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Abstract—An original approach is proposed. Called the Pre-Segmented Region of Interest Classification 
Scene System (PSROI), this system is able both to classify a scene during a digital camera's pre-capture 
phase, and to determine image processor parameters that will determine the quality of the final picture: 
white balancing, exposure, and focus. Additionally, it also integrates with the focusing system. An image 
in the classification scene system is given a value, called the focus weight. The focus weight ensures that 
the selected classification scene is more suitable for user vision. In the scene classification system, three 
scenes are set: portrait, landscape, and beach/snow. In order to perform the classification more quickly, 
the operation region of the image shrinks, and less computation is applied to build the system. 
Experimental results show that the proposed system is capable of effectively classifying scenes into the 
right categories within 0.2 s..  

Keyword s- scene classification, recognition, support vector machines, fuzzy 

I.  INTRODUCTION  

With the digital still camera development maturing and becoming more competitive, users are requesting 
more from the devices in terms of cost, appearance, and function. In order to fulfill such requests, manufacturers 
tend to produce light and beautiful cameras with greater functionality and more scene modes. However, including 
yet more scene modes invites trouble. For example, digital still cameras need to have a bigger mode dial in order 
to contain these alternative modes, which goes against the mechanical design of a light digital camera. Moreover, 
the need to constantly switch between scenes to ensure that photos are taken with the best possible exposure can 
be a frustrating experience for users. 

In order to let users operate digital still cameras conveniently, one possible solution is auto scene. Auto scene 
mode incorporates all of, or a subset of, a camera's scene modes, provided by the camera manufacturer, into a 
single scene mode. When photos are taken with this mode, scene classification identifies the scene and sets up the 
relevant parameters automatically. It does away with the inconvenience of switching between modes, and in 
doing so provides manufacturers with more flexibility in their choice of mechanical design. 

Current studies related to scene classification are in the field of image retrieval, image annotation, and 
computer vision [1]. These studies are applied to image classification, identification, or retrieval in the backend. 
There are no studies related to applying scene classification during the process of taking photos. The scene 
classification system that this paper studies is one that allows users take photos without changing the scene mode. 

In recent years, scene classification has become a popular research topic. However, even though much 
research has been done before, classifying photos into semantic types of scene (e.g., portrait, landscape) is still a 
difficult problem. The popular method for classifying scenes is to use low-level features (e.g., texture, color). 
Therefore, image classification can be achieved either by only using low-level features, or by integrating the low- 
and high-level features [2]. A new classification framework for digital cameras, which employs low-level 
features, is proposed in this paper. The RGB color space is the most common color format in digital images. Lu et 
al. [3] used the RGB color space to represent the color of an image patch and proposed a two-level approach to 
scene recognition for both indoor-outdoor and multiple photo categories. Naccari et al. [4] used the method of 
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modulated color enhancement to classify natural images. Serrano et al. [5] proposed a set of low-dimensional, 
computationally efficient low-level features that are extracted from LST color space and wavelet texture features. 
Here, LST is a luminance-chrominance color space. It consists of one luminance component L, and two 
chrominance components S and L. In general, we can describe a color photo by using its color features. Color 
histograms are a popular method of representing the image [6]–[8]. Another popular low-level feature is texture. 
Texture is the structure arrangement of the surface of an object, which assists users in recognizing objects or 
regions. Textures have been expressed using several methods [9]–[14], such as Gabor filters, wavelets, local 
binary patterns (LBP), and so on. 

