T.Chalama Reddy et.al / International Journal on Computer Science and Engineering (IJCSE)

New Design of Crypto-Based Pseudo
random number generator (CBPRNG)
using BLOW FISH cipher

T.Chalama Reddy 1, Dr.R.Seshadri2

1. Asso proffessor, Department of CSE, Narayana College of Engineering, Nellore, INDIA.
2Professor & Director, Computer Center, Sri Venkateswara University, Tirupathi, INDIA
‘chalamareddy.t@gmail.com, ? ravalaseshadri@gmail.com

Abstract:-

Random Number Generators (RNGs) are an important building block for algorithms and protocols in
cryptography. Random number generation is used in a wide variety of cryptographic operations, such as key
generation and challenge/response protocols. A random number generator outputs a sequence of 0s and 1s such
that at any position, the next bit cannot be expected on the previous bits. However, true random number
produces non- deterministic output since if the same random generator is run twice, identical results are not
received. Thus we go for pseudo random number generator that is deterministic device because if this random
number generator is run twice or more, it gives same results. Our paper presents new crypto based pseudo
random number generator. It uses BLOW FISH ciphers and the Cipher-Block chaining (CBC) mode that uses
three stages of the block chaining. The plain text for each stage comes from the output of the first BLOW FISH,
which uses the 64-Bit date and time as the plain text. CBPRNG creates three 64-bit random numbers, the first
and the second are concatenated to create a 128-random number and the third is used as next initial vector (V)
for CBPRNG. Our Crypto-Based Pseudo-random Number Generator produces a sequence of bits that has a
random looking distribution. This new generator helps to develop huge range cryptographic applications to
increase the system security. A number of applications such as financial security applications and Pretty Good
Privacy (PGP) use this technique.

Keywords:- PRNG, TRNG, Cryptographic Random numbers, seed, BLOW FISH, 3DES ciphers

1. INTRODUCTION

Random Number Generators (RNGs) used for cryptographic applications typically produce a sequence of zero
and one bits that may be combined into sub-sequences or blocks of random numbers. There are classified into:
deterministic and nondeterministic. A deterministic RNG consists of an algorithm that produces a sequence of
bits from an initial value called a seed. A nondeterministic RNG generates output that is dependent on some
irregular physical source that is outside human control.

Good cryptography requires good random numbers. The following criteria are used to validate that a sequence
of numbers is random.

Uniform distribution: The uniform of numbers in the sequence should be uniform; that is, the frequency of
occurrence of each of the numbers should be approximately the same.

Independence: No one value in the sequence can be inferred from the others.

This paper evaluates the new crypto based Pseudo Random Number Generator (CBPRNG) for use in
cryptographic applications. Almost all cryptographic protocols require the generation and use of secret values
that must be unpredictable to attackers. For example, random number generators are required to generate
public/private key pairs for asymmetric (public key) algorithms such as RSA, DSA, and Diffie-Hellman. The
Keys for symmetric and hybrid cryptosystems are also generated randomly. The most important is that attackers,
who know the RNG design, must not be able to create any useful predictions about the RNG outputs.

In practice, there are two major types of random number generators (RNGs): true-random (TRNGSs) and pseudo-
random (PRNGs) both of which have been employed in various commercial applications.

True Random Number Generators (TRNGS), on the other hand, capitalize on naturally occurring random
phenomena and generate nearly perfect statistical randomness without the need for seed initialization. For this
reason, system designers should strongly consider the use of TRNGs for any current or future application that
depends on randomness. However, there are several draw backs to this approach. The process is normally slow,
and the same random stream cannot be repeated if needed,

Pseudo-random number generators are designed using algorithms that generate numbers or bit streams that
appear to be random. In most cases the output from these RNGs are random enough to pass basic statistical
testing, but given that this method employs a deterministic approach that is initialized with a seed, it is debatable

ISSN : 0975-3397 Vol. 5No. 06 Jun 2013 561

T.Chalama Reddy et.al / International Journal on Computer Science and Engineering (IJCSE)

whether this category can be considered genuinely random. However, one of the most important uses of random
numbers comes from cryptographic computer security protocols and algorithms.

