) to calculate optimum threshold value ݐௌ௛௢௣௧. 
end-if 

5. Output: The suitable threshold value  ݐ௢௣௧ of  I, for  ߙ, ߚ ൐ 0, ߙ ്  .ߚ
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IV. EDGE  DETECTION ALGORITHM  
 

The process of spatial filtering consists simply of moving a filter mask w of order ݉ ൈ ݊  from point to point in 
an image. At each point ሺݔ,  ሻ, the response of the filter at that point is calculated a predefined relationship. Weݕ
will use the usual masks for detection the edges. Assume that ݉ ൌ 2ܽ ൅ 1 and ݊ ൌ 2ܾ ൅ 1, where ܽ, ܾ are 
nonnegative integers. For this purpose, smallest meaningful size of the mask is 3 ൈ 3, as shown in Fig. 1. 
,ሺെ1ݓ    െ1ሻ ݓሺെ1,0ሻ ݓሺെ1, 1ሻ  ݂ሺݔ െ 1, ݕ െ 1ሻ ݂ሺݔ െ 1, ݔሻ ݂ሺݕ െ 1, ݕ ൅ 1ሻ ݓሺെ0, െ1ሻ ݓሺ0,0ሻ ݓሺ0,1ሻ  ݂ሺݔ, ݕ െ 1ሻ ݂ ሺݔ, ,ݔሻ ݂ሺݕ ݕ ൅ 1ሻ 

,ሺ1ݓ   െ1ሻ ݓሺ1,0ሻ ݓሺ1,1ሻ  ݂ሺݔ ൅ 1, ݕ െ 1ሻ ݂ሺݔ ൅ 1, ݔሻ ݂ሺݕ ൅ 1, ݕ ൅ 1ሻ 

Fig. 1: Mask coefficients showing coordinate 
arrangement 

 Fig. 2 

Image region under the above mask is shown in Fig. 2. In order to edge detection, firstly classification of all 
pixels that satisfy the criterion of homogeneousness, and  detection of all pixels on the borders between different 
homogeneous areas. In the proposed scheme, first create a binary image by choosing a suitable threshold value 
using Kapur entropy. Window is applied on the binary image. Set all window coefficients equal to 1 except 
centre, centre equal to × as shown in Fig. 3.  

1 1 1 
1 × 1 
1 1 1 

Fig. 3 

Move the window on the whole binary image and find the probability of each central pixel of image under the 
window. Then, the entropy of each Central Pixel of  image under the window is calculated as  ܪሺܲܥሻ ൌെ݌௖ lnሺ݌௖ሻ. 

Table 1 .   ݌ and ܪ of central under window. 0.1047 0.1955 0.2703 0.3265 0.3604 0.3662 0.3342 0.2441 ࡴ 8/9 7/9 6/9 5/9 4/9 3/9 2/9 1/9 ࢖ 

 
where, ݌௖ is the probability of central pixel ܲܥ of binary image under the window. When the probability of 
central pixel ݌௖ ൌ 1 then the entropy of this pixel is zero. Thus, if the gray level of all pixels under the window 
homogeneous, then ݌௖ ൌ 1 and  ࡴ ൌ 0. In this case, the central pixel is not an edge pixel. Other possibilities of 
entropy of central pixel under window are shown in Table 1.  
In cases ݌௖ ൌ 8/9, and ݌௖ ൌ 7/9, the diversity for gray level of pixels under the window is low. So, in these 
cases, central pixel is not an edge pixel. In remaining cases, ݌௖ ൑6/9 , the diversity for gray level of pixels under 
the window is high. So, for these cases, central pixel is an edge pixel. 
Thus, the central pixel with entropy greater than and equal to 0.2441 is an edge pixel, otherwise not.    
The following Algorithm summarize the proposed technique for calculating the optimal threshold  values and 
the edge detector.  
 
 

Algorithm 2: Edge Detection  
 
 

1. Input: A  grayscale image I  of size ܯ ൈ ܰ  and  ݐ௢௣௧ , that has been calculated from algorithm 1. 

2. Create a binary image: For all x, y,  

       if   ܫሺݔ, ሻݕ ൑ ,ݔthen ݂ሺ ݐ݌݋ݐ  ሻݕ  ൌ  0 else  ݂ሺݔ, ሻݕ  ൌ 1.  

