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Abstract 
In this paper, we design an Anomaly Detection System for Outlier Detection in Hardware Profile by using 
Principal Component Analysis (PCA) that helps reduce the dimension of data.  Anomaly detection methods can 
detect new intrusions, but they suffer from false alarms. Another approach is misuse detection that identifies 
only known attacks by matching with the previous patterns. Host based Intrusion Detection Systems (HIDSs) 
use anomaly detection approach to identify malicious attacks i.e. intrusion. Data being of large dimensional 
generates features in terms of large set of dimensions and hence the system takes considerable time for 
processing the huge amount of data. The PCA is used to reduce the dimensionality of the host based data 
without any loss of useful information such as non-redundant data. We experimentally show that the proposed 
intrusion detection system has detection rate in the range of 90% - 97.5% and false alarm rate in the range of 
2.5% - 7.5% depending upon the major and minor principal components. 
Keywords: Anomaly Detection, Outlier Detection, PCA, Mahalanobis Distance, False alarm rate 
1. Introduction 
With the explosive rapid expansion of computers in last decade and so, their security has become an important 
issue. The process of monitoring the events occurring in a computer system and analyzing them for identifying 
intrusions is known as intrusion detection technique and the system is known as intrusion detection system 
(IDS). An intrusion is defined as an attack in a network or system by an intruder that compromises the security 
parameters such as integrity, confidentiality, and authentication of the system. The attacks can be external 
attacks, internal penetrations, and misfeasors. An intruder tries to get access into a system for which he/she is 
not authorized. An Intrusion Detection System (IDS) is a program that analyzes the events that have taken place 
or those happen during an execution and it tries to find indications of misuse of the computer. Host based 
Intrusion Detection Systems (HIDSs) monitor suspicious activities that take place in the system. The HIDSs can 
be either anomaly detection that is based on statistical measure or misuse detection that is based on signature. 
Anomaly detection is used to capture the changes in behavior that are not normal. These methods use as input 
the training data to build normal system behavior models that signal alarms when there is any abnormal activity 
which deviates from the normal model. These models may be generated using different approaches such as 
statistical analysis, data mining algorithms, genetic algorithms, artificial neural network, fuzzy logic, rough set. 
Anomaly detection methods have problems of false positive and false negative. Since the numbers of new 
attacks are increasing and the variations of known attacks cannot be recognized by misuse detection. Therefore, 
we develop an intrusion detection system using Principal Component Analysis (PCA) that detects the outlier 
data.  
 
2. Related Work 
There are several works related to intrusion detection in literature [1-6]. The principal component analysis 
(PCA) is one of the important approaches that are used to reduce the data size and also detect errors in 
multivariate data [3].  The Chi-square distribution is also very useful statistical approach in detecting anomalies. 
Shyu discusses an intrusion predictive model that uses PCA and Chi-square distribution for KDD1999 dataset 
[1]. For detecting anomaly in a system, monitoring of its behaviour is required. If there is abnormal behaviour in 
the system, one can suspect some security violation. In [2], an intrusion detection model based on security 
violations that is capable of detecting break-ins, penetrations and other types of computer attacks is discussed. 
Ye uses Chi–square statistic to develop an anomaly detection technique that has 0% false alarm rate and 100% 
detection rate [4]. Puketza provides a comparative study of detection rate and false alarm rate by using 
Hotelling’s T2 test and Chi-squared distance test. He has reported experimentally that the Chi-square distribution 
has better performance than the Hotelling’s T2 test [14].  Chen et. al discuss an efficient filtering scheme that 
requires only 0.3% of the original traffic volume for anomaly [17]. Casas et. al discuss an unsupervised network 
intrusion detection system that can detect unknown network attacks without using any kind of signatures, 
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labeled traffic, or training [18]. In this paper, we use PCA methodology to detect intrusion and our proposed 
system has detection rate in the range of 90% - 97.5% and false alarm rate in the range of 2.5% - 7.5% 
depending upon the major and minor principal components. The rest of the paper is organized as follows: 
section 3 discusses the proposed work. Experimental methodology has been discussed in section 4, Results and 
Discussions are given in section 5. Finally, the conclusion is given in section 6.  
 