Cryptographic applications use random numbers to generate encryption keys, create initial parameter values,
and to introduce random nonces into protocols and padding schemes. In most cases these numbers come from a
Pseudorandom Number Generator (PRNG) which is a deterministic software algorithm which imitates
randomness. A PRNG takes an input string of bits, or a bit vector, and generates a longer output bit-vector
which “appears” random.

One-way function can be used directly as pseudorandom number generator that is cryptographically sound.
Therefore, algorithms such as SHA-1 [5] or RSA are commonly used as a PRNG. Unfortunately, PRNGs suffer
from two major security disadvantages. First, PRNGs require some input which deterministically governs the
output. To securely use a PRNG, this input (the “seed”) must be kept secret. Second, PRNGs can only generate
fixed number bits before they cycle and repeat themselves.

Present paper is as follows. Section 2, describes the related researches. In section 3, we present our Proposed
Cryptosystem-based random number generator. In section 4, describe Implementation and Settings. In section 5
present Implementation Results and analysis and in section 6, we present application of random numbers.
Finally, conclusion is summed up in section 7.

2. Related researches

Random numbers plays an important role in the use of encryption for various network security applications.
Sources of use true random numbers are hard to come by. The physical noise generators, such as pulse detectors
of ionizing radiation events, gas discharge tubes, and leaky capacitors, are one potential source. However, such
devices are of limited utility in network security applications.

The most widely used technique for pseudorandom number generation is an algorithm first proposed by lehmer,
which is known as the linear congruential method. The algorithm is parameterized with four numbers, as
follows:

m the modulus m>0

a the multiplier O<=a<m
c the increment 0<=c<m
Xo the starting value or seed 0<=Xo<m

The sequence of random numbers {Xn} is obtained via the following iterative equation:
Xn+1=(aXn+c) mod m

If m, a, c, and X, are integers, then this technique will produce a sequence of integers with each integer in the
range 0<=Xn <m.

A cryptosystem such as an encryption cipher or a hash function can also be use to generate a random stream of
bits. We briefly mention a system that used 3DES encryption algorithm.

The PRNG proposed in ANSI X9.17 defines a cryptographically strong pseudorandom number generator. A
number of applications employ this technique, including financial security applications and PGP (Pretty Good
Privacy). This generator uses three 3DES with two keys (encryption-decryption-encryption). The PRNG
proposed in ANSI X9.17 have the property that one the key has been compromised, an attacker is forever after
able to predicate their outputs. But our

CBPRNG can recover from a key compromise.

It was concluded in [6] that BLOW FISH is faster and more efficient than other common encryption algorithms.
So, in our proposed CBPRNG we use BLOW FISH cipher for instead of other ciphers.

Blowfish was designed in 1993 by Bruce Scheier as a fast, alternative to general existing encryption algorithms
such AES, DES and 3DES etc. Since Blowfish has not any known security weak points so far, this makes it an
excellent candidate to be considered as a standard encryption algorithm. Blowfish is unpatented, and will remain
so in all countries. The algorithm is hereby placed in the public domain, and can be freely used by anyone.

Blowfish is a symmetric block encryption algorithm designed in consideration with,

Fast: It encrypts data on large 32-bit microprocessors at a rate of 26 clock cycles per byte.
Compact: It can run in less than 5K of memory.

Simple: It uses addition, XOR, lookup table with 32-bit operands.

Secure: The key length is variable, it can be in the range of 32~448 bits: default 128 bits key length.
3. Proposed Cryptosystem-Based Pseudo Random Number Generator (CBPRNG)

A cryptosystem such as an encryption cipher or a hash function can also be use to generate a random stream of
bits. Our CBPRNG generator uses encryption algorithm. This generator makes use of four BLOW FISH

ISSN : 0975-3397 Vol. 5No. 06 Jun 2013 562

T.Chalama Reddy et.al / International Journal on Computer Science and Engineering (IJCSE)

encryptions modules. All four make use of same pair of variable 32- 448-bit Keys, which must kept secrete,
and 64 bit seed value as the initial vector (1V).