3. Create a mask w of order ݉ ൈ ݊, in our case ( ݉ ൌ 3, ݊ ൌ 3) 

4. Create an ܯ ൈ ܰ output image  ݃: For all x  and y, Set ݃ሺݔ, ሻݕ ൌ ݂ሺݔ,   .ሻݕ

El-Owny et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 5 No. 12 Dec 2013 935



 
The steps of our  proposed technique are as follows: 
Step 1: Find global threshold value (ݐଵ) using Kapur entropy . The  image  is segmented by ݐଵ into two parts, the 

object (Part1) and the background (Part2).  
Step 2: By using Kapur entropy, we can select the locals threshold values (ݐଶ) and (ݐଷ) for Part1 and Part2, 

respectively. 
Step 3: Applying Edge Detection Procedure with threshold values ݐଵ, ݐଶ and ݐଷ. 
Step 4: Merge the resultant images of step 3 in final output edge image. 
 In order to reduce the run time of the proposed algorithm, we make the following steps:  Firstly, the run time of 
arithmetic operations is very much on the ܯ ൈ ܰ big digital image, I , and its two separated regions, Part1 and 
Part2. We are  use the linear array ݌ (probability distribution) rather than I , for segmentation operation, and 
threshold values computation  ݐଵ, ݐଶ and ݐଷ. Secondly, rather than we are create many binary matrices  ݂ and 
apply the edge detector procedure for each region individually, then merge the resultant images into one. We are 
create one binary matrix  ݂  according to threshold values  ݐଵ, ݐଶ and ݐଷ together, then apply the edge detector 
procedure one time. This modifications will reduce the run time of computations. 

V. EXPERIMENTAL RESULTS 
To demonstrate the efficiency of the proposed approach, the algorithm is tested over a number of different 
grayscale images and compared with traditional operators. We selected a real-world images and synthetic 
images(Fig. 4). The images detected by Canny, LOG, Sobel, Roberts, Prewitt and the proposed method, 
respectively. All the concerned experiments were implemented on Intel® Core™ i3 2.10GHz with 4 GB RAM 
using MATLAB R2007b. As the algorithm has two main phases – global and local enhancement phase of the 
threshold values and detection phase, we present the results of implementation on these images separately.  
The proposed scheme used the good characters of  Kapur entropy, to calculate the global and local threshold 
values. Hence, we ensure that the proposed scheme done better than the traditional methods. 
In order to validate the results, we run the Canny, LOG, Sobel, Roberts and Prewitt methods and the proposed 
algorithm 10 times for each image  with different sizes. As shown in Fig. 5. It has been observed that the 
proposed edge detector works effectively for different gray scale digital images as compare to the run time of 
Canny method.  
Some selected results of edge detections for these test images using the classical methods and proposed scheme 
are shown in Fig.(6-11). From the results; it has again been observed that the performance of  the proposed 
method works well as compare to the performance of the previous methods (with default parameters in 
MATLAB). 

(a) (b) (c) (d) 

Fig. 4  Original images 

5. Checking for edge pixels:  
Calculate:  ܽ ൌ  ሺ݉ െ 1ሻ/2 and  ܾ ൌ  ሺ݊ െ 1ሻ/2. 
 For all א ݕ  ሼ ܾ ൅ 1 , … , ܰ െ ܾሽ, and  א ݔ  ሼ ܽ ൅ 1 , … , ܯ െ ܽሽ, 

ൌ ݉ݑݏ           0; 

         For all ݈ א  ሼ െܾ , … , ܾሽ, and  ݆ א  ሼ െܽ , … , ܽሽ,  

             if ( ݂ሺݔ, ሻݕ ൌ  ݂ ሺݔ ൅ ݆, ݕ ൅ ݈ሻ ) then ݉ݑݏ ൌ ݉ݑݏ  ൅ 1. 

         if ( ݉ݑݏ ൐ 6 ) then ݃ሺݔ, ሻݕ  ൌ  0  else ݃ሺݔ, ሻݕ  ൌ 1 .    

 6. Output: The edge detection image  ݃ of  I. 
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Fig.5: Chart time for proposed method and classical methods 

 with 512×512 pixel test images  
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Fig. 6: Proposed method applied to the test images. 

  
(a) (b) (c) (d) 

Fig. 7:  Sobel edge detector applied to the test images

   
(a) (b) (c) (d) 

Fig. 8:  LOG edge detector applied to the test images
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VI. CONCLUSION 

An efficient approach using Kapur entropy for detection of edges in grayscale images is presented in this paper. 
The proposed method is compared with traditional edge detectors. On the basis of visual perception and edgel 
counts of edge maps of various grayscale images it is proved that our algorithm is able to detect highest edge 
pixels in images. The proposed method is decrease the computation time as possible as can  with generate high 
quality of edge detection. Also it gives smooth and thin edges without distorting the shape of images. Another 
benefit comes from easy implementation of this method. 
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