
Comparative Study of Static Task
Scheduling

Algorithms for Heterogeneous Systems
Miss. Kalpana A. Manudhane1

ME(CSE) 2nd semester
G.H. Riasoni College of Engineering & Management

Amravati, Maharashtra, India
 Email- kalpana.manudhane@gmail.com

Mr. Avinash Wadhe2
M-Tech(CSE)

G.H. Riasoni College of Engineering & Management
Amravati, Maharashtra, India
Email- aviwadhe@gmail.com

Abstract— On the distributed or parallel heterogeneous computing systems, an application is
usually decomposed into several interdependent sets of co-operating subtasks and assigned to a
set of available processors for execution. Task scheduling is in general NP-compete problem.
Static task scheduling algorithms are categorized as Heuristic based and Guided random search
based scheduling algorithms. Heuristic algorithms guaranteed to find near optimal solution in
less than polynomial time. Heuristic based list scheduling algorithms are Heterogeneous Earliest
Finish Time (HEFT) and Critical-Path-On-a-Processor (CPOP). Whereas, Guided random
search based scheduling algorithms have shown robust performance on verity of scheduling
problems. Typical examples are Multiple Priority Queueing Genetic Algorithm (MPQGA),
Tabu Search(TS), Ant Colony System (ACS). This paper gives comparative study of all these
static task scheduling algorithms and compares them on the basis of average makespan,
schedule length ratio (SLR) and speedup and running time of algorithm.

Keywords- Heterogeneous system; task scheduling; guided random search; heuristic list scheduling.

I. INTRODUCTION
The heterogeneous computing system [1] is defined as a set of machines with different capabilities
interconnected with different speed links. Task scheduling on heterogeneous computing systems has been
well studied. Such systems are promising for fast processing of computationally intensive applications with
diverse computation needs. In general, an originally large program can be decomposed into a set of smaller
subtasks prior to parallel processing. These smaller subtasks almost always have dependencies representing
the precedence constraints. Precedence constraints are represented as a directed acyclic graph (dag)
consisting of nodes that represent computations and the directed edges that represent the dependency
between the nodes. So, a task becomes ready for execution when all its immediate predecessors in dag get
executed.

By decomposing a computation into smaller subtasks and executing the subtasks on multiple
processors, the total execution time of the computation, namely makespan, can potentially be reduced.
Hence, the goal of a task scheduling algorithm is to schedule all the subtasks on the given number of
available processors so as to minimize makespan without violating precedence constraints.

It is a challenge on heterogeneous computing systems to develop task scheduling algorithms that assign
the subtasks of applications to processors. Therefore, the task scheduling has been a well-studied problem
on the distributed and parallel heterogeneous computing systems. Numerous algorithms have been
proposed to minimize makespan.

Miss. Kalpana A. Manudhane et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 5 No. 03 Mar 2013 166

 Multiple Priority queueing
 Genetic algorithm (MPQGA) [2]

 Tabu search (TS) [3]
 Ant Colony System (ACS) [4]

 Heterogeneous Earliest Finish Time (HEFT) [4]
Critical-Path-On-a-Processor (CPOP) [4]

Figure 1. Classification of static task scheduling algorithms

Static task-scheduling algorithms can be divided into to main categories as shown in figure 1 [5], namely,
heuristic based and guided random search based. The formal can be divided into three subgroups [5]: list
scheduling, clustering and task duplication.
List scheduling Heuristics: List scheduling heuristic maintains the list of tasks according to their priorities. It has
to phases: Task prioritizing – to assign priority to each task according to some criteria and processor selection-
for selecting a suitable processor that minimizes a predefined cost function. Examples of algorithm for
heterogeneous system are Heterogeneous Earliest Finish Time (HEFT) and Critical-Path-On-a-Processor
(CPOP).
Clustering Heuristics: An algorithm in this group maps the tasks in a given graph to an unlimited number of
clusters. At each step, the selected tasks for clustering can be any task, not necessarily a ready task. Each iteration
refines the previous clustering by merging some clusters. If two tasks are assigned to the same cluster, they will
be executed on the same processor. A clustering heuristic requires additional steps to generate a final schedule: a
cluster merging step for merging the clusters so that the remaining number of clusters equal the number of
processors, a cluster mapping step for mapping the clusters on the available processors, and a task ordering step
for ordering the mapped tasks within each processor.
Task duplication Heuristics: The concept behind duplication based algorithms is to schedule a task graph by
mapping some of its tasks redundantly, which reduces the interprocess communication overhead.

