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Abstract:-

Random Number Generators (RNGs) are an important building block for algorithms and protocols in
cryptography. Random number generation is used in a wide variety of cryptographic operations, such as key
generation and challenge/response protocols. A random number generator outputs a sequence of 0s and 1s such
that at any position, the next bit cannot be expected on the previous bits. However, true random number
produces non- deterministic output since if the same random generator is run twice, identical results are not
received. Thus we go for pseudo random number generator that is deterministic device because if this random
number generator is run twice or more, it gives same results. Our paper presents new crypto based pseudo
random number generator. It uses BLOW FISH ciphers and the Cipher-Block chaining (CBC) mode that uses
three stages of the block chaining. The plain text for each stage comes from the output of the first BLOW FISH,
which uses the 64-Bit date and time as the plain text. CBPRNG creates three 64-bit random numbers, the first
and the second are concatenated to create a 128-random number and the third is used as next initial vector (V)
for CBPRNG. Our Crypto-Based Pseudo-random Number Generator produces a sequence of bits that has a
random looking distribution. This new generator helps to develop huge range cryptographic applications to
increase the system security. A number of applications such as financial security applications and Pretty Good
Privacy (PGP) use this technique.
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1. INTRODUCTION

Random Number Generators (RNGs) used for cryptographic applications typically produce a sequence of zero
and one bits that may be combined into sub-sequences or blocks of random numbers. There are classified into:
deterministic and nondeterministic. A deterministic RNG consists of an algorithm that produces a sequence of
bits from an initial value called a seed. A nondeterministic RNG generates output that is dependent on some
irregular physical source that is outside human control.

Good cryptography requires good random numbers. The following criteria are used to validate that a sequence
of numbers is random.

Uniform distribution: The uniform of numbers in the sequence should be uniform; that is, the frequency of
occurrence of each of the numbers should be approximately the same.

Independence: No one value in the sequence can be inferred from the others.

This paper evaluates the new crypto based Pseudo Random Number Generator (CBPRNG) for use in
cryptographic applications. Almost all cryptographic protocols require the generation and use of secret values
that must be unpredictable to attackers. For example, random number generators are required to generate
public/private key pairs for asymmetric (public key) algorithms such as RSA, DSA, and Diffie-Hellman. The
Keys for symmetric and hybrid cryptosystems are also generated randomly. The most important is that attackers,
who know the RNG design, must not be able to create any useful predictions about the RNG outputs.

In practice, there are two major types of random number generators (RNGs): true-random (TRNGSs) and pseudo-
random (PRNGs) both of which have been employed in various commercial applications.

True Random Number Generators (TRNGS), on the other hand, capitalize on naturally occurring random
phenomena and generate nearly perfect statistical randomness without the need for seed initialization. For this
reason, system designers should strongly consider the use of TRNGs for any current or future application that
depends on randomness. However, there are several draw backs to this approach. The process is normally slow,
and the same random stream cannot be repeated if needed,

Pseudo-random number generators are designed using algorithms that generate numbers or bit streams that
appear to be random. In most cases the output from these RNGs are random enough to pass basic statistical
testing, but given that this method employs a deterministic approach that is initialized with a seed, it is debatable

ISSN : 0975-3397 Vol. 5No. 06 Jun 2013 561



T.Chalama Reddy et.al / International Journal on Computer Science and Engineering (IJCSE)

whether this category can be considered genuinely random. However, one of the most important uses of random
numbers comes from cryptographic computer security protocols and algorithms.

Cryptographic applications use random numbers to generate encryption keys, create initial parameter values,
and to introduce random nonces into protocols and padding schemes. In most cases these numbers come from a
Pseudorandom Number Generator (PRNG) which is a deterministic software algorithm which imitates
randomness. A PRNG takes an input string of bits, or a bit vector, and generates a longer output bit-vector
which “appears” random.

One-way function can be used directly as pseudorandom number generator that is cryptographically sound.
Therefore, algorithms such as SHA-1 [5] or RSA are commonly used as a PRNG. Unfortunately, PRNGs suffer
from two major security disadvantages. First, PRNGs require some input which deterministically governs the
output. To securely use a PRNG, this input (the “seed”) must be kept secret. Second, PRNGs can only generate
fixed number bits before they cycle and repeat themselves.

Present paper is as follows. Section 2, describes the related researches. In section 3, we present our Proposed
Cryptosystem-based random number generator. In section 4, describe Implementation and Settings. In section 5
present Implementation Results and analysis and in section 6, we present application of random numbers.
Finally, conclusion is summed up in section 7.

2. Related researches

Random numbers plays an important role in the use of encryption for various network security applications.
Sources of use true random numbers are hard to come by. The physical noise generators, such as pulse detectors
of ionizing radiation events, gas discharge tubes, and leaky capacitors, are one potential source. However, such
devices are of limited utility in network security applications.