The semantic information of an image carries the meaning of that image. It is trivial for the human eye to 
extract semantic information from photos. However, for a computer, it is difficult to identify the semantic features 
of high-level images in photos. Therefore, if a computer can be made to correctly identify the semantic features of 
objects in photos, it will enhance the image identification rate. Some researchers use the power spectrum to 
correlate spectral features with the semantic contents of an image [15][16]. Another spectrum-related system used 
is a harmonic analysis tool called the ridgelet transform [17]. In this system, the Fourier energy spectra are used 
as an efficient way to describe the semantic information of an image. Boutell et al. [18][19] trained a single-label 
classifier for each label, using all single-label documents and only the multi-label documents with that label. In 
order to make systems user-friendly, many researches use low-level features to infer the semantic features [20]. 
Integration of low-level features and semantic features to enhance the image classification system has also been 
developed widely [2][3][5]. When classifying the scene of an image, the most important element is to extract the 
features of the image and then use those features to both train the system and classify the image. It is important to 
recognize that the content of an image is composed of objects in the scene. In order to extract the features, a 
scene-classification system needs to be sure which objects are in the image before classifying the scene. The 
common method of doing this is to segment the objects in the image and then identify the low-level features and 
semantic concepts. There are two methods of segmenting the image to look for the objects. One is block-based 
[21]–[23], and the other is region-based [3][24]. The block-based method simply segments the image into several 
rectangles. The region-based method also segments the image, but the objects are more meaningful to the human 
eye. The most common approach for Exemplar-based systems use low-level features and statistical pattern 
recognition techniques. Such systems rely on learning patterns from a training set [25]. Bayesian classifiers are 
the most popular classifiers. Many researchers propose different Bayesian frameworks to improve the rate of 
image classification. Vailaya et al. [26] cast the image-classification problem in a Bayesian framework. Luo et al. 
[27][28] presented a unified image-understanding framework based on a Bayesian network, where both low-level 
and semantic features are integrated to improve performance. Tsin et al. [29] proposed a Bayesian approach to 
classifying a color image of an outdoor scene. In some research, metadata is used to improve classification 
performance, applying a Bayesian network to integrate metadata cues in a robust framework [30][31]. Much 
research has also been done on problems of scene classification [32]–[37]. The majority of these systems 
employed a probabilistic-model approach based on low-level features derived exclusively from scene content. 
Several content-based methods have been proposed for image classification and image retrieval. Vailaya et al. 
[38] attempted to capture high-level concepts from low-level image features under the constraint that the test 
image belongs to one of the classes. They additionally used a hierarchical architecture to classify vacation images. 
Vogel and Schiele [39] presented an image representation that renders it possible to access natural scenes by local 
semantic description. They modeled the semantic content of an image and used this model to classify local image 
regions into semantic concept classes. Torralba and Oliva [40] studied the statistical properties of natural images 
belonging to different categories and their relevance for scene- and object-categorization tasks. Mode-based 
systems rely upon the configuration of the scene components. Luo and Stephen [41] proposed a mode-based 
approach to detecting sky. This approach consists of color classification, region extraction, and physics-motivated 
sky-signature validation. Lipson et al. [42] at MIT used an approach they call “configural recognition,” using 
relative spatial and color relationships between pixels in low-resolution images to match the images with class 
models. Some researchers believe that a segmentation of images into regions can provide more semantic 
information than the usual global image features, and have proposed a scene-recognition approach to identify the 
image-region types in a given scene, along with a classification scheme designed to separate images in the 
descriptor space [24][43]. Kaick and Mori [44] also segmented images into different regions based on different 
low-level features, and compared this to a method that partitions the image into regular blocks. The quality of the 
results does not differ significantly whether regular blocks or segments are used as the regions for similarity 
computation. Our paper will use the block-based method, and will give the relevant semantic information for each 
block. The support vector machine (SVM) classifier is a new method of parameterization of functions. It has been 
shown to have better error rates [6]. Therefore, SVM is chosen to classify low-level features as semantic features 
in this paper. A more complete description of SVM can be found in Ref. [45]. Since fuzzy set theory was 
proposed in 1965, the related study of fuzzy rule-based systems (FRBSs) has developed continuously [46]. An 
FRBS is used in this paper to classify images into one of three scenes: portrait, landscape, or beach/snow. 
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This paper is structured as follows: Section II gives an overview of the system architecture. In Section III, 
details of the system, including the training and testing modules, are given. Section IV presents experimental 
results of the implementation of our proposed algorithm. We deliver a conclusion in Section V. 