3. Proposed Work 
The PCA is a common technique to find the patterns in the data of high dimension. It basically reduces the 
number of dimensions in an input data set without losing its useful information. In PCA technique, a set of 
principal components are obtained that constitute an orthogonal set of eigenvalue and eigenvector pairs. The set 
of principal components, also called axes, best suits the data. In our proposed scheme, these set of axes represent 
features’ normal data. Outlier detection occurs by mapping the used data to these normal axes in order to find 
the distance from the axes. If the distance is greater than a certain threshold, it is assumed that there is an attack 
i.e. outlier detection. The principal components are linear combinations of m random variables (features of used 
data), denoting them as X1, X2, ... ,Xm, that have two important properties: 

 They are uncorrelated, and sorted in descending order. 

 Their total variance, denoted by R, is the summation of variances of each variable X1 , X2 , ... , Xm, i.e.,   

R = 


m

i 1
i R  , where Ri is variance of Xi 

Assume that the original data is represented in matrix form with n observations, each observation has m 
attributes i.e. Xnxm. Let ρmxm and ∑mxm be the symmetric correlation and variance-covariance matrices of X1, 
X2,...,Xm, respectively. X= [X1, X2, … , Xm]T  denotes the observation data matrix. Let the correlation matrix be 
the mxm symmetric matrix as given below: 
                   ρ11        ρ12   …  ρ1m 

                   ρ12        ρ22   …  ρ2m 

         ρ =       .        .           . 
                     .        .           . 
                    ρ1m       ρ2m          ρmm 

 
where the correlation coefficient ρik measures the amount of linear association between Xi  and Xk that is defined 
in terms of covariance σik and variances σii and σkk as follows: 
                                                           ρik  =  σik /(√σii √σkk) 
Thus, the correlation matrix ρ can be defined as follows: 
 

                     σ11 / (√σ11 √ σ11)       σ12 / (√σ11 √ σ22)    …     σ1m / (√σ11 √ σmm)                          
                     σ12 / (√σ11 √ σ22)       σ22 / (√σ22 √ σ22)    …     σ2m / (√σ22 √ σmm) 

    ρ =                 .                              .                                   .                         
                          .                              .                                   . 
               σ1m / (√σ11 √ σmm)     σ2m / (√σ22 √ σmm)    …    σmm / (√σmm √ σmm)     
                           

                                                               σ11     σ12  … σ1m 
                                                         σ12   σ22  … σ2m                                   
                                            ∑ =         .      .           . 
                                                           .      .           . 
                                                         σ1m    σ2m  … σmm 

where σik represents the covariance between ith and kth attributes defined below:  

σik = 1/(n-1)


n

i
iX

1

( - iX )(Xk - kX ) 

and σii represents the variance of ith attribute. 
and let Vmxm be standard deviation matrix that is defined below: 
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                                              √σ11       0     …     0  
                                               0       √σ22      …     0 

                         V1/2 =        .           .               . 
                                          .           .               .   
                                          0          0    …    √σmm 

 

Then, it can be easily verified that  

                                          V1/2ρV1/2 = Σ 

We can also write 

                                          ρ = (V1/2)-1Σ(V1/2)-1 

The principal components may also be obtained for the standardized variables: Z1, Z2,...,Zm using the following 
equation: 

                                         Zi = (Xi - iX )/√σii       for i=1, 2, …, m.  

X = [ X 1 , 2X , ..., mX ]T is the mean vector of X which is having m attributes/components i.e. X= [X1, X2 , 

…, Xm]. We can also represent it in a matrix form of dimension mxm:  Z = (V1/2)-1(X- X ), where Z = [Z1, Z2, … 
, Zm]T  the column vector of the standardized observation data X.  The principal components of Z are obtained 
from the eigenvectors of the correlation matrix ρ. Let Yi be the ith principal component of Z and (λi, ei) represent 
the ith eigenvalue/eigenvector pairs among m eigenvalues from ρ. If (λ1, e1), (λ2, e2), ..., (λm, em) are m 
eigenvalue-eigenvector pairs, where λ1 ≥ λ2 ≥ ... ≥ λm ≥ 0, the ith principal component is given by 

Yi = ei
T Z  

    = ei1Z1+ ei2Z2 + ... + eimZm,    i =1 , 2 , ..., m,    where ei is given by    

                    ei1 

                    ei2  

          ei =      . 

