
Hierarchical classification of web content
using Naïve Bayes approach

Neetu
Research Scholar,

Central University of Himachal Pradesh,
Dharamshala, India
neetus7@gmail.com

Abstract— This paper explores the use of hierarchical structure to classify a heterogeneous collection of
web pages. In the hierarchical classification, a model learns to distinguish a second level category from all
other categories that are within the same top level. In the flat non hierarchical classification, a model
distinguishes a second level category from all existing second level categories. We use Naïve Bayes
classifier which has been proved to be effective for web content classification, but has not been previously
explored in the case of hierarchical classification. This paper analyses the feasibility of a web page
classifier which exploits the hierarchical structure of categories and studies their recall, precision and F-
measure scores.

Keywords- Machine learning, web page classification, Naïve Bayes classifier, hierarchical structure

I. INTRODUCTION
The goal of web content classification is to assign documents to predefined categories. This goal is central to

tasks such as document routing, organizing documents into hierarchical catalogs or directory structures. The
methods used for web content categorization differ in the type of the classifier, the technique used for training
and the representation of the documents. The comparative results from the literature show that the best
categorization methods differ from each other only slightly in accuracy. It is becoming very difficult to enhance
performance significantly when a similar representation of topics is being used.

This paper exploits the hierarchical structure of categories to improve web content categorization
performance over baseline models that ignore category structure. The classification problem is broken down into
subtasks based on a category hierarchy. The use of a hierarchical decomposition of a classification problem
allows for efficiencies in both learning and representation. Each sub-problem is smaller than the original
problem, and it is sometimes possible to use a much smaller set of features for each [1].We have seen a wide
application of problem decomposition to reduce a large problem into several smaller, easier problems. This idea
applies to categorization with hierarchical structure in the classes. Using a hierarchical category structure allows
us to decompose the problem: first, we determine the general topic group, then within that group, distinguishes
among topics. This type of decomposition can be generalized to any number of levels.

II. RELATED WORK
The techniques for categorizing the text include statistical and machine leaning techniques like k-Nearest

Neighbor approach [2], Bayesian probabilistic models [3]-[4], inductive rule learning [5], decision trees [4],[6],
neural networks [7],[8] and support vector machines [9],[10]. These approaches do not explore the hierarchical
structure of the categories. Much of the previous work on hierarchical methods for text classification uses the
Reuters-22173 or Reuters-21578 articles. This is a rather small and tidy collection, and this alone is problematic
for understanding how the approaches generalize to larger more complex internet applications. In addition, the
Reuters articles are organized into 135 topical categories with no hierarchical structure [1]. Xipeng Qiu et al.
[12] have proposed a variant Passive-Aggressive (PA) algorithm for hierarchical text classification with latent
concepts. Ruiz and Srinivasan [13] used a hierarchical mixture of experts to classify abstracts within the MeSH
sub-category Heart. The classifiers were learned at different levels of granularity, with the top-level distinctions
serving as “gates” to the lower level “experts”. Small advantages were found for the hierarchical approach
compared with a flat approach. Larkey [14] classified patents in the Speech Signal Processing sub- category and
compared hierarchical and flat approaches. She could not find any multilevel algorithm that performed
significantly better than a flat one which chooses among all the speech classes.

III. WEB PAGE CLASSIFICATION
Web pages are what make up the World Wide Web. A web page is a document or information resource

written usually in HTML and translated by the web browser. Web pages are formed by different kinds of
information, such as videos, audios, images or other digital assets that are addressed by a common URL

Neetu / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 5 No. 05 May 2013 402

(Uniform Resource Locator). All web pages contain different types of information. In order to classify them,
data extracted from HTML code will be used.

The uncontrolled nature of web content poses additional challenges to web page classification as compared
to traditional text classification. The web content contains formatting information in the form of HTML tags. A
web page may consist of hyperlinks which point to other web pages. Data cleaning involves removal of all
HTML tags, including punctuation marks from the web pages. Then the stop words are removed since they are
common to all web pages and do not provide much information. Naïve Bayes machine learning algorithm is
then applied for the purpose of training the classifier. The classification mechanism of Naïve Bayes
classification algorithm is used to test an unlabelled test document against the labeled documents. In our
approach, we have used Open Directory Project (ODP) which is available online at http://www.dmoz.org [11].
We then split the set of web pages into training and test set, as per ODP category of our interest.

