
SOFTWARE ARCHITECTURE BASED
REGRESSION TESTING

Harsh Bhasin
Delhi technological university, Delhi

i_harsh_bhasin@yahoo.com

Ankush Goyal
AITM, Laboratory, Address,

Palwal, Haryana, 121102, India
Ankush49892@gmail.com

Deepika Goyal
AITM, Laboratory, Address,

Palwal, Haryana, 121102, India
Deepika.goyal256@gmail.com

Abstract

Software architecture plays a significant role in development of a dependable system. The purpose of regression
testing is to make the system fault tolerant. The amalgamation of these two, results in the development of a
robust system. The earlier works uses the conformance technique to instill confidence on implemented system
with code, architecture and behavior but has not considered many parameters. The present work includes the
concept of software architecture, system behavior and regression testing to propose a new framework which is
sure to reduce gaps in the present frameworks and thus improve the system reliability.
Keywords: Software Architecture; Dependable Systems; Regression Testing; Architecture-Based Analysis and
Testing.

1. Introduction

The advent of object oriented languages and newer design methodology brought concepts like data abstraction
to the fore-front of software development. The concepts initially labeled as obscure, later went on to become the
crux of the development process. They also helped in clearly defining the components and depicting the
interaction between them. This was important as many studies blamed these interactions as the major cause of
failures [1]. To understand the system, we need to understand the parts of system as well; though abstraction
hides the inner details, the communication between units remains essential to bring out the errors.

 As many studies suggested, testing the system on the basis of test cases generated by unit testing, does not
always reliably test the overall system. To install the confidence in the robustness of the system, it is essential to
have test cases which are better than the test cases of unit testing. Betterment is defined in terms of testing the
flow of data from one unit to another. As per the literature review, the type of tests used to test the system before
2000 were majorly based on the behavior of units rather than the system. Therefore, such methodologies were
inapt to handle interaction problem. In such situations software architecture comes to our rescue. Software
architecture helps us to detect problems which cannot be detected via conventional tests. As discussed earlier the
designing of software plays a pivotal role in helping achieve the above. The system level and these segment
level abstraction helps to untangle the knots created due to faults in communication.

As per the review carried out, software architecture helps in creating early test and hence reduces the cost of
testing. The work presented intends to amalgamate the virtues of software architecture along with the concept of
regression testing to propose a technique which is robust and better then the techniques proposed till now.

The paper is organized as follows. The second section of the paper presented the concepts of the literature
review, the third section presents the premises of the paper and its goals, the fourth section proposes the
technique. The last section presents the conclusions.

2. Related work

An extensive review was carried out in order to understand the intricacies of the techniques which we wish to
use. The following section gives a brief overview of the techniques studied.

According to Muccini [1], testing is needed to increase the dependability of the system. The previous techniques
have shown the application of conformance testing to achieve the confidence on the implemented system in

Harsh Bhasin et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 5 No. 04 Apr 2013 226

their expected behavior and architecture level. The work by H.Muccini [1] applied regression testing at software
architecture level to reduce the cost of retesting the modified system. It may also be noted that, SA based
analysis methods can be used in various scenarios like deadlock detection, performance analysis, component
validation. SA based testing method check conformance of the implementation behavior and compare it with SA
level specifications of expected behavior. Muccini [1] provides a technique to reuse previous information to get
conformance of modified implementation with respect to the modified or initial architecture.
According to work by D.S. Rosenblum [11], The regression testing for analyzing the system during its life time
is very expensive. The interaction between the components, however, can help us to reduce this cost. For a
software system, the aim of Selective regression testing strategies to choose subset of test cases from previously
run test cases, based on information about the changes made to the system to create new versions. In the paper
some computationally efficient predictors of the cost-effectiveness of the two main classes of selective
regression testing approaches are presented. In the work proposed by Mary Jean Harrold [2], which is based on
the specification of software architecture, it was observed that the amalgamation of SA proves very effective in
terms of cost and time. The software architecture testing focuses on the cost of the software while other
techniques focus only on development.