                     . 

                    eim 

Each eigenvalue of a principal component corresponds to the amount of variation it has. The larger eigenvalues 
are more significant and correspond to their projected eigenvectors.  The points which lie at a far distance from 
these axes would exhibit abnormal behavior that can easily be identified. Using a suitable threshold value, the 
normal system generated data with Mahalanobis distance greater than the threshold is considered as an outlier 
and it is an attack. If the data is in the threshold boundary, sometimes it alerts as intrusion. The sum of squares 
of the partial principal component values equals to the principal component value that is given as follows: 




m

i 1

Yi
2/λi  = Y1

2/λ1 + Y2
2/λ2 + …. + Ym

2/λm 

 This sum is nothing but Mahalanobis distance of the dataset X from the mean of the normal sample dataset [9]. 
In general, Mahalanobis distance between two vectors x and y is calculated by  

d2 (x, y) = (x − y)T ρ (x − y), where ρ is the sample correlation matrix. 
Here, the major principal components value is used to detect extreme deviations with large values and minor 
principal components value is used to detect slight deviations on the normal dataset. Thus, two thresholds are 
needed to detect attacks. Let q & r be the most significant principal components and least significant principal 
components and Tq & Tr be the thresholds for the major principal component and minor principal component. 
We say that an attack occurs for any observation of X if any one of the following condition is satisfied:  




q

i 1

Yi
2/λi  >  Tq              or             



m

rmi 1

Yi
2/λi  >  Tr   

These inequalities contain square of projections on the axes normalized by corresponding eigen values. The first 
inequality contains the sum of squares of first q principal component values (projections on first q axes) and the 
second one contains sum of squares of last r principal component values (projections on last r axes). If the first 
sum is greater than the threshold value Tq or the second sum is greater than the threshold value Tr, then there is 
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large deviation and such deviations are termed as abnormal behaviour of the system, i.e., an attack. Now we 
discuss confusion matrix that helps computing recall, precision, detection rates and false alarm rates. 

Confusion matrix: 

False alarm rate and detection rate can be calculated using the confusion matrix that is given below. 

                                             
                                                             Predicted Class 
                                                     C                                     NC 
         Actual Class                  C             
                                            NC 

 

Fig. 1 Confusion matrix 

C – Anomaly class                                      Recall (R) = TP / (TP+ FN) 
NC – Normal class                                   Precision (P) = TP / (TP+FP) 
TN – True Negative                                  F-measure = 2*R*P/(R+P) 
FN – False Negative                                                   = ((1+ 2).R.P) / (  2.R+P) 

TP – True Positive where   is the relative importance of precision vs recall and  

FP – False Positive it is usually set to 1. 

First, we calculate the mean vector for all the attributes that have been used for our experimental datasets. Then, 
we calculate the correlation matrix followed by the eigenvalues and eigenvectors from the correlation matrix. In 
order to calculate the principal components – major or minor- we sort the eigenvalues and their corresponding 
eigenvectors. We compute the summation of major and minor principal components and determine 
corresponding suitable threshold values from the normal dataset and compare with each observation of the 
mixed dataset. In order to evaluate the detection rate and false alarm rate accurately, we have used confusion 
matrix. The flow chart of the entire process is shown in the following Fig. 2.  

                                                                                   Normal/Tested data 

                                

                                        

    

  

                         

 

 

 

  

                                                                                  

 

                                                             

            Detection rate                                                                 False alarm rate 

Fig 2. Various steps for verification of intrusion detection using PCA 

              TN                 FP 
              FN                TP 

 Mean Vector calculation 

  Correlation Matrix computation 

  Eigen Analysis i.e. eigenvalues and their corresponding eigenvectors( λ , e) 

Sorted(in descending) eigenvalues and their corresponding eigenvectors    
i.e. Principal Components(No. of PC’s m)