II. SYSTEM ARCHITECTURE  

Fig. 1 is a flow chart representing PSROI. The figure shows that the PSROI system has three main portions. 
The first portion is image-features extraction. In this step, low-level features are those that can be extracted from 
the image, such as color, texture, and edges. The second portion is the semantic features. Most classification  

systems use semantic concepts to present the object in the image [2][5][15][16][39], which is the best method 
for users to classify the image. The third portion is image-scene classification. The image is classified into 
portrait, landscape, beach/snow, or others by using a rule-based classifier. 

III. SYSTEM DETAILS 

A. Training Module  

The general approach of a training system is to compute feature vectors and then develop classifiers for these 
features. This paper performs supervised feature classification, which can control the structure of representations. 
The role of the training module is to train the image patches of seven predefined materials that are segmented by 
human semantic concepts. These seven materials are skin, sky, grass, water, snow, sand, and tree. 

Image regions for each material are cropped manually into the database to prepare the training data. These 
image patches are cropped in the shape of rectangles of 80×60 or 60×80 pixels based on testing the image 
direction. There are a total of 3,150 image patches for all of the seven materials. 1,400 image patches out of 3,150 
are aligned in the vertical direction. 

In the training module, the first step is to extract low-level features from the image patch of each material. 
Two kinds of low-level features are extracted — color and texture feature. Color features are extracted from LST 
color space and texture features are extracted via wavelet transform, which will be introduced in the next section. 
After the extraction of color and texture features, image patches of all materials are trained via SVM to build a 
semantic concept database. And the training mode file will be used in the testing procedure. 

B. Testing Module 

1) Image Feature Extraction 

To extract image features, it is necessary to firstly segment the region of interest from the sample image. The 
most important information in photos from digital cameras is in the middle of the image, so we set the middle 

 

Fig. 1. System architecture 
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area as the region of interest (ROI). We then segment into 3×3 blocks the region of interest, and extract the low-
level features from each block going from left to right and up to down. 

Generally speaking, the image is described by using low- and high-level features. Low-level features are those 
features such as color, texture, and edges — the most common image features for classifying images — which are 
collected via image processing. High-level features are those features that match human semantic concepts. Color 
and texture are chosen as the image features in this paper. The following is an elaboration of color and texture. 

Color features are extracted from an LST color space. This color space had been shown to be suitable for 
image classification [47]. The transformation equation of RGB to LST is: 

( )BGRL ++=
3

1  

( )BRS −=
2

1

                                                                     (1) 

( ). 2
6

1
BGRT +−=  

The equations in (1) consists of one luminance component L, and two chrominance components S and T. The 
two chrominance components do not vary with light-source intensity changes; the S component approximately 
represents the illumination variation (daylight to tungsten light). This is an important point, because it can be used 
to distinguish different illuminants, whether natural to artificial, which allows the classification system to more 
accurately classify the scene category. 

In this paper, a color histogram is used to analyze the color-distribution feature because it can resist the 
changing of rotation and shift no matter whether photos are taken horizontally or vertically. Moreover, it is simple 
and fast. Quantized color histograms are suitable for those features that are computationally simple and have been 
shown to be useful for image classification [2][5][21][22]. Let ( ) ( ) ( ){ } [ ]1,0,,,,, −∈ CTSL nyxqyxqyxq  be 
quantized representations of the L, S, and T image channels, respectively. The quantized color histogram features 
are then simply 

( ) ( ){ }kyxqkH LL == ,Pr  
( ) ( ){ }kyxqkH SS == ,Pr                                                       (2) 
( ) ( ){ },,Pr kyxqkH TT ==  

where k = 0, …, 1−Cn , and Cn  is the number of bins per color histogram. Then we get color feature jcx , 

where j = 1, 2, …, 9, via combining
LH , SH , and TH . The nine color features are extracted from nine blocks in  

 

the region of interest as shown in Fig. 2. This color-feature extraction approach is similar to [5]. The number 

of bins per color was set to Cn  = 16, and so the color-feature dimension is 3 Cn  = 48. 