The CBC requires more processing time than ECB because of its key-chaining nature. It was concluded in [6]
that the extra time added is not significant for many applications, knowing that CBC is much better than ECB in
terms of protection. The difference between the two modes is hard to see by the naked eye, the results showed
that the average difference between ECB and CBC is 0.059896 second, which is relatively small. ECB uses
simplest way to break plaintext into 64-bit blocks and encrypt each of them with same key. This can be attacked
by replace one encrypted block with another encrypted block if structure of document is known. So, in this
paper we propose the Cipher-Block chaining (CBC) mode that uses three stages of the block chaining as shown
in fig2. The plain text for each stage comes from the output of the first BLOW FISH (1), which uses the 64-Bit
date and time as the plain text. CBPRNG creates three 64-bit random numbers, the first and the second are
concatenated to create a 128-random number and the third is used as next initial vector (1V).

Variable key length

Date and Time 32 ~448 bits
64-bits |K
DTi
Blow
C; Fish(1)
V; (Seed)
A\ 4
——»{ 64- bits ;d\‘/ _>§9 "é
Blow Blow Blow
Fish(2) Fish(3) Fish(4)
C2 C3 Cs
v v 4
R1 R ViV
Riand Ry are 64 - Bits random numbers Next IV
Fig2:
The fig2 shows the steps in New Crypto-based pseudorandom number generator. It uses three Blow Fish

ciphers.

Input to DTi is Date and time string which is obtained in the program itself by getting the current time and date
which varies according to date and time. The other a 64-bit seed value; this is initialized to some arbitrary value
and is updated during the generation process. From f igure2, we define the following quantities:

-- C1,C2,C3, and C4 are outputs (cipher texts) of BLOW FISH(1), BLOW FISH(2), BLOW FISH(3), and
BLOW FISH(4) respectively.

-- DT, denotes 64- bit date/time value at the beginning of i"" stage,
-- V/; is 64-bit seed value at the beginning of i generation stage,
---Values of R; and R, are C, and C; respectively for each generation stage.

-- Ri is the concatenation of R; and R, that results 128- bit pseudorandom number generated by the i
generation stage and,

ISSN : 0975-3397 Vol. 5No. 06 Jun 2013 563

T.Chalama Reddy et.al / International Journal on Computer Science and Engineering (1JCSE)

--Same key K upto 448 bits is used for each stage.
Then encryption process is as follows:
¢1= BlowFishy [DTi]
c,=BlowFish [Vi XOR ¢,]
cs=BlowFishJcl XOR ¢;]
R1=c2, R2=c3
Ri (128-bit Pseudo Random number)=R; || R,
¢4,= BlowFish,[c1 XOR c3]
Vi =cq is next IV for (i+1) ™" generation stage, i.e. Vi=Vi+1.

Several factors contribute to the cryptographic strength of this method. The technique involves a variable bit
length key and four BLOW FISH encryptions. The scheme is driven by two pseudorandom inputs, the date and
time value, and a seed produced by the any other generator. Even if a pseudorandom number R; or/ and R, is
compromised, it will be impossible to deduce the next IV (Vi+1) from the R; or/and R, because an additional
BLOW FISH operation is used to produce the next IV.

4. Implementation and Settings:

The implementation of CBPRNG provides 64 Bit Random Numbers output. The Random number output is
derived from the byte values of C,, Cs, and C, (Cipher Text). The inputs supplied to the system are a private
key whose length can be up to 448 Bits (56 Bytes), Initial Vector (seed) whose length is 64 Bit (8 Byte) and Dti
(Date Time Input) whose length is 64 Bit(8 Byte).

The GUI used to evaluate the proposed CBPRNG using Blowfish algorithm, was developed using Java SDK
1.6.26 version along with NetBeans 7.1 Vesion IDE.

We have used getTime() method from java.util.Date class to set the Dti value as a long positive integer. We have
used javax.crypto package, javax.security package, Open Source Bouncy Castle API and javax.swing packages.

The system used to develop the CBPRNG implementation has the following specifications. Intel(R) Core(TM)
i3 CPU M370 @ 2.40GHz 2.40GHz with 4.00 GB RAM, Windows 7 Home Premium 32-Bit OS.