Another work by M. J.Harrol [2], provides an approach that uses the integration of code level regression testing
with architecture based regression testing. It uses the selective testing for the architecture based regression
testing and code level regression testing. It is based on comparing nodes of the two graphs, where the first graph
represents the program and the second one represents the modified version of original program. The work
provides a novel approach for regression testing at architecture level by comparing both graphs.
The work by A. Bertolino [14] also affirms the use of Software Architecture in testing. The work also confirms
the effect of SA on implementation. The paper proposes the extended approaches to SA bases testing. It shows
how a architectural style conform the mapping among SA based and code based test cases. According to the
work, Software Architecture can be used for code conformance testing and to check if implementation fulfills to
its specification at the SA level. This paper extends the previous approaches to software architecture based
testing and how a specific architectural style which supports implementation and facilitates the mapping among
SA-based and code-based test cases can be used to deliver a completely systematic SA-based testing approach.

3. Background

3.1. Premises of the paper

The proposed technique is based on the concept of Muccini [1]. In the work, Software Architecture
Specification (SAP) has been taken as base and the behavioral model of the software serves as a test oracle. As
per the above work, topology is described in terms of components, connectors, and configurations. This is
followed by the application of SA behavioral.

The above is followed by seeing SA in a way so that non relevant actions are hidden. This helps in the
abstraction of state machine based model. This generates what is referred to as, Architecture Level Test Cases
(ALTC), which is based on the audit sequence of events. So as to accomplish the above task the mapping
function is used which maps SA level function tests to code level tests.

3.2. Goals

The goals that are to be accomplished by the proposed technique are as follows:

The first goal is to use the existing implementation-level test cases test the conformance between modified code
and the architectural specifications. It is to test the conformance of a program with respect to the system, while
reusing previous test information for selective regression testing, thereby reducing the test cases.

The second goal is to reuse architecture-level test cases to test the conformance of the source code with respect
to the evolved software architecture.

The first goal is accomplished by generating a control graph and comparing the previous graph with the new
graph. So as to facilitate the task, the information so as to how a graph is traversed is stored. Test cases selection
for the new program P’ with the help of test history and graph comparison, is then carried out. The concept
relies on integrating code-level regression testing with architecture-based regression testing. Selective testing
technique is used for code-level regression testing and for architecture-based regression testing also. The test
cases are generated on the basis of software architecture. The expected behavior and the history is then mapped
with the output. In the conformance testing we generate graphs for both the program and the changes in the
programs. On the basis of comparisons between the old graphs and new graphs, the changes are recorded. The
techniques developed earlier are not suitable because it is possible that changing the program might not result in
the change in the graph. There can be many more such scenarios. If there is a change then that change may

Harsh Bhasin et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 5 No. 04 Apr 2013 227

affect the software architecture but not the behavior. Moreover, it is also possible that change in one part of the
program may effect on other part of program due to coupling [15]. Previous technique has neglected the above
issues.

The work intends to, merge software architecture concepts with a concept of regression testing to propose a
novel technique. The technique is being tested by a set of programs. In the proposed technique, the software
architecture of the program will be studied and the purposed technique will be used to find errors. The concept
will be compared with a technique purposed in the work by Muccini [1]. A set of 20 programs is selected,
divided into three categories small, medium and large programs.

4. Purposed Technique

The section proposes a new framework which clubs together the best of worlds, regression testing and software
architecture. The proposed work is different from the base work since it also takes into account the behavior and
not just the abstract model.

4.1. Software architecture based regression testing with behavioral blent

Step1: SA specification. SA based conformance testing start from behavioral specification of SA and topology
of SA. In the SA structure topology describes the components, connectors and configurations. For describing the
topology we use ADL (Architecture description languages) and TS (transition system) is used for describing the
SA behavior.

Step2: Testing Criterion. There are many events in model and sequence of these events is defined as ATC
(architecture-level test cases). Designing architecture level test cases calls for checking the specifications and
also checking the behavior of the model. In this step the portions, which are to be tested, are identified. The
interactions between the levels is also seen.

Step 3: Test Cases. Changing or adding an extra component can change the behavior. So, a mapping function is
to be used for mapping the SA-level test case to code level test cases. This also checks the behavior of the
model.

Step 4: Test Execution. Since many test case have been generated, now the next step is to check the result of
each test case and map the corresponding results.

The model is depicted in the following figure.