The most widely used technique for pseudorandom number generation is an algorithm first proposed by lehmer,
which is known as the linear congruential method. The algorithm is parameterized with four numbers, as
follows:

m the modulus m>0

a the multiplier O<=a<m
c the increment 0<=c<m
Xo the starting value or seed 0<=Xo<m

The sequence of random numbers {Xn} is obtained via the following iterative equation:
Xn+1=(aXn+c) mod m

If m, a, c, and X, are integers, then this technique will produce a sequence of integers with each integer in the
range 0<=Xn <m.

A cryptosystem such as an encryption cipher or a hash function can also be use to generate a random stream of
bits. We briefly mention a system that used 3DES encryption algorithm.

The PRNG proposed in ANSI X9.17 defines a cryptographically strong pseudorandom number generator. A
number of applications employ this technique, including financial security applications and PGP (Pretty Good
Privacy). This generator uses three 3DES with two keys (encryption-decryption-encryption). The PRNG
proposed in ANSI X9.17 have the property that one the key has been compromised, an attacker is forever after
able to predicate their outputs. But our

CBPRNG can recover from a key compromise.

It was concluded in [6] that BLOW FISH is faster and more efficient than other common encryption algorithms.
So, in our proposed CBPRNG we use BLOW FISH cipher for instead of other ciphers.

Blowfish was designed in 1993 by Bruce Scheier as a fast, alternative to general existing encryption algorithms
such AES, DES and 3DES etc. Since Blowfish has not any known security weak points so far, this makes it an
excellent candidate to be considered as a standard encryption algorithm. Blowfish is unpatented, and will remain
so in all countries. The algorithm is hereby placed in the public domain, and can be freely used by anyone.

Blowfish is a symmetric block encryption algorithm designed in consideration with,

Fast: It encrypts data on large 32-bit microprocessors at a rate of 26 clock cycles per byte.
Compact: It can run in less than 5K of memory.

Simple: It uses addition, XOR, lookup table with 32-bit operands.

Secure: The key length is variable, it can be in the range of 32~448 bits: default 128 bits key length.
3. Proposed Cryptosystem-Based Pseudo Random Number Generator (CBPRNG)

A cryptosystem such as an encryption cipher or a hash function can also be use to generate a random stream of
bits. Our CBPRNG generator uses encryption algorithm. This generator makes use of four BLOW FISH
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encryptions modules. All four make use of same pair of variable 32- 448-bit Keys, which must kept secrete,
and 64 bit seed value as the initial vector (1V).

The CBC requires more processing time than ECB because of its key-chaining nature. It was concluded in [6]
that the extra time added is not significant for many applications, knowing that CBC is much better than ECB in
terms of protection. The difference between the two modes is hard to see by the naked eye, the results showed
that the average difference between ECB and CBC is 0.059896 second, which is relatively small. ECB uses
simplest way to break plaintext into 64-bit blocks and encrypt each of them with same key. This can be attacked
by replace one encrypted block with another encrypted block if structure of document is known. So, in this
paper we propose the Cipher-Block chaining (CBC) mode that uses three stages of the block chaining as shown
in fig2. The plain text for each stage comes from the output of the first BLOW FISH (1), which uses the 64-Bit
date and time as the plain text. CBPRNG creates three 64-bit random numbers, the first and the second are
concatenated to create a 128-random number and the third is used as next initial vector (1V).

Variable key length

Date and Time 32 ~448 bits
64-bits  |K
DTi
Blow
C; Fish(1)
V; (Seed)
A\ 4
——»{ 64- bits ;d\‘/ _>§9 "é
Blow Blow Blow
Fish(2) Fish(3) Fish(4)
C2 C3 Cs
v v 4
R1 R ViV
Riand Ry are 64 - Bits random numbers Next IV
Fig2:
The fig2 shows the steps in New Crypto-based pseudorandom number generator. It uses three Blow Fish

ciphers.

Input to DTi is Date and time string which is obtained in the program itself by getting the current time and date
which varies according to date and time. The other a 64-bit seed value; this is initialized to some arbitrary value
and is updated during the generation process. From f igure2, we define the following quantities:

-- C1,C2,C3, and C4 are outputs (cipher texts) of BLOW FISH(1), BLOW FISH(2), BLOW FISH(3), and
BLOW FISH(4) respectively.

-- DT, denotes 64- bit date/time value at the beginning of i"" stage,
-- V/; is 64-bit seed value at the beginning of i generation stage,
---Values of R; and R, are C, and C; respectively for each generation stage.

