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Abstract—Todays, there are many studies in complicated computation and big data processing by using 
the high performance computability of GPU. Tesla K20X recently announced by NVIDIA provides 3.95 
TFLOPS in precision floating point performance [1]. The performance of K20X is 10 times higher than 
Intel’s high-end CPUs. Due to the high performance computability of GPU, K20X was adapted to Titan, 
the first super computer in the world [2][3]. However, additional steps are needed in GPU computing 
process, which aren’t needed in the computation using only CPU. The data required to execute on GPU 
has to move from main memory to global memory of GPU before GPU computation. The results created 
on GPU also have to write back to main memory. The data movement is called as CPU-GPU 
communication. The communication between CPU and GPU is a big part of the computation using GPU. 
So, many studies tried to optimize CPU-GPU communication [4][5]. In this paper, we evaluated the 
performance of CPU-GPU communication depending on co-located workloads and presented which 
workload severely degraded the performance of CPU-GPU communication. 

Keywords-component; Performance Evaluation; General Purpose GPU; Workload Consolidation; CPU-
GPU communication; CUDA 

I.  INTRODUCTION  

At the initiatory stage, GPU is simply an accelator for graphic processing. But, after CUDA SDK is 
announced by NVIDIA in 2007, GPU is no longer an accelator, but a first-class computing unit in all fields which 
use parallel algorithm. CUDA is used for image and video processing, fluid mechanics simulation, CT image 
restoration, earthquake analysis and ray tracing in a way that is faster and more convenient [6]. Also, the 
hardware performance of GPU has made great advances as well as the software platform for GPU. Figure 1 
represents the comparison of GFLOPS between Intel’s CPU and NVIDIA’s GPU. After July 2008, NVIDIA’s 
GPU got ahead of Intel’s CPU in both single and double precision performance. Since both development 
environment and hardware performance have made great advance, GPU receives attention from the fields where 
high performance computing is needed. To use the high performance computability, CPU-GPU communication is 
inevitable, not in the computation using only CPU. Depending on the characteristic of workloads, the time of 
CPU-GPU communication may take longer than GPU computation, especially for the workloads which have 
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cyclic pattern in CPU-GPU communication. In this paper, we evaluate the performance of CPU-GPU 
communication when consolidated with various workloads in multi-core platform and demonstrate which 
workload can degrade the performance a little more. 

 

Figure 1.  GFLOPS Comparision between Nvidia’s GPUs and Intel’s CPUs 

II. CPU-GPU COMMUNICATION 

A. Connection Structure between CPU and GPU 

CPU-GPU communication happens through PCI express. The device which plays a role as a messenger is 
Direct Memory Access (DMA) controller, not CPU. When CPU has to deal with the situation where CPU-GPU 
communication is needed, CPU requests DMA controller and then DMA controller moves the data from host / 
device to device / host. The data movement is completed and DMA controller interrupts CPU to notify the 
completion of data movement. This process is composed of CPU-GPU communication. Figure 2 shows the 
connection diagram between CPU and DMA controller. Both address and data buses are shared by CPU and 
DMA controller [7]. Although DMA controller is moving the data (during CPU-GPU communication), other 
cores of same CPU can access to host memory at the same time due to Symmetric Multi-Processing (SMP). In 
short, both CPU and DMA controller can concurrently send requests to host memory so that CPU and DMA 
controller affect each other.  

 

Figure 2.  Connection diagram between CPU and DMA controller 
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B. Cyclic Communication Pattern 

In general, the GPU computation using CUDA is composed of 3 steps. First, the data which CPU prepares for 
GPU computation is moved to GPU’s global memory. Second, the transferred data is executed on GPU (For 
example, __kernel__ function). After the end of GPU computation, the results created by GPU write back to host 
memory. But, the 3 steps may not just happen at once. Some workloads iterate the steps according to the 
characteristic. 

 

Figure 3.  The workloads representing  cyclic communication pattern 

Figure 3 represents that streamcluster, mummergpu and heartwall, rodinia 2.2 benchmark suit, have cyclic 
pattern in CPU-GPU communication. X axis is timeline and Y axis is the transferred data (Mega Byte) for 
1second. In case of streamcluster, the amount of the transferred data is bigger than 1GB for 1second. If high-
memory traffic workloads are consolidated, CPU-GPU communication of streamcluster will severely be degraded. 
In next section, we’ll show the numerical value. 

III. EXPERIMENTS 

In this section, we evaluated the performance of CPU-GPU communication and GPU computation time when 
same 3 SPEC CPU 2006 benchmarks (only CPU) and 1 rodinia 2.2 benchmark (both CPU & GPU) are 
consolidated in same CPU socket.  