5. Implementation Results and analysis:

A Set of Iterations were conducted using the CBRNG Evaluation Tool to Identify the Repetitions of Random
Number output in the Byte value Converted Cipher Texts C1,C2,C3,C4. We have used Microsoft Excel 2007
Pivot Table to find the Repetitions of Random values that are generated in C1,C2,C3,C4. We repeated them for
many set of Iterations and cross checked in Pivot Table. The Output Screen of Piwvot Table indicates no
repetitions of C1,C2,C3,C4 in a set of 4 Lakh Random Number Set.

(i | bR BiowfithEvaluation Microsoft Excel PratTabile Toals
oy
~ Insert Fagelwout Formulas Data Review View Options Design € -

d\. ’:::; Calibri S - A AT o [@ | Swinp Tet General - EL - R = L8 5:‘;‘?“"" %;’ 4
e comat ot | BT[] v A o 3 0 | e & et~ | 18 ok [4| Conafom Fomut Cell | mert Delte Fomiat (| . Sortk Hod s
a4 - i | 31105274836 78045004 =]
A 8 c 5 E F G H i i b & PivotTable Field List v x
395581 [9825479894538925665 1 .
359582(8925479389144491877 1 Chooms ekixto add 19 rapostt U
25480151 791570636 1 Eciicziiclic
399364(982548098931951 7750 1
369985 (4825491101057486194 1
395505 (9825491143918945644 1
393367(9825482200332382286 1
399988 (8825482339628620377 1
399585 (9825493187975776088 1
333990 (392548455425 7131574 1
393991 [9825485632213629264 1
399992 (4925488909793968712 1
399553 992548991 7809810482 1
3535354(3982549999 7895451985 1
359555 (9825491096147941198 1 Orag fiekds between areas beow:
399996 (9925492108653794642 1 Ll e i cohyn L ols
393957(9825492259715111530 1
393998 9825493294939591266 1
399555 (3825494247481945971 1
400000 [8825494337960891442 1 L Rowe Labels I vahes
400001 [8925495292097091942 1 cuicicIcs | | Countof crljczic3|Ice
400002 [8825495495552479023 1
400003 [88254964039254956T1 1
400004 (blank) x|
400005 Grand Total 100000 ﬁ Dofer Layouk Lodute
WA b M| SheetS | Sheotd - Sheet] . Sheet? | Sheett - Shestd T3 1 o)
P Awerage: 1 Count: 800000 Sum: 400000 | 555 (00 (L) a _i,‘fL
= » — - = = {oumber of selects -
vl 0 Q)OO T RB e OC 29 @ O QT Al

ISSN : 0975-3397 Vol. 5No. 06 Jun 2013 564

T.Chalama Reddy et.al / International Journal on Computer Science and Engineering (1JCSE)

P CBPRNG - NetBeans IDE 7.1 —
Fle Edt View Navigste Source Refactor Run Debug Profle Team Took Window Help