-- Ri is the concatenation of R; and R, that results 128- bit pseudorandom number generated by the i
generation stage and,
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--Same key K upto 448 bits is used for each stage.
Then encryption process is as follows:
¢1= BlowFishy [DTi]
c,=BlowFish  [Vi XOR ¢,]
cs=BlowFishJcl XOR ¢;]
R1=c2, R2=c3
Ri (128-bit Pseudo Random number)=R; || R,
¢4,= BlowFish,[c1 XOR c3]
Vi =cq is next IV for (i+1) ™" generation stage, i.e. Vi=Vi+1.

Several factors contribute to the cryptographic strength of this method. The technique involves a variable bit
length key and four BLOW FISH encryptions. The scheme is driven by two pseudorandom inputs, the date and
time value, and a seed produced by the any other generator. Even if a pseudorandom number R; or/ and R, is
compromised, it will be impossible to deduce the next IV ( Vi+1) from the R; or/and R, because an additional
BLOW FISH operation is used to produce the next IV.

4. Implementation and Settings:

The implementation of CBPRNG provides 64 Bit Random Numbers output. The Random number output is
derived from the byte values of C,, Cs, and C, (Cipher Text). The inputs supplied to the system are a private
key whose length can be up to 448 Bits (56 Bytes), Initial Vector (seed) whose length is 64 Bit (8 Byte) and Dti
(Date Time Input) whose length is 64 Bit(8 Byte).

The GUI used to evaluate the proposed CBPRNG using Blowfish algorithm, was developed using Java SDK
1.6.26 version along with NetBeans 7.1 Vesion IDE.

We have used getTime() method from java.util.Date class to set the Dti value as a long positive integer. We have
used javax.crypto package, javax.security package, Open Source Bouncy Castle API and javax.swing packages.

The system used to develop the CBPRNG implementation has the following specifications. Intel(R) Core(TM)
i3 CPU M370 @ 2.40GHz 2.40GHz with 4.00 GB RAM, Windows 7 Home Premium 32-Bit OS.

5. Implementation Results and analysis:

A Set of Iterations were conducted using the CBRNG Evaluation Tool to Identify the Repetitions of Random
Number output in the Byte value Converted Cipher Texts C1,C2,C3,C4. We have used Microsoft Excel 2007
Pivot Table to find the Repetitions of Random values that are generated in C1,C2,C3,C4. We repeated them for
many set of Iterations and cross checked in Pivot Table. The Output Screen of Piwvot Table indicates no
repetitions of C1,C2,C3,C4 in a set of 4 Lakh Random Number Set.
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6. Applications of Random Numbers

Random numbers are playing vital role in all aspects of cryptography. Cryptographic algorithms and protocols,
such as RC4, DSA, SET and SSL require random numbers. Digital documents such as email or sending a small
amount of Cash over internet, we are in need of random numbers. Particularly, random numbers are used in the
following applications.

session keys and message keys are used in symmetric algorithms such as blow fish or triple DES._The session
key is a one-time random key and used only once, or duration of session. For example, Email security system
uses 128-bit session key for encrypting the email message.

one- time- pad is a one-time random key and used only once. Each message requires a new key of the same
length as the new message. It produces random output that bears no statistical relationship to the plaintext. The
Vernam cipher uses a one- time pad, which is discarded after a single use, and therefore is suitable only for short

ISSN : 0975-3397 Vol. 5No. 06 Jun 2013 565



T.Chalama Reddy et.al / International Journal on Computer Science and Engineering (1JCSE)

messages. For example, if the president of a country needs to send a completely secrete message to the president
of another country, she can send a trusted envoy with random key before sending the message. The one time pad
offers complete security.

Cipher block chaining modes requires initialization vectors that are random numbers.
Authentication protocols and Kerberos uses random challenges that are random numbers.

The seeds for routines that produce mathematical values, such as huge prime numbers for RSA or EIGmal
crypto systems.

7.CONCLUSION:

Good cryptography has need of good random numbers. This paper evaluate the new crypto based Pseudorandom
Number Generator (CBPRNG) for use in cryptographic applications. Almost all cryptographic protocols require
the generation and use of secret values that must be unknown to attackers. The ANSI X9.17 defines a
cryptographically strong pseudorandom number generator. This generator uses three 3DES with two keys
(encryption-decryption-encryption). In ANSI X9.17 one the key has been compromised, an attacker is forever
after able to predicate their outputs. To avoid from a key compromise, in our proposed design of CBPRNG we
used BLOW FISH ciphers for instead of other ciphers because BLOW FISH is faster and more efficient than
other encryption algorithms. By using Micro- soft Excel, we tested a large set of Random numbers generated by
Our CBPRNG. Finally we concluded that there are no repetitions and no statistical relation ship between
numbers. Pseudorandom number generators can imitate randomness sufficiently well for most applications;
however, they still rely on some secret seed input.
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