 The performance of these algorithms is heavily dependent on the effectiveness of the heuristics.
Therefore, they are not likely to produce consistent results on a wide range of problems [2], especially
when the complexity of the DAG task scheduling problem increases.

Guided random search based algorithms: Guided random search techniques [2] use random choice to guide
themselves throughout the problem. Guided random search based algorithm have robust performance on variety
of scheduling problems, however they are less efficient and generate much higher computational cost than
heuristic based algorithms. Genetic algorithms have been widely used to evolve solutions for many task
scheduling problems. Some other examples are Tabu search (TS) and Ant Colony System (ACS).

The remainder of this paper is organized as follows: Section II gives literature review describing system
and task model. In Section III, static task scheduling algorithms, namely, HEFT, CPOP, MPQGA, ACS and TS
are described. Section IV gives comparison metrics and a comparative study of these task scheduling
algorithms. Finally, in Section V, conclusion is presented that tells which algorithm is suitable for what
requirement.

II. LITERATURE RIVIEW
The target system [2] consists of a set P of k heterogeneous processors that are fully interconnected with
high-speed network. The communication time between two dependent subtasks should be taken into account
if they are assigned to different processors. We also assume a static computing model in which the
dependence relations and the execution times of subtasks are known a priori and do not change over the

static Dynamic

 Heuristic Based Guided Random Search

Clustering Task Duplication

 List scheduling

Task scheduling algorithms

Miss. Kalpana A. Manudhane et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 5 No. 03 Mar 2013 167

course of the scheduling and subtask execution.
In this study, a parallel task [2] can be decomposed into an entry subtask, an exit subtask and several

intermediate subtasks. For a pair of dependent subtasks, Ti and Tj , if the execution of Tj depends on
the output from the execution of Ti , then Ti is the predecessor of Tj , and Tj is the successor of Ti .
We use pred(Ti) and succ(Ti) to denote the set of predecessor subtasks and successor subtasks of the
task Ti , respectively.

In general, the task can be represented by a weighted dag on a distributed and parallel heterogeneous
computing system. Dag is a directed acyclic graph with nodes representing subtasks and edges representing
execution precedence between subtasks. A weight is associated with each node and edge. The node weight
denoted as W (Ti) represents the subtask Ti execution time. Whereas the edge weight denoted as C (Ti
, Tj) represents the inter-subtask communication time between subtask Ti and subtask Tj .

In addition, in the underlying study, the computation time of the subtask Ti on a processor Pk
is denoted as W (Ti , Pk) and its average computation time is denoted as W (Ti) is defined as

 W ሺTıሻ തതതതതതതതതതതത ൌ ∑ WሺT,Pౠሻౡౠసభ ୩ (1)

Communication time is only required when two subtasks are assigned to different processors. In the
other words, the communication time when the subtasks are assigned to the same processor can be ignored.

The EST (Ti , Pk) and EFT (Ti , Pk) [5] are earliest execution start time and the earliest finish time
of the node or subtask Ti on processor Pk. EST for entry task is zero.

 ESTሺT୧, P୩ሻ ൌ max ൛EFT൫T୨, P୫൯ CሺT୨, T୧ሻ ൟ (2)

 Tj ∈pred(Ti)

 EFT(Ti,Pk)=EST(Ti,Pk) +W(Ti,Pk) (3)

 The upward-ranking of task Ti can be denoted as Ranku (Ti), as shown in Equation

 Ranku ሺTi ሻ ൌ W ሺTı ሻ തതതതതതതതതതത max ሺቀC ሺTı , Tj ሻതതതതതതതതതതതതതതത Ranku ሺTj ሻቁ (4)
 Tj ∈succ(Ti)

The downward-ranking of subtask Ti can also be denoted as Rankd (Ti), as shown in Equation

 RankdሺTi ሻ ൌ maxሺ W ሺTı ሻ തതതതതതതതതതത ሺC ሺTı , Tj ሻതതതതതതതതതതതതതതത Rankd ሺTj ሻ ሻ (5)
 Tj ∈pred(Ti)

 Figure 2 shows how upward ranking and downward-ranking are computed. Note that, both computation

and communication costs are averaged over all nodes and links. The downward-ranking of a subtask is
defined as the summation of the computation and communication costs along the longest path of the node
from the entry subtask in the task graph. The subtask itself is excluded from the computation. As shown in
Figure 2, rankd Of T4 involves node T1 and T2 which are along the longest path.