Step a Step a

Step b Step b

Step c Step c

Step d

Fig. 1 Diagram of SA based regression testing

SA specifications for S” or
adding an extra component

Testing Criterion

Compare S and S”

Apply the process explained in
algorithm

SA-specifications
for S”

Testing Criterion

Extract SA level test
cases

Harsh Bhasin et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 5 No. 04 Apr 2013 228

5. Conclusions

The work presented above adds a sprinkle of behavioral model to the Software Architecture based Regression
Testing. The technique is being applied on selected set of programs. The programs have been selected in such a
way that the technique can be verified by all the categories. The programs selected therefore are professional
applications and some algorithm implementation. The application of the above technique to these programmers
will instill the confidence on the technique.

It may be noted that the above work re-affirms the fact that the exclusion of behavior from the model, is not
justified. The complete verification and validation will instill the confidence in the technique.

References

[1] Henry Muccini, Marcio Dias, Debra J. Richardson. Software Architecture-Based Regression Testing, 10 February 2006. In: The
Journal of Systems and Software 79 (2006) 1379–1396.

[2] M. J. Harrold. Architecture-Based Regression Testing of Evolving Systems. In Proc. Int. Workshop on the Role of Software
Architecture in Testing and Analysis (ROSATEA), CNR-NSF, pp. 73-77, July 1998.

[3] An Andreas Johnson. Architecture –Based Verification Of Software- Intensive Systems. Mälardalen University School of Innovation,
Design and Engineering 2010 March 8,Västerås Sweden.

[4] Henry Muccini, Marcio S. Dias, and Debra J. Richardson. Towards software architecture-based regression testing. SIGSOFT Software.
Eng. Notes, 30(4):1_7, 2005.

[5] Badri H.S. Systematic Software Architecture Based Testing Approach – A Case Study. In International Journal of Advanced Research
in Computer Science and Software Engineering, Volume 2, Issue 9, September 2012.

[6] B. Beizer. Software Testing Techniques. Van Nos-trand Reinhold, New York, NY, 1990.
[7] A. Bertolino and P. Inverardi. Architecture based software testing. In Proc. of Int'l Software Architecture. Workshop, pages 62{64,

October 1996.
[8] H. Leung and L. White. A cost model to compare regression test strategies. In Proc. of Conf. on Software. Maint. Pages 201{208, Oct.

1991.
[9] D. Richardson, J. Stafford, and A. Wolf. A formal approach to architecture based software testing. Technical report, University of

California, Irvine, 1998.
[10] D. Richardson and A. Wolf. Software testing at the architectural level. In Proc. of Int'l Software. Arch. Workshop, pages 6{70,

October 1996.
[11] D. S. Rosenblum and E. J. Weyuker. Predicting the cost-effectiveness of regression testing strategies. In Proceedings of the ACM

SIGSOFT '96 Fourth Symposium on the Foundations of Software Engineering, Oct. 1996.
[12] H. Muccini, M. Dias, and D. Richardson. Systematic Testing of Software Architectures in the C2 style. Extended version of the

ETAPS 2004 publication.
[13] A. Bertolino and P. Inverardi. Architecture-based software testing. In Proc. ISAW96, October 1996.
[14] A. Bertolino, P. Inverardi, and H. Muccini. An Explorative Journey from Architectural Tests Definition down to Code Tests

Execution. In IEEE Proc. Int. Conf. on Software Engineering, ICSE2001, pp. 211-220, May 2001.
[15] Harsh Bhasin, Manoj. Regression Testing Using Coupling and GeneticAlgorithms.IN (IJCSIT) International Journal of Computer

Science and Information Technologies, Vol. 3 (1), 2012, 3255 – 3259
[16] Perry, D.E., Wolf, A.L., 1992. Foundations for the Study of Software Architecture 17 (4), 40–52.
[17] Muccini, H., Bertolino, A., Inverardi, P., 2003. Using software architecture for code testing. IEEE Transactions on Software

Engineering 30 (3), 160–171.
[18] Bosch, J., 2000. Design and Use of Software Architectures: Adopting and Evolving a Product-Line Approach. ACM Press/Addison-

Wesley Publishing Co.
[19] Bernardo, M., Inverardi, P., 2003. Formal Methods for Software Architectures, Tutorial Book on Software Architectures and Formal

Methods. SFM-03: SA Lectures, LNCS, vol. 2804.

Harsh Bhasin et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 5 No. 04 Apr 2013 229

	SOFTWARE ARCHITECTURE BASEDREGRESSION TESTING
	Abstract
	Keywords
	1. Introduction
	2. Related work
	3. Background
	4. Purposed Technique
	5. Conclusions
	References