IV. NAÏVE BAYES TEXT CLASSIFICATION
Let D = {d1, d2, d3,…,dr} to be a set of documents and C={c1,c2,c3,….cp} be set of classes. Each of the
documents in D is classified into one of the classes from set C. The probability of a document d being in class c
is calculated as:

P (c|d) α P(c) ∏ ܲଵஸஸௗ (wk|c)
where P (wk|c) is the conditional probability of word wk occurring in a document of class c. P (wk|c) is a
measure of how much evidence is contributed by wk that c is the correct class. P(c) is the prior probability of a
document occurring in class c. (w1, w2, w3,…wnd) are the terms in document d. These terms are a part of the
vocabulary U we build for our classification purpose and nd is the number of terms in document d.
Our goal here is to find the best class for the document. The best class cb is computed as:

cb = arg max cאC
 P (c|d)

cb = arg max cאC P(c) ∏ ܲଵஸஸௗ (wk|c) (1)
Multiplying many conditional probabilities can result in a floating point underflow. In order to avoid this, we
perform the computations by adding the logarithms of probabilities rather than multiplying probabilities. Log
(xy) = log(x) +log(y) and the logarithm function is monotonic. So the equation (1) can be rewritten as:

cb= arg max cאC [log P(c) + ∑1 ≤ k ≤ nd log P(wk|c)]
The class that has the highest final unnormalised log probability score is the most probable. Each conditional
parameter log P (wk|c) is a weight that indicates how good an indicator wk is for c. log(P(c)) is a weight that
indicates the relative frequency of c. The sum of log prior and term weights gives a measure of how much
evidence there is for document being in the class. The prior probability of class c is given as:

P(c) = ேே

where Nc is the number of documents in class c and N is the total number of documents.

P (w|c) =
 ்∑ ்ᇱ౪ᇲಣU (2)

where Tct is the number of occurrences of term w in the documents from class c. ∑t'אU Tct' gives the total
number of terms in documents from class c. To remove zeros, Laplace smoothing is used. The equation (2) after
adding Laplace correction becomes:

P(w|c) = ்ାଵ∑ ሺܶܿݐԢtԢԖU ାଵሻ = ்ାଵ∑ ሺܶܿݐԢtԢԖU ା|U|ሻ
V. EXPERIMENTAL SETUP

A. Datasets

The dataset is constructed by crawling the web pages that are found in the Open Directory Project (ODP).
The ODP consists of web pages that preclassified into different categories. The set of web pages is split into
training and a test set, per ODP category. We used 4415 pages for training and testing. Table 1 shows the
number of pages in each top level category.

Neetu / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 5 No. 05 May 2013 403

Table 1. Dataset

Category
Total

samples
Training samples

Testing
samples

Computer 1476 1329 147

Science 1493 1346 147

Society 1446 1303 143

Total 4415 3978 437

Table 2 shows the number of pages in the training and testing set of each second level category. Each top
level category is divided into three second level categories. Dataset is formed by cleaning the web pages that
includes removing their HTML tags, scripts, style sheets etc. Then, the dataset is used to train and test the
classifier.
B. Developing the dataset

Our dataset consisted of web pages in HTML format. There are 3 top level categories and 9 second level
categories mentioned in Table 1 and Table 2 respectively. The contents of the web pages are visually examined
with the help of internet browser. Web pages belonging to the categories of our interest were stored in respective
directories. Since we were interested in web page classification, web pages that were developed using
technologies like Flash or other plug in applications were omitted from the dataset. Web pages built in
languages other than English were also not included in the dataset. The dataset consisted of 4415 web pages in 3
top level and 9 second level categories.