Minor and Major Principal 
Components i.e. r & q

Threshold evaluation for minor 
and major PC’s i.e. Tr & Tq 

            



q

i 1

Yi
2/λi  >  Tq        OR        



m

rmi 1

Yi
2/λi  >  Tr  

                                         (Intrusion Detection)

Intruded data verification using confusion matrix 
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4. Performance Log Analysis 

We generate a log file of patterns with errors and without errors and then use PCA to analyze the results. 

a. Performance Log 

As PCA has wide area of applications, one area of application is HIDS. The analysis of the paper uses a 
host-based anomaly detection scheme to identify abnormal system behavior. Normal behavior of the system 
is created based on the processes running in the system. Then abnormal behavior is generated by creating 
problems in the system. Performance log are generated by taking some of the process attributes for the 
normal and abnormal behavior of the system. The performance of the personal computer can be measured 
by using the performance log. The hardware profile of the system that has been used for the experiment is 
as follows: 

 Intel(R) Core 2 Duo CPU 1.60 GHz 

 1.99 GB RAM 

 Microsoft Windows XP Professional Service Pack 2 
b. Attributes used in performance log 

Different attributes considered for Performance Log analysis are as follows: 

 Committed byte in use (%): This is the ratio of memory committed bytes to memory commit limit. 
Here committed memory is physical memory in use for which space has been reserved in the 
paging file and should be written to the disk. The commit limit is determined by the size of the 
paging file. If the paging file is enlarged, the commit limit increases, and the ratio is reduced. This 
counter displays the current percentage value only (not an average). 

 Available Mbytes: This is the amount of physical memory in Megabytes available to processes 
running in the computer. It is calculated by summing up the space of the Zeroed, Free, and 
Standby memory lists. Free memory is ready for use. Zeroed memory is pages of memory filled 
with zeros to prevent later processes from seeing data used by a previous process. Standby 
memory is memory removed from a process’ working set (physical memory) on route to disk, but 
is still available to be recalled. This counter displays the last observed value only (not an average). 

 Cache faults/sec: It is the rate at which faults occur when a page sought in the file system cache is 
not found and must be retrieved from elsewhere in memory ( a soft fault) or from the disk (a hard 
fault). The file system cache is an area of physical memory that stores recently used pages of data 
for applications. Cache activity is a reliable indicator of most application I/O operations. This 
counter shows the number of faults, without regard for the number of pages faulted in each 
operation. 

 Page faults/sec: It is the average number of pages faulted per second. It is measured in number of 
pages faulted per second because only one page is faulted in each fault operation; hence this is also 
equal to the number of page fault operations. This counter includes both hard faults (those that 
require disk access) and soft faults (where the faulted page is found elsewhere in physical 
memory.) Most processors can handle large numbers of soft faults without significant 
consequence. However, hard faults, which require disk access, can cause significant delays. 

 Page writes/sec: It is the rate at which pages are written to disk to free up space in physical 
memory. Pages are written to disk only if they are changed while in physical memory, so they are 
likely to hold data, not code.  This counter shows write operations, without regard to the number of 
pages written in each operation.  This counter displays the difference between the values observed 
in the last two samples, divided by the duration of the sample interval. 

 Page op/sec: It is the rate at which pages are written to disk to free up space in physical memory. 
Pages are written back to disk only if they are changed in physical memory, so they are likely to 
hold data, not code. A high rate of pages output might indicate a memory shortage. Windows 
writes more pages back to disk to free up space when physical memory is in short supply.  This 
counter shows the number of pages, and can be compared to other counts of pages, without 
conversion. 

 Pool non-paged allocs: is the number of calls to allocate space in the non-paged pool. The non-
paged pool is an area of system memory for objects that cannot be written to disk, and must remain 
in the physical memory as long as they are allocated.  It is measured in numbers of calls to allocate 
space, regardless of the amount of space allocated in each call.  This counter displays the last 
observed value only; it is not an average. 
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 Pool paged allocs: is the number of calls to allocate space in the paged pool. The paged pool is an 
area of system memory (physical memory used by the operating system) for objects that can be 
written to disk when they are not being used. It is measured in numbers of calls to allocate space, 
regardless of the amount of space allocated in each call.  This counter displays the last observed 
value only; it is not an average. 