L - -0
[hin Y 1364212566254
[Seed 45678432
ey 24681357
toratons 100000 [Run |
o | Geed 1 |c2 c3 (=} |
| 1364212566254 4567TE432 TOO93662225T7026643 9080 B751145362494091349 TGEETI07I54TB4060080 &
| 1364212651031 TBET 20T 254TE4960080 STTTO59263546187065 TEBE1TI46093192036 AT0494806966351 3706 TSIB450B0146TTOI643
| 1364212651031 7518450801 467702643 21B0867046097047673 5571050803083550508 7372736077117682018 3780051004732032568
| 1364212651031 3TB0051004732032508 83052538621 75233385 S406415108317393736 5867154872160105038 B02203537025407 3387
1364212651047 B0Z29353T925407 3387 TO12794328605274692 B10239184038541 4705 60087 2680TB0006T 446 BETES961031T4508103
;I | 1364212651047 BETE5861031 74500103 TOOS196B83630323524 TN N A01622345 B099275562494081345 S63I58189103T6043046
= 1364212651047 §635818010376943046 T381743319171020618 B309510933069414740 4702093663631009612 3126472602536856922
| | 1384212651047 31 264T 260! T229245274141052780 3025564T32161223720 5§136444896897138130 AT1453TG36401805281
3 1364212651062 4T14537936401805381 70 80112, 4480 T451668386252320593 3B43329890040258626
=[| | 1384212651082 384 64 BIEOG17611792010507 BT41542317613603803
1364212651062 B741542317813803893 a7 1516250 78729301 5280807294639489848 STI3012123362345549
| 1364212651062 ST2301 1123362345548 B15BTET 392905005239 B2BTI6TO1 4806491224 5790712379897163608 4GB41E0G0B1660TTSE2
ring ey | 1364212651078 48B41 8900866077562 TE5313453. 081 5830491132079862343 BEG16263042406T5833
‘“]' - 64212651078 BEB16I6304 240675633 B5940T16T9BEB529TE3 71489601 80937781575 IGITTO003044378733 TO11941 210945387083 |w
verk b4
T T =T
Cutput - CBPRNG (run) - =
- v . : - - SIROIT AT |
W L1I64Z1Z861787, 514010742963 7049423, '3, 888L 1, 7371954117707 724883 4TO4ETZ 143218666357
& revationsTeot : 31 1 787, . 3,702121 ~BLDLLFZ0SEL51463542, TSE65TITOSGE4283456
m 1 1364212861802, 75869 73T0SE64283458 6300309805324 725813, 72 LTOLIZZSTZL L FTTO411435218923085
[| 1364212061002, 27704204252 .7 1643682 5. IB02TLZ2TI, THTEICELT2TS43I9100
t_l beyLobel : }' 1364212861802, 78763651228 75439180,810347; |, BE2403037 . T4 183434, 7
@ heyTest ; Jeteld =| |52 | 1364212061802 1570, 4 38918 143352
1] : 1 » 1364212 " L . L& 1TazdRBL, LATTELE1252476500128
=== —— v 1364212861802, 477615 35,7 A LB3151
® [0 (B 8ok 4