Various methods of texture analysis have been proposed in recent years, such as filters, wavelets, and so on. 
Of these, it has been shown that wavelet transform can describe both local and global information efficiently and 
has comparatively better computational efficiency [5][12][14]. Because this paper needs to describe which local 
information belongs to which semantic concept, the wavelet transform is chosen to extract texture features. 
Considering both computational tractability and optimal texture characterization, the 5/3 wavelet filter pair is 
used, where )(0 kh  = [-1/8 1/4 3/4 1/4 -1/8] and )(1 kh  = [-1/2 1 -1/2] are the low- and high-pass filters, 
respectively. The wavelet coefficients can be derived from: 

 
Fig. 2. Color-feature extraction 
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where L(m, n) is the image-luminance information and ( )yxC l
ij ,  are the wavelet coefficients obtained by 

applying filters )(khi and )(kh j  along the rows and columns of the signal at decomposition level l. Here, we 
implement a two-level wavelet transform to get the wavelet coefficients of seven sets from each block. 

Texture features are extracted from the wavelet coefficients of the two-level decomposition described above. 
However, the lowest frequency coefficients 2

00c  are not useful for texture analysis. A high-pass filter is therefore 

used to transform the coefficients 2
00c  to get high-frequency signal information. The transformation equation is: 
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After the transformation, the texture features are derived by computing the sub-band energy of all wavelet 
coefficients: 
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where M and N are the dimensions of coefficients ( )yxcl
ij , . The seven-set wavelet texture features are 

extracted from a 3×3 tessellation segmented from the image as shown in Fig. 3. Texture features 
[ ]1

11
1
10

1
01

2
11

2
10

2
01

2
00 ,,,,,, EEEEEEExtj =  are computed from Fig. 3(c), where j is the number of blocks in the 

region of interest. 

2) Image Feature Extraction 

Semantic features are those features most relevant to human vision. Therefore, in order to classify the image 
into the correct class of scene, we use SVM as a semantic predictor to transform the color and texture feature 

vectors jcx  and jtx , which are extracted from nine block. Each block is labeled by its relative semantic concept 

by using an SVM semantic predictor. The input data of the SVM semantic predictor is cx  and tx , and the output 

( )yxC l
ij ,  

 
Fig. 3. Texture-feature extraction. (a) is original image (L(x, y)).  

(b) is a two-level 5/3 wavelet transform. (c) coefficients 2
00c  are transformed by high-filter. 
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data of the SVM is the class of testing block. Finally, the scene classifier gathers these semantic concepts to 
decide which scene class the image belongs to. 

 Although a semantic predictor can be used to establish a relationship between an original image and its 
semantic scene content, not all semantic-concept information is useful in determining whether or not a given 
image is a portrait or landscape scene. Consequently, this paper considers seven kinds of semantic concept: skin,  

 

sky, grass, water, snow, sand, and tree. Those semantic features can be detected by using the color and 
wavelet texture features described in earlier sections. SVM is not the only classifier that can detect these semantic 
features (others classifier can be trained to infer the semantic information), but this paper uses SVM as it has been 
shown that it gives the best classification results [39]. The distance-measure method's classification results are not 
good enough. Although the event though distance measure has a better computational efficiency than SVM, SVM 
is nonetheless chosen as the semantic predictor. This paper uses the LIBSVM package [48] as the semantic-
feature classifier. The package offers an efficient multi-class support by using internally a one-against-one 
approach [49]. The color and texture semantic-feature classification result from using the LIBSVM package is 
shown in Table 1 and Table 2, respectively. 

3) Scene Classification 

 Digital cameras offer various useful modes, which are optimized for specific scenes and environmental 
conditions. These modes are preprogrammed by the manufacturer to automatically give the best exposure and 
settings for each scene. The classification system used by this paper tries to classify an image into three classes: 

A) Portrait: A human is the subject and the background is not important. 