Table 2. Second level of the hierarchy

C. Cleaning the Web pages

The HREF (hyperlink) label, TITLE, META description and META keyword and all BODY text of each
webpage was extracted using the Jericho HTML parser. Jericho HTML parser is a java library allowing analysis
and manipulation of parts of an HTML document, including server side tags, while reproducing verbatim any
unrecognized or invalid HTML. It is an open source library released under both the Eclipse Public License
(LGPL). It has built in functionality to extract all text from HTML markup. This library is available online at
http://jerichohtml.sourceforge.net [15]. A major benefit of using this library is that the bad formatting present in
some of the web pages does not affect the parsing of rest of the webpage.

Some web sites use images to display the name of the organization. This information can be very useful for
the purpose of classification but since we were focused on text based classification, such graphical text was not
included as a feature.

We used the standard stop word list of Bow [16]. Bow is a library of C code useful for writing statistical text
analysis, language modeling and information retrieval programs. The current distribution includes the library, as
well as front ends for document classification, document retrieval and document clustering. The library claims
to be bug free. Bow uses a standard stop word list. Stemming algorithm such as Porter was not used because it
sometimes changes the entire meaning of the word which is undesirable. E.g. In the software category, the
word ‘resume’ refers to ‘resume the processing’ whereas in the ‘people’ category, the word ‘resume’ refers to
the resume of a person.

Top level
Category

Second level
category

Total
samples

Training
samples

Testing
samples

Computer

Hardware 491 442 49

Software 491 442 49

Internet 494 445 49

Science

Mathematics 498 449 49

Biology 496 447 49

Chemistry 499 450 49

Society

People 474 427 47

Philosophy 474 427 47

Politics 498 449 49

Total 4415 3978 437

Neetu / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 5 No. 05 May 2013 404

D. Generating the vocabulary

Common words that occur in almost all the web pages were removed from the dataset. Such words were
considered as stop words and added to the standard stop word list of Bow. Some of these common words are
mentioned in Table 3

 Table 3. Common Word List

http, www, html, org, en, Wikipedia, wiki, index, php, gov, uk,
news, home, files, pdf, google, com,…

We created a vocabulary consisting of the most relevant words belonging to categories of our interest. The
words that occur more than 6 times were considered as relevant words and were included in the vocabulary.
Very common words and very rare words were removed from the dataset. We term this set of relevant words in
the vocabulary as U.
E. Classifier Training

We have followed the k-fold strategy (k=10) to determine the number of training and testing samples. At the
top level of the hierarchy, 3978 samples were used as training set to train the classifier and 437 samples were
used as testing set to test the classifier. The prior probability of each category at the top level is 1/3 since there
are 3 categories at the top level. For calculating the posterior probability, all the documents belonging to the
respective category were parsed and the text of the documents were extracted and concatenated into a single file.
Then, a hash table was prepared consisting of <key, value> pairs. The key here is the word occurring in the
document of a particular category and value (nk) is the frequency of the word in all the documents of that
category. For each category, we calculated the total number of words occurring in all documents of that
category. We term it as n. The Laplace correction was calculated using the formula

P (wk|c) = ୬୩ାଵ୬ା|U|
The feature sets formed during the experiment for computer category and science category are given in Table 4
and 5 respectively.

 Table 4. Feature set for the computer category

Mac, freeware, desktop, online, multimedia, directory, servers,
programs, Microsoft, sites, tool, apps, pc, computer, image,
database, …

 Table 5. Feature set for the science category

Chromatography, oil, gas, electrochem, dna, molecular, bio, acids,
instruments, sodium, fire, coal, refinery, distillation, calcium,…

Similarly, the classifier is trained for the categories at the second level. The feature sets for hardware, people
and mathematics are mentioned in Table 6, 7 and 8 respectively.

 Table 6. Feature set for the hardware category

Bit, editors, drivers, graphic, player, game, office, media,
computer, antivirus, ipod, converter, company, bitdownload,

filespack, …

 Table 7. Feature set for the people category

Inmate, twitter, contact, prison, height, penpals, profiles, friends,
posts, people, life, personals, family, name, books, groups,..