 

Figure 4.  The diagram of GPU workload consolidation 
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Figure 4 is the diagram of our experiment. A Rodinia benchmark occupies a dedicated core of CPU and GPU 
during the runtime. Each SPEC workload also has a dedicated core. We measured the runtime of both CPU-GPU 
communication and GPU computation time by changing SPEC workloads. Table 1 shows our experimental setup. 

TABLE I.  EXPERIMENTAL SETUP 

Components Descriptions

CPU Inter i7-2600 CPU @ 3.40GHz 4 cores, 8GB main memory 

GPU NVIDIA Geforce 580GTX, 1.5GB global memory 

Operating System Ubuntu 12.04 LTS

Benchmarks SPEC CPU 2006 benchmark suite [8], rodinia 2.2 benchmark suite [9]

A. The characterization of SPEC CPU 2006 workloads 

We selected SPEC CPU 2006 benchmark as an interrupter, the most widely known CPU benchmark. Since 
we pay attention to degrade the performance of CPU-GPU communication due to the memory bus contention, we 
evenly selected Memory-intensive workloads and CPU-intensive workloads as the interrupter. CPU-intensive 
workloads are enough to cache their data in Last Level Cache (LLC) so that the workloads don’t frequently 
access to main memory. But, Memory-intensive workloads often access to main memory during the runtime. 
Figure 5 shows the measurement of average read and write bandwidth. We measured the bandwidth by 
configuring Intel’s offcore events into model specific register (MSR) [10]. povray, sjeng, gobmk and hmmer are 
CPU-intensive workloads. soplex, mcf, lbm, milc and libquantum are Memory-intensive workloads.  

 

Figure 5.  The memory bandwidth measurment of SPEC CPU 2006 workloads 

B. The performance variation of GPU workloads 

As you see Figure 4, we measured both CPU-GPU communication and GPU computation time by 
consolidating a rodinia benchmark with same 3 SPEC workloads and using nvprof [11], included in CUDA SDK 
5.0. There is the difference at the ratio of CPU-GPU communication time among rodina benchmarks. In case of 
streamcluster and mummergpu, the communication time takes up a considerable part of total GPU computing. As 
the results of Figure 3 and Figure 6 are put together, we think that the communication time of the workloads 
which have short communication period and big transferred data takes the great part of GPU computing. 
Specially, the communication time of sphyraena occupies most of GPU computing since sphyraena queries 
SELECT statement for very large databases by exploiting GPU [12]. Also, Figure 6 demonstrates that GPU 
computation time isn’t influenced by co-located workloads. In contrast to GPU computation time, CPU-GPU 
communication time is susceptible to the characteristic of co-located workloads. Since memory-intensive 
workloads (lbm, milc, libquantum) take the great part of memory bus traffic, all rodinia workloads are degraded 
in CPU-GPU communication time. The workload whose communication time takes the great part of total GPU 
computing is vulnerable to the memory bus contention. Although lbm don’t have higher read bandwidth than 
libquantum, CPU-GPU communication time was more degraded in all cases when GPU workload was 
consolidated with lbm, not libquantum. Considering the greatest interference of lbm, we can think that write 
bandwidth exerts more influence over CPU-GPU communication than read bandwidth. In short, the GPU 
workloads which have high communication time is better when memory-intensive workloads aren’t executed at 
the same time. 
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Figure 6.  CPU-GPU communication time and GPU compution time of rodinia 2.2 benchmark suite depending on co-located SPEC 
workloads  

IV. FUTURE WORKS 

In previous section, we represented that CPU-GPU communication time is susceptible to the characteristic of 
co-located workloads. Memory-intensive workloads like lbm, milc and libquantum considerably degrade the 
performance of the communication time. In cloud platform which has to guarantee performance isolation, the 
huge degradation of GPU computation will be a serious problem because GPU instance is more expensive than 
normal instance. Also, we found that high write bandwidth workloads more severely affect the communication 
time than read bandwidth. If we adapt the profiling method using Intel’s offcore events into linux kernel 
scheduler, the scheduler can distinguish high write bandwidth process without huge overhead because reading 
and writing model specific register (MSR) is approximate to assembly language [10]. As a result, when CPU-
GPU communication happens, we can take the necessary bandwidth since kernel scheduler knows which 
processes interfere in the communication and can force the processes not to occupy memory bus during the 
communication time. In future, we’ll implement the system which can adjust memory bus traffic for CPU-GPU 
communication. 
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V. CONCLUSION 

In this paper, we show that CPU-GPU communication is very severely degraded when GPU workload is 
consolidated with high bandwidth workloads in the same socket, although GPU computation time is not affected. 
High write bandwidth workloads exert more influence rather than high read bandwidth workloads. In conclusion, 
we insist that system needs to know the importance of the interference and should try to retain the needed 
bandwidth for CPU-GPU communication.  
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