TABLE 1 
COLOR CONFUSION MATRIX OF SVM SEMANTIC FEATURES CLASSIFICATION (Γ= 0.25,C=32) 

classes skin sky grass water snow sand tree 

skin 88.9% 0 0 0 0 11.1% 0 

sky 0 91.2% 0 5.8% 3.0% 0 0 

grass 0 0 94.6% 0 0 0 5.4% 

water 0 13.9% 0 86.1% 0 0 0 

snow 0 0 0 0 44.4% 55.6% 0 

sand 9.2% 0 0 0 0 90.8% 0 

tree 0 0 8.3% 0 0 0 91.7% 

TABLE 2 
TEXTURE CONFUSION MATRIX OF SVM SEMANTIC FEATURES CLASSIFICATION (Γ= 2,C= 32768) 

classes skin sky grass water snow sand tree 

skin 51.8% 35.2% 0 0 0 13.1% 0 

sky 0 69.4% 0 0 3.5% 27.1% 0 

grass 0 0 63.9% 0 0 8.3% 27.8% 

water 0 0 0 80.6% 0 19.4% 0 

snow 0 14.9% 4.9% 2.6% 43.8% 33.8% 0 

sand 10.2% 0 0 0 3.4% 86.4% 0 

tree 0 0 43.9% 0 0 0 56.1% 
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B) Landscape: Images with a wide view. The camera automatically focuses on a distant object. The object can 
be sky, grass, water, and tree. 

C) Beach/Snow: Photographs of beach or snow scenes. When the object is sand or snow, this image belongs 
to the beach or snow scene. Exposure and white balance are set to help prevent the scene from looking washed 
out. 

If an image does not belong to three classes it will be classified as belonging to the “others” class.  

After feature extraction and semantic-features analysis is run on an image, the semantic concept of each block 
is extracted. Although it is easy for humans to recognize semantic concepts, it is difficult for the machines to 
integrate the semantic-concept information from nine blocks and then classify the scene category accordingly. 
Therefore, if there were a method that could integrate the natural ability of humans to classify the category of an 
image, the accuracy rate of classification would be increased. The fuzzy rule-based classification system can 
fulfill this need. 

First, we construct four fuzzy rules for PSROI classification system. 

Rule R1: IF one of the nine blocks is skin THEN the image is Portrait. 

Rule R2: IF one of the nine blocks is snow or sand THEN the image is Beach/Snow. 

Rule R3: IF one of the nine blocks is sky, grass, water, or tree THEN the image is Landscape. 

Rule R4: IF none of the blocks belong to any semantic-concept feature described in above THEN the image is 
Others. 

Second, infer the scene category of the sample scene by following fuzzy rules to integrate the semantic 
concepts (color and texture have same weight) with the color and texture features from the nine blocks. 

C. Integrate Focus Weight to Classification System 

Focus systems in digital cameras are useful for users because they provide the option to focus on the object of 
interest. Generally, the object users focus on is the area users want to take photos of. The image of the object 
focused upon is the clearest area. 

In order to make the classifying result meet users’ needs, the result of the focus system is integrated into the 
nine blocks in the classification system. Assuming there are nine focus points in the focus system and each point 
is given a weight, called the Focus Weight, jw , where 9,...,2,1=j . For example, if the object the user focus 

on is center 5w , 5w  gets more weight and others get the same weight. Then, each semantic feature from each 
block is multiplied by the focus weight. Finally, we get the classification result by applying the fuzzy rule-based 
classification system. 

IV. EXPERIMENTAL RESULT AND ANALYSES 

We implemented our classification system with a PC using an Intel Pentium M 1.7 GHz and 512 MB RAM. 
The software used is Borland C++ Builder 6.0 on Windows XP. In the training module, 3,150 image patches for 
all materials are trained by SVM for semantic-concept detection. In the testing module, 1,200 images of 320×240 
pixels are collected from the Internet as sample images for the purpose of testing. The images are considered at 
two different angles, 0° (horizontal) and 90° (vertical). The classification result will be introduced in the 
following sections. 

A. Image Database 

Image regions for each material are cropped manually into the database to prepare the training data. These 
image patches are cropped in the shape of a rectangle of 80×60 pixels. Altogether, we have 3,150 image patches 
for all materials. There are seven different materials that are predefined. Each material is segmented by human 
semantic concepts. These seven classes are skin, sky, grass, water, snow, sand, and tree. 