Figure 2. Downward and upward ranking

Miss. Kalpana A. Manudhane et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 5 No. 03 Mar 2013 168

 In contrast, the upward-ranking of a subtask is computed by adding the computation and
communication costs along the longest path of the subtask from the exit subtask in the task graph
(including the subtask). As shown in Figure 2, ranku of T4 involves T4, T6 and T9.

III . TASK SCHEDULING ALGORITHMS
In this section we study various static task scheduling algorithms.

A. Heuristic List scheduling algorithms

Heuristic algorithms guaranteed to find near optimal solution in less than polynomial time. We now
study HEFT and CPOP heuristic list based algorithms.

• Heterogeneous Earliest Finish Time (HEFT):

The HEFT algorithm is an application scheduling algorithm for bounded number of heterogeneous
processors. It has to major phases, namely, task prioritizing and processor selection phase.
Task prioritizing phase:

This phase computes priority of each task. The priority is nothing but the upward rank value, ranku. The
task list is generated by sorting the tasks by decreasing order of ranku..The tie-breaking is done
randomly to avoid complexity. It is clear that the decreasing order of ranku provide topological order of
tasks, which is the linear order that preserves the precedence constraints.
Processor selection phase:

HEFT algorithm has insertion based policy which considers possible insertion of a task in an earliest
idle time slot between two already scheduled tasks on a processor. The length of an idle time slot, i.e.,
the difference between execution start time and finish time of two tasks that were consecutively
scheduled on the same processor, should be at least capable of computation cost of the task to be
scheduled.

A task become ready for execution when its immediate predecessors in task graph get executed. In
HEFT algorithm, the search of an idle time slot of a task Ti on processor Pj starts at the ready time of Ti
on Pj.

• Critical-Path-On-a-Processor (CPOP):

Although CPOP algorithm has task prioritizing and processor selection phases, as in HEFT, it uses
different attributes for assigning task priorities and different strategy for determining the best processor
for each selected task.
Task prioritizing phase:

In this phase, upward rank, ranku and downward rank, rankd values of all tasks are computed. The
CPOP uses the critical path of given application graph. The length of this path, |CP|, is sum of the
computation costs of the tasks on the path and inter-task communication costs along the path.

The priority of each task is assigned as summation of ranku and rankd. Priority queue is maintained
(with key ranku + rankd) to contain all ready tasks at any given instant. A binary heap was used to
implement the priority queue. At each step, the task with highest priority is selected from priority
queue.

Initially, the entry task is the selected task and marked as a critical path task. An immediate
successor that has the highest priority value is selected and it is marked as a critical path task. This
process is repeated until the exit node is reached. For tie-breaking, the first immediate successor which
has the highest priority is selected.
Processor selection phase:

The critical path processor, pcp, is one that minimizes the cumulative computation costs the tasks on
the critical path. If the selected task is on the critical path, then it is scheduled on pcp; otherwise, it is
assigned to a processor which minimizes the Earliest Finish Time, EST, of the task. Both cases consider
an insertion based scheduling policy.
B. Guided Random search based algorithms

Guided random search based scheduling algorithms have shown robust performance on verity of
scheduling problems. Let us study now MPQGA, ACS and TS.

• Multiple Priority queueing Genetic algorithm (MPQGA):

Genetic algorithm [6] is a random search method, which is widely used for solving combinatorial optimization
problems. It executes in generations, producing better and better solutions using crossover and mutation

Miss. Kalpana A. Manudhane et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 5 No. 03 Mar 2013 169

i

operators in each generation by “weeding” out poor solutions in each generation and randomly producing new
solutions (offspring) for the next generation based on the solutions (parents) in the current solution.