Table 8. Feature set for the mathematics category

Research, theory, lattices, calculus, mathematics, algebra, matlab,
number, logic, functions, linear, calc, theorem, time, integralcalc,

statistics, mathworld,…

F. Classifier Testing

The Naïve Bayes algorithm gives the category which produces the highest probability among the given
categories. A test document T is taken and all the words occurring in T are looked up in the hash table formed
during training for each category. If the test document T contains a word w which does not occur in the

Neetu / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 5 No. 05 May 2013 405

vocabulary U, then the word w is ignored. The classification of T in c is done using the formula: Cb= arg max
cאC P(c) ∏ ܲଵஸஸௗ (wk|c)
The Naïve Bayes algorithm used to train and test the classifier is given below.
Algorithm- NB Training

1. Let U be the vocabulary consisting of all the words occurring in documents in the dataset.
2. For each category ci א C

a. Let Di be the subset of documents in D belonging to category ci.
b. P (ci)=| Di | / |D|
c. Extract text from each document in Di
d. Let Ti be the concatenation of all the documents of Di
e. Let ni be the total frequency of all the words in Ti
f. For each word wi א U

i. Let nk be the frequency of wi in Ti
ii. Let P (wj|ci)= ାଵା||

3. Let S be the set of categories at the second level within the category ci
4. For each category ci א S

a. Let Di be the subset of documents in D belonging to category ci.
b. P(ci)=| Di | / |D|
c. Extract text from each document in Di
d. Let Ti be the concatenation of all the documents of Di
e. Let ni be the total frequency of all the words in Ti
f. For each word wi א U

i. Let nk be the frequency of wi in Ti
ii. Let P (wj|ci)= ାଵା||

Algorithm- NB Testing
1. Let a test document be T
2. Let total be the total number of word occurrences in T.
3. Return the category ct at the top level

ct = arg max ci א CP(ci) ∏ ܲଵஸஸ௧௧ (wj|ci)
4. For the category ct returned at the top level

a. Let S be the set of categories at the second level within the category ct
b. Return the category cs at the second level

cs =arg max ciאS P(ci) ∏ ܲଵஸஸ௧௧ (wj|ci)

VI. EXPERIMENTAL RESULTS
Table 9 shows the results obtained from our experiment when k-fold strategy was used for training and

testing the classifier. The accuracy of our approach is verified by using recall, precision and F-measure. The
equation for precision, recall and F-measure is given as follows:

Precision =ே௨ ௗ௨௧௦ ௧௬ ௦௦ௗ ௧ ௧ ௦௦ே௨ ௗ௨௧௦ ௧௩ௗ

Recall= ே௨ ௗ௨௧௦ ௧௬ ௦௦ௗ ௧ ௧ ௦௦்௧ ௨ ௗ௨௧௦ ௧௧ ௩ ௧௧ ௧

F-measure= ଶ ௦ ோ௦ାோ

It is observed that average precision is 89.24, average recall is 89.09 and average F-measure is 89.15.

Neetu / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 5 No. 05 May 2013 406

Table9. Accuracy of the classifier

Category Precision Recall F-measure

Hardware 88.26 89.66 88.95

Software 89.21 88.16 88.68

Internet 86.42 87.53 86.97

Mathematics 93.23 88.53 90.71

Biology 91.24 93.56 92.38

Chemistry 88.22 87.64 88.76

People 86.21 90.16 88.14

Philosophy 90.14 89.43 89.78

Politics 88.83 88.24 88.53

Fig 1 shows how the average F-measure varies with the number of documents. The accuracy of the classifier
was 48% when 50 documents were supplied for training. As the number of documents supplied for training
increased, the accuracy of the classifier also increased. It touched 89% when 450 documents per second level
category were used for training the classifier. So, it can be seen that the accuracy of the classifier is dependent
upon the number of training documents and the classifier can achieve high accuracy when it is supplied with
large training data.

Fig 1: Number of training documents versus average F-measure

VII. CONCLUSION
This paper exploits the hierarchical structure of categories for classification. It classifies the web pages into

very broad categories. Naïve Bayes approach is used for classification and it yielded accuracy. It is also seen
that the accuracy of the classifier is dependent upon the number of training documents. As the number of
training documents increases, the accuracy of the classifier also increases. The results are quite encouraging.
Search engines can use this approach to classify the web pages and to build automated web directories.