The testing set in the database includes 1,200 images collected from the Internet. These include 800 horizontal 
images and 400 vertical images. The images in the database are composed of portrait, landscape, and beach and 
snow scenes. We then subsample all images into 320×240 pixels for increased computational efficiency. Before 
we start testing the image, we need to divide all the images into four independent sets and put them in a different 
folder. 
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B. Horizontal Image Classification Result 

In this section, we describe the horizontal image classification results using FRBS. A 320×240 horizontal 
image is segmented into 3×3 tessellation (ROI). The size of each block is 80×60. The classification accuracy of 
portraits is 94%. This result is given by combining color and texture features. As the result, the classification 
accuracy of color is better than that of texture in the portrait class. This is because the texture-classification result 
of skin material is easily confused with sky and sand as shown in Table 2. The portrait-classification success rate 
is very important because most people use digital cameras to picture children or other family members. The 
classification accuracy rates of landscape and beach/snow scenes are 86% and 87.5%, respectively. The overall 
accuracy rate is 89.17%. Although the classification accuracy, 89.17%, is not good enough to compete with the 
90.1% result achieved in [2], this proposed classification system has a lower classification time. We test 200 
images in each class, except beach/snow, and calculate the average time taken. For the class of beach/snow, the 
average time is 183 ms after testing 400 images. The overall computation time is 186.1 ms. This result is good, 
because most digital camera manufacturers limit the time of digital camera processing focus (S1) to less than 200 
ms. 

C. Vertical Image Classification Result 

Vertical images are tested with vertical image patches. A 3×3 tessellation (ROI) of the vertical image is 
segmented prior to testing.  

As experimental results, the color differs only slightly between vertical and horizontal images. In order to 
improve the texture-classification rate, 700 vertical image patches were used to train for the classification of 
vertical images. Although the ability of resisting the rotation image for wavelet texture transforms is not 
satisfactory, the classification rate of vertical images can still reach 66.67%. The overall computation time of 
vertical image is 183.6 ms. 

Because of the impact of texture classification, the overall rate of classification accuracy for vertical images, 
86.67%, is lower than that of horizontal images. The biggest difference is in the landscape class. This is because 
the texture of water is easy to confuse with snow and sand, and the number of vertical image patches are not 
enough. 

D. Comparison With Alternative Approach 

The proposed system is used in [5] to compare with PSROI. The main reason is all of them use low-level 

 
features (color and texture) to transform to relative semantic concepts. The system in [5], however, is used to 

classify images into indoor/outdoor classes. The system in [5] is modified and implemented to classify the images 
into portrait, landscape, or beach/snow. Of course, before testing these images, a training procedure is needed; 
this need is fulfilled by using the PSROI training database. The results of horizontal and vertical images of [5] 
and PSROI are listed in Table 3. 

As shown in Table 3, the overall classification precision of PSROI is better than [5]. Additionally, the 
classification time in [5] requires 292.2 ms (horizontal image) while PSROI requires only 186.1 ms (horizontal 
image). The main reason is that the operation region of PSROI only covers a 56.25% area of the whole image, 
and thus needs less calculation time to achieve a better classification rate. The results in Table 3 show that PSROI 
not only reduces operation time but also achieves a good classification precision. 

TABLE 3 
HORIZONTAL/ VERTICAL IMAGE CLASSIFICATION PRECISION OF [5] AND PSROI  

Classification system Portrait Landscape Beach 
/Snow Overall 

Classificati
on time 

(ms) 

horizontal 
[5] 92% 79.5% 90% 87.2% 292.2 

PSROI 94% 86% 87.5% 89.2% 186.1 

vertical 
[5] 94% 78.6% 82% 84.8% 288 

PSROI 92% 82% 86% 86.7% 183.6 
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V. CONCLUSIONS 

Current studies related to scene classification are all applied for image classification, identification, or 
retrieval from the backend. Few studies have investigated the application of scene classification in the process of 
taking photos. The scene-classification system considered herein is intended to allow users to take photos without 
changing the scene mode. It can integrate the focus result with the classification system to better fit a user’s 
intention. Three pre-defined classes are set: portrait, landscape, and beach/snow. Experimental results show that 
the proposed system is capable of effectively classifying scenes into the correct categories within 0.2 s. 
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