o] /D000 ERB-40€ LY H@OB [T o

tREad B S5 m

21 |mS

Seed 45678432
kay 14681357
100000
|c3 c4 |

[1354212861740 ~ 6153118261545044427 6231143871956806450 ~ 7148190410308284486 '5143511208602125615 (4|
1364212861756 5143511298601 25615 5924901145711306032 TORSTE4525052133748 T450456087906381165 3776108078382534740
1364212861756 ITTE10B0TRIBZSIATIO BTS08057106T0T 00081 BOB3I62TRIBSAIASEE01 S419012530304727383 A6BB46T1 TAISTOST063
1364212861756 4GOB4EI1TIISTOS2062 AT15326475585277233 7722320322899226932 S141478224410474850 T95T95T53I68281 89300
1364212861758 TaSTOSTS3I6EIE180300 TI0BBTO040Z02510574 5495921465208817260 T158530300369457988 535376861331 5837686
1364212861756 53537BEE1 3315832688 TEB4S1 TOI668T050E41 TTA0B0714018017899 B158071994334861 391 607633260381 2220476
1364212861756 BOTE3IZ260381222047T6 30915036257 766046628 T5O4037033088345665 B098096932970935794 SO061008446T4526634
1354212861756 S00G109B446T4526634 3922732396647 101390 I6II6II4NISI027H1T72 TIBN4T 865869322062 GIEBTEB0TITIBTHI461
1364212861756 BZEETEBOTOZOBTEOAG1 ITTAGEAE0I063I2IA0L 4141131 B40B3BE9ETEE STOTS422525T4895736 5435057 357356600112
1364212961756 5435957357356600112 7514624784 T68001882 I705746927872456039 5789045037066531128 592853B566214252593
1364212881771 592853B566214252593 4858344325230 24696 B090216832121066837 B166807811835123564 6215918038256003320
1364212861771 6215916938256903320 6154568539047093615 I617282579600338019 5994648786515223140 3B3I0800811156744513
1364212861771 IBIBBO0E11156T44513 IB4050T551 565445187 SEE0419273054844235 B031448940906500978 30826413561 36670561
1364212861771 39876413561 36670561 B157655744203864132 7090129741107916618 5287923255996604997 7670007651504257357
1364212861771 TETO00TES1 504257357 527942865651 0883960 BOB9952945T03TSREEE F910345163430639226 52040021857 23801304
1384212861771 5204002185723601394 7080894913120449504 §857301134497439264 4785187129025196848 7960471066496869158
1364212861771 TAE04T1 066496880158 5651870040847 249773 ATTISTO454069803332 5433991438751315021 B43T9794T1590408528
1364212881771 B43TATO4T1500408528 63614337707 15425993 52183771 70680969835 8804905901140301669 T162459979486671666
1364212881787 T1624500T04B66T1666 B164B1 0037 ITTEE0TTT §222008715773110390 S8499783874T8177618 B17213T9815T 4408810
1364212961797 8172137981574408810 5510207161991130966 5636383994241106800 8083791136092073812 7807361954850411 305
1364212861787 TEOT361954850411306 TT25461632117T93332 I6IANTATIZII 2841036 ATESTO2214785387859 547073523601 4422625
1364212861787 5420735236014422625 46970204489321 79768 3127599764665091445 6519641399464901432 5581475380350898262
1364212861787 55814752803508%8262 636901 4881504947676 BOTES416TI4TEAS03TA T084522069152916307 STB63TH144T46532975
1364212861787 STREITEI 44746532075 60661841 29656024942 73I70802672792293953 S217532608294314324 5140107429697049423
1384212881787 5140107 420607040423 BEEO5022855256088T3 5851381316598385241 TIT195411 7707724883 ATD46T 214321 BB5635T
1364212861787 4TDABT 143218656357 564001 2266881625973 TOZN2NI0TESSEATIST B101192058151463542 TSBEOTITO5664283458
1364212861802 TSBEOTITOSE64283458 B300300805324725813 T233186047930222920 TO133397 21 06ETE4407 37041143521 8023085
1364212861802 3TT0411435218023085 T159131608540860741 B436824109279295605 3705980238027122739 TBTB3651 22875430180
1364212861802 TBTB3651 22875430160 810347 8524030377 TEE4 T4J80656483T1183434 BETETOIB0BTSE0BE19T
1364212861802 BETETA20007TSR00610T 505001 28808337170 ATTTEO14TO0TSI36304 S2H8446667139138918 S005706642326143352 Ty
1364212861802 S995TO6E42326143352 T09439251 7442566478 ATTA226089217324881 59943738958T0302545 4776151252476588135 _)
1364212861802 47TE1512524 76588135 7306087951 044673133 5390882110301405769 7382040222474925402 83151 40626600620062 |¥

o] /O OBO 2B =L OC LY @O Q=

[Raos S

6. Applications of Random Numbers

Random numbers are playing vital role in all aspects of cryptography. Cryptographic algorithms and protocols,
such as RC4, DSA, SET and SSL require random numbers. Digital documents such as email or sending a small
amount of Cash over internet, we are in need of random numbers. Particularly, random numbers are used in the
following applications.

session keys and message keys are used in symmetric algorithms such as blow fish or triple DES._The session
key is a one-time random key and used only once, or duration of session. For example, Email security system
uses 128-bit session key for encrypting the email message.

one- time- pad is a one-time random key and used only once. Each message requires a new key of the same
length as the new message. It produces random output that bears no statistical relationship to the plaintext. The
Vernam cipher uses a one- time pad, which is discarded after a single use, and therefore is suitable only for short

ISSN : 0975-3397 Vol. 5No. 06 Jun 2013 565

T.Chalama Reddy et.al / International Journal on Computer Science and Engineering (1JCSE)

messages. For example, if the president of a country needs to send a completely secrete message to the president
of another country, she can send a trusted envoy with random key before sending the message. The one time pad
offers complete security.

Cipher block chaining modes requires initialization vectors that are random numbers.
Authentication protocols and Kerberos uses random challenges that are random numbers.

The seeds for routines that produce mathematical values, such as huge prime numbers for RSA or EIGmal
crypto systems.