 System driver total byte: It is the size, in bytes, of the pageable virtual memory currently being 
used by device drivers. Pageable memory can be written to disk when it is not being used. It 
includes physical memory (Memory\\System Driver Resident Bytes) and code and data paged to 
disk. It is a component of Memory\\System Code Total Bytes. This counter displays the last 
observed value only; it is not an average. 

 Write copies/sec: It is the rate at which page faults are caused by attempts to write that have been 
satisfied by coping of the page from elsewhere in the physical memory. This is an economical way 
of sharing data since pages are only copied when they are written to; otherwise, the page is shared. 
This counter shows the number of copies, without regard for the number of pages copied in each 
operation.  

5. Experiment Methodology 

To carry out the experiment, the performance logs are generated. The steps for generating the performance logs 
are as follows [16]: 

 On the start menu, point to settings, point to Control Panel, double click Administrative Tools, and 
double click Computer Management. 

 Explore performance Logs and Alerts, right click Counter Logs, and then click New Log Settings. 
 Type a name for the counter log and then click OK. 
 Click Add Counters. 
 In the Performance object box, select a performance object that need to be monitored. 
 Counters added for experiment. 
 On the General tab under Sample data, every sampling interval of 15 seconds is configured. 
 On the Log Files tab, log files properties are configured as Comma delimited files that can be viewed 

later in reporting tools such as Microsoft Excel. 

After the performance log has been generated each day, the log is divided into 4 groups, and the average values 
for each column of the table are calculated. These values are used as our normal data set. In the meanwhile, for 
one day the system is left to work when the graphics driver, audio driver, and USB driver have been disabled. 
This generates the logs for system performance that have been considered as intruded data. We have taken the 
same number and same type of attributes in our experiment. For our experiment, we have taken the normal 
dataset and the testing dataset i.e. mixture dataset (normal and intrusion), which are given Tables 1 and 2, 
respectively. We have also shown how our proposed methodology detects and verifies the true intrusion in data 
flow diagram (DFD) (ref. Fig. 2). 

Table 1 : Normal dataset with some selective attributes 

Commit
ted byte 
in use 

Availab
le 
Mbytes 

Cache 
faults/se
c 

Page 
faults/s
ec 

Page 
writes/s
ec 

Page 
op/sec 

Pool 
Non-
paged 
Allocs 

Pool 
Paged 
Allocs 

System 
driver 
total 
byte 

Write 
copies/s
ec 

3.82441
8508 

1724.57
2519 

101.612
4671 

295.36
30973 

0.06857
4005 

1.09718
4087 

26682 42251.7
6336 

750315
2.855 

3.33582
1308 

3.64145
3572 

1736.84
8485 

57.1504
0864 

256.09
14499 

0.24534
2241 

3.92547
5853 

23133.4
2424 

32497.9
697 

750387
2 

4.44542
9107 

5.11114
4298 

1680.81
9718 

79.4770
8971 

334.48
68715 

0.14372
3968 

2.29958
3495 

37059.2
0563 

52290.0
2817 

760777
1.944 

1.91861
6972 

5.63854
6946 

1654.26
1628 

36.1708
794 

162.96
19512 

0.03686
9153 

0.58990
6451 

32614.1
1047 

45698.5
5233 

750387
2 

2.13336
7554 

4.57840
4615 

1702.97
1429 

51.1199
8798 

280.35
27608 

0.15858
5618 

2.53736
9884 

27955.8 37290.3
7143 

750387
2 

5.54100
7434 

4.77965
7979 

1696 49.9333
1807 

128.97
45175 

0.16840
0988 

2.69441
5815 

33171.6
1811 

48146.6
0236 

750387
2 

1.32170
4214 

6.23580
037 

1640.77
8065 

94.4721
2975 

308.61
62728 

0.13230
9061 

2.11694
497 

54970.7
5613 

71052.6
1742 

750387
2 

3.68972
7265 

5.61765 1648.30 46.0269 219.40 0.01555 0.24880 33495.5 43982.1 750368 7.98484
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1849 0971 8896 03424 0526 8412 1262 0097 9.072 3091 
4.11134
8119 