The Multiple Priority queuing Genetic algorithm (MPQGA) comprises two key components: (1) a genetic
algorithm to generate multiple priority queuing for task scheduling on distributed and parallel heterogeneous
computing systems and (2) a heuristic based heterogeneous earliest finish time (HEFT) approach to
search for a solution for mapping tasks to processors.

GA use a collection of solutions which evolves through genetic operators to obtain better solutions. New
solutions (offspring) for the next generation are obtained by applying the following two genetic
operators :

• Crossover, which aims to take the best features of each parent and mix the remaining features in
forming the offspring.

• Mutation, which aims to introduce variations into the individuals.
Fitness value plays an important role in deciding which individuals would be used to generate the

next-generation population while the genetic operators realize the concrete evolution.
makespan is the largest finish time among all subtasks, which is equivalent to the actual finish time

of the exit node Texit . For the task scheduling problem, the goal is to obtain subtask assignments that
ensure minimum makespan to ensure that the precedence of the subtasks is not violated. Hence, the
Fitness function value is defined as

 ValueFitness = makespan = EF T (Texit) (6)

The HEFT algorithm is used to map the subtasks to the processors. The subtasks have been assigned to

the processors in order of their priority. At each step of the assignment, the selected processor provides the
earliest finish time for the subtask under consideration, taking into account all the communications from the
sub- task’s parents.

• Ant Colony System (ACS):

The elementary idea of ACS is to simulate the foraging behavior of ant colonies. When a group of ants sets out
from the nest to search for the food source, they use a special kind of chemical to communicate with each
other. The chemical is referred to as pheromone. Once the ants discover a path to food, they deposit
pheromone on the path. By sensing pheromone on the ground, an ant can follow the trails of the other
ants to the food source. As this process continues, most of the ants tend to choose the shortest path as there
have been a huge amount of pheromones accumulated on this path as shown in Figure 3. This collective
pheromone-depositing and pheromone-following behavior of ants becomes the inspiring source of ACS that is
applied to task scheduling in heterogeneous system.

Figure 3. Behavior of ant colony and applying it to task scheduling

Informally, the algorithm can be viewed as the interplay of the following procedures:
1) Initialization of algorithm: All pheromone values and parameters are initialized at the beginning of the

algorithm.
2) Initialization of ants: A group of M artificial ants are used in the algorithm. In each iteration, each ant

randomly selects a constructive direction and builds a sequence of tasks.
3) Solution construction: M ants set out to build M solutions to the problem based on pheromone and

heuristic values using the selection rule of the ACS algorithm.

4) Local pheromone updating: Soon after an ant maps a service instance si
j to task Ti, the corresponding

pheromone value is updated by a local pheromone updating rule.
5) Global pheromone updating: After all ants have completed their solutions at the end of each iteration,

Miss. Kalpana A. Manudhane et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 5 No. 03 Mar 2013 170

pheromone values corresponding to the best-so-far solution are updated by a global pheromone updating
rule.

 6) Terminal test: If the test is passed, the algorithm will be ended. Otherwise, go to step 2) to begin a new
iteration.

The flowchart of the algorithm is given in Figure 4.

Figure 4. Flowchart of the ACS algorithm

• Tabu Search :

Tabu search [6] is the technique that keeps track of the regions of the solution space that have already been
searched in order to avoid repeating the search near these areas. A tabu list is constructed by short-hop and
long-hop procedures, and the best solution from the list is produced as the Tabu algorithm solution.

Figure 5: Behavior of Tabu search algorithm

A task scheduling algorithm using the Tabu method [3] is the neighborhood search technique that tries to
avoid local minima and attempts to guide the search towards a global minimum. Tabu search starts with an
initial solution, which can be obtained by applying a simple one-pass heuristic, and scans the neighborhood of the
current solution—that is, all the solutions that differ from the current one by a single move. For the
multiprocessor task-scheduling problem, a move consists of moving a task from one processor to some other
processor, or changing the order of execution of a task within the list of tasks scheduled to a processor. This
technique considers all the moves in the immediate neighborhood, and accepts the move which results in the best
makespan.