7.CONCLUSION:

Good cryptography has need of good random numbers. This paper evaluate the new crypto based Pseudorandom
Number Generator (CBPRNG) for use in cryptographic applications. Almost all cryptographic protocols require
the generation and use of secret values that must be unknown to attackers. The ANSI X9.17 defines a
cryptographically strong pseudorandom number generator. This generator uses three 3DES with two keys
(encryption-decryption-encryption). In ANSI X9.17 one the key has been compromised, an attacker is forever
after able to predicate their outputs. To avoid from a key compromise, in our proposed design of CBPRNG we
used BLOW FISH ciphers for instead of other ciphers because BLOW FISH is faster and more efficient than
other encryption algorithms. By using Micro- soft Excel, we tested a large set of Random numbers generated by
Our CBPRNG. Finally we concluded that there are no repetitions and no statistical relation ship between
numbers. Pseudorandom number generators can imitate randomness sufficiently well for most applications;
however, they still rely on some secret seed input.

REFERENCES

[1] R. B. P. Dept. The Evaluation of Randomness of RPG100 by Using NIST and DIEHARD Tests.Technical report, FDK Corporation,
2003.

[2] B.Junand P. Kocher. The Intel Random Number Generator.Cryptography Research Inc. white paper, Apr. 1999.

[3] P. Kohlbrenner and K. Gaj.An embedded true random number generator for fpgas. In FPGA *04: Proceeding of the 2004 ACM/SIGDA
12th international symposium on Field programmable gate arrays, pages 71-78. ACM Press, 2004.

[4] C. Petrie and J. Connelly. A Noise-based IC Random Number Generator for Applications in Cryptography. IEEE TCAS I, 46(1):56—
62, Jan. 2000.

[5] Singhal, Nidhi and Raina, J P S. “Comparative Analysis of AES and RC4 Algorithms for Better Utilization”, International Journal of
Computer Trends and Technology, ISSN: 2231-280, July to Aug Issue 2011, pp. 177-181.

[6] Jawahar Thakur, Nagesh Kumar DES ,AES and BLOW FISH: Symmetric key cryptography algorithm simulation based
performance analysis International Journal of Emerging Technology and Advanced Engineering : pages 6-12,VVolume 1, Issue 2,
December 2011)

[7]1 Singh, S Preet and Maini, Raman. “Comparison of Data Encryption Algorithms”, International Journal of Computer Science and
Communication, vol. 2, No. 1, January-June 2011, pp. 125-127.

[8] William Stallings “Cryptography and Network Security: Principles and Practices” 3" Edition, PHI Ltd , 2001.

[9]1 Behrouz A. Forouzan “ Cryptography and Network Security” special Indian Edition, Tate Mc GRAW HILL.

[10] Elminaam, D S Abd; Kader H M Abdual and Hadhoud, M Mohamed. “Evaluating the Performance of Sysmmetric Encryption
Algorithms”, International Journal of Network Security, Vol. 10, No. 3, pp. 216-222, May 2010.

[11] Hamdan.o.Alanazi, B.B Zaidan, Hamid A jalab, M.shabbir and Y. Al-Nabhani "New Comparative study between DES,3DES and AES
within Nine Factors”, journal of computing vol 2 , issue 3, march 2010.

Dr.R.Seshadri Working as Professor and Director, University Computer Centre, Sri
Venkateswara University, Tirupati. He completed his PhD in S.\.University in 1998 in
the field of “ Simulation Modeling & Compression of E.C.G. Data Signals (Data
compression Techniques) Electronics & Communication Engg.”. He has richest
knowledge in Research field. He is guiding 10 Ph.D in Fulltime as well as Part time. He
has vast experience in teaching of 26 years. He has attended several national and
international conferences and published number of technical papers in different national
and international Journals.

T.Chalama Reddy Working as asso Professor in Narayana Engineering College,
Nellore . He completed his M.Tech in J.N.T.University in 2000 in the Specialization of
“Software Engineering”. His interested area is Networks Security and Cryptography .He
has vast experience in teaching of 16 years. He published 3 national and 1 international
2P conferences and 3 papers published in different international Journals.

ISSN : 0975-3397 Vol. 5No. 06 Jun 2013 566

	New Design of Crypto-Based Pseudorandom number generator (CBPRNG)using BLOW FISH cipher
	Abstract
	Keywords
	1. INTRODUCTION
	2. Related researches
	3. Proposed Cryptosystem-Based Pseudo Random Number Generator (CBPRNG)

	4. Implementation and Settings

	5. Implementation Results and analysis

	6. Applications of Random Numbers

	7.CONCLUSION

	REFERENCES