VIII. ACKNOWLEDGEMENT
Our thanks to the experts who have contributed towards the development of the template.

IX. REFERENCES
[1] Koller, D. and Sahami, M. “Hierarchically classifying documents using very few words”. Proceedings of the Fourteenth International

Conference on Machine Learning (ICML’97), pp. 170-178, 1997.
[2] Guo, G., Wang, H. and Greer, K.. “An kNN model-based approach and its application in text categorization”, 5th Int. Conf., CICLing

Springer, Seoul, Korea, 2004, pp. 559-570.
[3] McCallum, A. and Nigam, K.. “A comparison of event models for Naïve Bayes text classification”, in AAAI/ICML-98 Workshop on

Learning for Text Categorization, 1998, pp. 41-48.
[4] Lewis, D.D. and Ringuette, M.. “A Classification of two learning algorithms for text categorization”, in Proc. of 3rd Annual

Symposium on Document Analysis and Information Retrieval (SDAIR’94), 1994, pp. 81-93.
[5] Dumais, S.T., Platt, J., Heckerman, D. and Sahami M.. “Inductive learning algorithms and representations for text categorization”, in

Proc. of the 17th Int. Conf. on Information and Knowledge Management (CIKM’98), 1998, pp. 148-155.
[6] Apte, C. and Damerau, F. and Weiss, S.M.. “Automated learning of decision rules for text categorization”, ACM Trans. on

Information Systems, Vol. 12, no.3, pp. 233-251, 1994.
[7] Wermter S. “Neural network agents for learning semantic text classification”, Information Retrieval, Vol. 3, no. 2, pp. 87 – 103, 2004.
[8] Weigend, A.S., Weiner, E.D. and Peterson, J.O. “Exploiting hierarchy in text categorization”, Information Retrieval, Vol. 1, no. 3, pp.

193- 216, 1999.

0

20

40

60

80

100

50 100 150 200 250 300 350 400 450

A
ve

ra
ge

 F
-m

ea
su

re

Number of documents

Neetu / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 5 No. 05 May 2013 407

[9] Leopold, E. and Kindermann, J. .”Text categorization with support vector machines. How to represent texts in input space?”, Machine
Learning, Vol. 46, no. 1-3,pp. 423-444, 2002.

[10] Bennett D. and Demiritz, A.. “Semi-Supervised support vector machines, Advances in Neural Information Processing Systems”, Vol.
11, pp. 368-374, 1998.

[11] Open Directory Project [Online]. Available: http://www.dmoz.org
[12] Qiu, Xipeng. Huang. Xuanjing, Liu, Zhao. And Zhou. Jinlong. “Hierarchical Text Classification with Latent Concepts”, Proceedings

of the 49th Annual Meeting of the Association for Computational Linguistics, 2011.
[13] Ruiz, M.E. and Srinivasan, P. “Hierarchical neural networks for text categorization”. Proceedings of the 22nd International ACM

SIGIR Conference on Research and Development in Information Retrieval (SIGIR’99), 1999, pp. 281-282.
[14] Larkey, L. “Some issues in the automatic classification of U.S. patents”. In Working Notes for the AAAI-98 Workshop on Learning

for Text Categorization,1998.
[15] The Jericho HTML Parser Library Version 3.2. [Online], Available: The Jericho HTML Parser Library Version 3.2, [Online].

Available : http://www.jerichohtml.sourceforge.net
[16] The BOW C Library [Online]. Available: http://www.cs.cmu.edu//~mccallum/bow/

Neetu / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 5 No. 05 May 2013 408

	Hierarchical classification of web contentusing Naïve Bayes approach
	Abstract
	Keywords
	I. INTRODUCTION
	II. RELATED WORK
	III. WEB PAGE CLASSIFICATION
	IV. NAÏVE BAYES TEXT CLASSIFICATION
	V. EXPERIMENTAL SETUP
	VI. EXPERIMENTAL RESULTS
	VII. CONCLUSION
	VIII. ACKNOWLEDGEMENT
	IX. REFERENCES