Miss. Kalpana A. Manudhane et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 5 No. 03 Mar 2013 171

III. COMPARATIVE STUDY
The comparisons of the algorithms are based on following metrics [5]:

1.Average Makespan: The makespan is the largest finish time among all subtasks (formula 6), which is
equivalent to the actual finish time of the exit node . Texit. We consider average makespan obtained from
various random task graphs
2. Schedule length ratio(SLR): The main performance measure of scheduling algorithm on a graph is the
schedule length (makespan) of its output schedule. Since the large set of task graphs with different properties is
used, it is necessary to normalize to schedule length to a lower bound, which is called the Schedule Length Ratio
(SLR). The SLR value of an graph is defined by

 SLR ൌ ୫ୟ୩ୣୱ୮ୟ୬∑ ୫୧୬౦ౠאQ൛W,ౠൟאCPMIN (7)

The denominator is the summation of the minimum computation costs of tasks on the CPMIN.
For an unscheduled dag, if the computation cost of each node n୧ is set with minimum value, then the critical
path will be based on minimum computation costs, which is represented as CPMIN. The SLR cannot be less than
one since the denominator is the lower bound.

3. Speedup: The speedup value for a given graph is computed by dividing the sequential execution time by
parallel execution time (i.e. the makespan of output schedule. The sequential execution time is computed by
assigning all tasks to a single processor that minimizes the computation costs.

 Speedup ൌ ୫୧୬౦ౠאQቄ∑ W,ౠאV ቅ୫ୟ୩ୣୱ୮ୟ୬ (8)

4. Running time of algorithms: The running time of an algorithm is its execution time for obtaining output
schedule for a given task graph.

Now we compare these algorithms in pair or groups.

A. Comparison between HEFT and CPOP:

The HEFT and CPOP are compared [5] for different task graphs on heterogeneous system on the basis of
average SLR, Average speedup and running time of algorithm.

• Average SLR of HEFT is better than CPOP by 7 percent.
• Average speedup of HEFT is better than CPOP by 6 percent.
• Running time of HEFT is faster than CPOP by 10 percent.

So, HEFT gives better performance than CPOP. CPOP gives better results as compared to other algorithms
(Dynamic Level Scheduling, Mapping Heuristic) for graphs with higher CCRs than graphs with lower CCRs.
CCR is nothing but communication to computation ratio.

B. Comparison between MPQGA and HEFT:

The MPQGA and HEFT are compared [2] for different task graphs on heterogeneous system on the basis of
metric average makespan that gives following results:

• If the number of processors is considered as fixed value (say 32), CCR considered as 1, as the subtask
numbers is increased, MPQGA always outperforms HEFT.

• If CCR value is smaller (0.1) and the processor numbers is increased, the results illustrate that the
makespan reduces very fast.

 As a result, this algorithm can cover a large search space than deterministic scheduling approaches without
incurring high computational cost. The MPQGA algorithm outperforms HEFT with higher speedup on subtask
execution.

C. Comparison of GA and TS:

 Random search based algorithms – Genetic algorithm (GA) and Tabu Search (TS) yield better solutions
with shorter makespan than HEFT. In this group best solutions were obtained by both -Genetic algorithm and
Tabu Search [3].

D. Analysis of ACS:

An ACS algorithm [4] a large scale workflow scheduling problem in computational grids has been proposed. In
the algorithm different QoS parameters are considered, including reliability, time and cost. Users are allowed to

Miss. Kalpana A. Manudhane et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 5 No. 03 Mar 2013 172

define QoS constraints to guarantee the quality of schedule. Moreover, the optimizing objective of the algorithm
is based on the user defined QoS preferences.

IV. CONCLUSION
In this paper, we studied static task scheduling algorithms for heterogeneous system. We mainly studied Guided
Random Search based algorithms- MPQGA, TB , ACS and Heuristic list based scheduling- HEFT and CPOP.
This paper also compared their performance on the basic of metrics - average make-span, Schedule Length
Ratio (SLR), speed up and running time of algorithm.
 HEFT is better than CPOP on the basis of average SLR, average speedup and running time of
algorithm. Whereas, Genetic algorithm such as MPQGA outperforms HEFT on the basis of average makespan
and speedup. In case of Ant Colony System, users are allowed to define QoS constraints to guarantee the quality
of schedule.
 So, this paper conclude that performance of algorithms differ according to comparison metric chosen.
Algorithm should be chosen as per ones metric requirement.