1720.17
0732 

132.121
0622 

525.63
92525 

0.06567
2177 

1.05075
484 

26849.5
3659 

37876.3
3537 

750017
5.61 

7.74730
1195 

9.08474
6823 

1619.29
0476 

68.3286
9399 

458.02
7867 

0.60135
9321 

9.62174
913 

42900.9
6667 

47518.9
2857 

747065
5.39 

4.44356
2404 

10.7049
4185 

1580.08
8785 

76.9729
0274 

512.52
4161 

1.16544
1987 

18.6470
7179 

49948.0
1402 

62041.1
2617 

747066
3.776 

10.8575
9362 

10.8421
5109 

1563.67
4455 

102.997
176 

469.88
37442 

0.46537
3406 

7.44597
4504 

86950.0
7321 

100841.
3692 

747094
4.498 

8.17171
7948 

8.92087
0039 

1650.93
6255 

35.1183
0951 

189.85
69296 

0.29024
2311 

4.64387
6977 

36718.6
8127 

45366.9
5219 

747091
6.335 

7.52211
2596 

9.01944
5732 

1629.35
9551 

123.152
1235 

660.77
78565 

1.23764
2668 

19.8022
8269 

37276.3
9326 

44230.8
5393 

747004
5.483 

9.02677
0954 

8.15211
776 

1669.16
8831 

46.8869
2477 

185.93
97726 

0.32143
1061 

5.14289
6979 

36697.4
8312 

42494.6
1299 

747085
9.304 

2.60437
2686 

9.78973
4979 

1564.33
3333 

108.419
3887 

688.67
77162 

1.01201
838 

16.1922
9409 

39289.6
8571 

42273.7
4286 

746930
9.562 

11.2262
4646 

8.82137
0882 

1635.53
8462 

70.4130
3081 

401.79
80469 

0.52689
9445 

8.43039
1119 

36366.8
5 

41617.4
6154 

747037
9.323 

7.55144
6472 

9.22601
2337 

1605.61
8421 

82.6517
3496 

478.15
3206 

0.81245
8579 

12.9993
3727 

44724.5 48669.6
7763 

747048
4.211 

5.78276
1903 

13.1381
8528 

1567.82
7759 

60.9771
7436 

335.72
65847 

0.80176
4537 

12.8282
326 

49766.0
2174 

58386.9
9164 

747094
6.462 

6.01478
3825 

10.2376
1708 

1621.77
0221 

107.500
139 

639.69
73908 

0.61802
9752 

9.88847
6038 

49423.0
7537 

56112.7
8125 

757714
0.706 

3.40091
2746 

 

Table 2 : Testing dataset with some selective attributes 

Commi
tted 
byte in 
use 

Availab
le 
Mbytes 

Cache 
faults/s
ec 

Page 
faults/s
ec 

Page 
writes/s
ec 

Page 
op/sec 

Pool 
Nonpag
ed 
Allocs 

Pool 
Paged 
Allocs 

System 
driver 
total 
byte 

Write 
copies/s
ec 

4.6013
87552 

1700.0
22388 

26.040
43396 

132.99
67699 

0.0876
10478 

1.4017
67647 

29212.
34328
 

39788.
48507 

753300
2.507 

2.9401
84286 

4.9466
0698 

1690.1
79012 

85.354
08783 

371.75
05326 

0.2828
49872 

4.5255
97951 

32166.
55556 

43517.
9321
  

750358
1.235 

7.6550
12219 

9.2519
20893 

1632.7
54655 

220.42
84527 

905.32
87534 

0.3761
7982 

6.0188
77122 

63023.
91566 

72219.
42935 

749744
3.119 

8.4206
12447 

9.8730
66812 

1584.6
42612 

64.198
29632 

766.80
79994 

0.4248
27439 

6.7972
39025 

48472.
48454 

57402.
49828 

747078
0.261 

4.5066
49959 

7.5678
23945 

1692.2
06349 

68.284
57374 

324.15
01421 

0.9445
6778 

15.113
08448 

35413.
93651 

38624.
19048 

747035
6.317 

5.4890
3716 

8.8310
54122 

1646.6
37537 

54.316
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