V. REFERENCES
[1] Tarek Hagras, Jan Janecek, “A Near Lower-Bound Complexity Algorithm for Compile-Time Task-Scheduling in Heterogeneous

Computing Systems”, Proceedings of the ISPDC/HeteroPar’04 IEEE, 2004.
[2] Yuming Xu, Kenli Li, Tung Truong Khac, Meikang Qiu, “A Multiple Priority Queueing Genetic Algorithm for Task

Scheduling on Heterogeneous Computing Systems”, IEEE 14th International Conference on High Performance Computing and
Communications, pp. 639-646, 2012

[3] Shiyuan Jin, Guy Schiavone , Damla Turgut, “A performance study of multiprocessor task scheduling algorithms”, J Supercomput
(2008) 43,pp. 77–97, 2008.

[4] Wei-Neng Chen, “An Ant Colony Optimization Approach to a Grid Workflow Scheduling Problem With Various QoS Requirements”,
IEEE transactions on system, man and cybernetics, part C: Applications and reviews, Vol. 39, NO. 1, pp. 29-43, 2009.

[5] Haluk Topcuoglu, Salim Hariri, Min-You Wu, “Performance-Effective and Low-Complexity Task Scheduling for Heterogeneous
Computing”, IEEE transactions on parallel and Distributed systems, Vol. 13, No. 3,pp. 260-274, 2002.

[6] Sang Cheol Kim, Sunggu Lee and Jaegyoon Hahm, “Push-Pull: Deterministic Search-Based DAG Scheduling for Heterogeneous
Cluster Systems”, IEEE Transactions on Parallel and Distributed Systems, vol. 18, pp. 1489-1502, November 2007.

[7] Andre R. Brodtkorb, Christopher Dyken, Trond R. Hagen, Jon M. Hjelmervik a and Olaf O. Storaasli, “State-of-the-art in
heterogeneous computing”, IOS Press, Scientific Programming 18 (2010),pp. 1–33 , 2010.

[8] R.Eswari and S.Nickolas,”Path-based Heuristic Task Scheduling Algorithm for Heterogeneous Distributed Computing Systems”, 2010
International Conference on Advances in Recent Technologies in Communication and Computing, pp. 30-34,2010.

[9] Srishti Srivastava, Nitin Sukhija, Ioana Banicescu and Florina M. Ciorba, “Analyzing the Robustness of Dynamic Loop Scheduling for
Heterogeneous Computing Systems”, 2012 11th International Symposium on Parallel and Distributed Computing,pp. 156-163, 2012.

[10] Tong Li, Paul Brett, Rob Knauerhase, David Koufaty, Dheeraj Reddy and Scott Hahn, “Operating System Support for Overlapping-
ISA Heterogeneous Multi-core Architectures” , Intel Corporation, pp.1-12.

AUTHORS PROFILE

Kalpana Manudhane: Received the B.E in computer engineering from North
Maharshtra University, SSB’s COET, Bambhori, Jalgaon (khan) in 2005. She is currently
an Assistant Professor in CSE department .in COET, Akola from SGBAU University. She
is pursuing for ME CSE from G.H. Raisoni, Amravati. Her research interest include task
scheduling, compiler techniques, operating system and programming.

 Prof. Avinash P.Wadhe: Received the B.E and from SGBAU Amravati university and
M-Tech (CSE) From G.H Raisoni College of Engineering, Nagpur (an Autonomous
Institute). He is Currently an Assistant Professor with the G.H Raisoni College of
Engineering and Management,Amravati SGBAU Amravati university. His research
interest include Network Security , Data mining and Fuzzy system .He has contributed to
more than 20 research paper. He had awarded with young investigator award in
international conference. .

Miss. Kalpana A. Manudhane et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 5 No. 03 Mar 2013 173

	Comparative Study of Static TaskSchedulingAlgorithms for Heterogeneous Systems
	Abstract
	Keywords
	I. INTRODUCTION
	II. LITERATURE RIVIEW
	III . TASK SCHEDULING ALGORITHMS
	III. COMPARATIVE STUDY
	IV. CONCLUSION
	V. REFERENCES
	AUTHORS PROFILE

