Design of Anomaly Detection System for Outlier Detection in Hardware Profile Using PCA

Hari Om, Tanmoy Hazra Department of Computer Science & Engineering Indian School of Mines, Dhanbad 826004, India ¹hari.om.cse@ismdhanbad.ac.in, ²tanmoyhazra316@gmail.com

Abstract

In this paper, we design an Anomaly Detection System for Outlier Detection in Hardware Profile by using Principal Component Analysis (PCA) that helps reduce the dimension of data. Anomaly detection methods can detect new intrusions, but they suffer from false alarms. Another approach is misuse detection that identifies only known attacks by matching with the previous patterns. Host based Intrusion Detection Systems (HIDSs) use anomaly detection approach to identify malicious attacks i.e. intrusion. Data being of large dimensional generates features in terms of large set of dimensions and hence the system takes considerable time for processing the huge amount of data. The PCA is used to reduce the dimensionality of the host based data without any loss of useful information such as non-redundant data. We experimentally show that the proposed intrusion detection system has detection rate in the range of 90% - 97.5% and false alarm rate in the range of 2.5% - 7.5% depending upon the major and minor principal components.

Keywords: Anomaly Detection, Outlier Detection, PCA, Mahalanobis Distance, False alarm rate

1. Introduction

With the explosive rapid expansion of computers in last decade and so, their security has become an important issue. The process of monitoring the events occurring in a computer system and analyzing them for identifying intrusions is known as intrusion detection technique and the system is known as intrusion detection system (IDS). An intrusion is defined as an attack in a network or system by an intruder that compromises the security parameters such as integrity, confidentiality, and authentication of the system. The attacks can be external attacks, internal penetrations, and misfeasors. An intruder tries to get access into a system for which he/she is not authorized. An Intrusion Detection System (IDS) is a program that analyzes the events that have taken place or those happen during an execution and it tries to find indications of misuse of the computer. Host based Intrusion Detection Systems (HIDSs) monitor suspicious activities that take place in the system. The HIDSs can be either anomaly detection that is based on statistical measure or misuse detection that is based on signature. Anomaly detection is used to capture the changes in behavior that are not normal. These methods use as input the training data to build normal system behavior models that signal alarms when there is any abnormal activity which deviates from the normal model. These models may be generated using different approaches such as statistical analysis, data mining algorithms, genetic algorithms, artificial neural network, fuzzy logic, rough set. Anomaly detection methods have problems of false positive and false negative. Since the numbers of new attacks are increasing and the variations of known attacks cannot be recognized by misuse detection. Therefore, we develop an intrusion detection system using Principal Component Analysis (PCA) that detects the outlier data.

2. Related Work

There are several works related to intrusion detection in literature [1-6]. The principal component analysis (PCA) is one of the important approaches that are used to reduce the data size and also detect errors in multivariate data [3]. The Chi-square distribution is also very useful statistical approach in detecting anomalies. Shyu discusses an intrusion predictive model that uses PCA and Chi-square distribution for KDD1999 dataset [1]. For detecting anomaly in a system, monitoring of its behaviour is required. If there is abnormal behaviour in the system, one can suspect some security violation. In [2], an intrusion detection model based on security violations that is capable of detecting break-ins, penetrations and other types of computer attacks is discussed. Ye uses Chi–square statistic to develop an anomaly detection technique that has 0% false alarm rate and 100% detection rate [4]. Puketza provides a comparative study of detection rate and false alarm rate by using Hotelling's T² test and Chi-square distance test. He has reported experimentally that the Chi-square distribution has better performance than the Hotelling's T² test [14]. Chen et. al discuss an efficient filtering scheme that requires only 0.3% of the original traffic volume for anomaly [17]. Casas et. al discuss an unsupervised network intrusion detection system that can detect unknown network attacks without using any kind of signatures,

labeled traffic, or training [18]. In this paper, we use PCA methodology to detect intrusion and our proposed system has detection rate in the range of 90% - 97.5% and false alarm rate in the range of 2.5% - 7.5% depending upon the major and minor principal components. The rest of the paper is organized as follows: section 3 discusses the proposed work. Experimental methodology has been discussed in section 4, Results and Discussions are given in section 5. Finally, the conclusion is given in section 6.

3. Proposed Work

The PCA is a common technique to find the patterns in the data of high dimension. It basically reduces the number of dimensions in an input data set without losing its useful information. In PCA technique, a set of principal components are obtained that constitute an orthogonal set of eigenvalue and eigenvector pairs. The set of principal components, also called axes, best suits the data. In our proposed scheme, these set of axes represent features' normal data. Outlier detection occurs by mapping the used data to these normal axes in order to find the distance from the axes. If the distance is greater than a certain threshold, it is assumed that there is an attack i.e. outlier detection. The principal components are linear combinations of *m* random variables (features of used data), denoting them as $X_1, X_2, ..., X_m$, that have two important properties:

- They are uncorrelated, and sorted in descending order.
- Their total variance, denoted by R, is the summation of variances of each variable X1, X2, ..., Xm, i.e.,

$$R = \sum_{i=1}^{m} R_{i}$$
 , where R_{i} is variance of X_{i}

Assume that the original data is represented in matrix form with *n* observations, each observation has *m* attributes i.e. X_{nxm} . Let ρ_{mxm} and \sum_{mxm} be the symmetric correlation and variance-covariance matrices of X_1 , $X_2,...,X_m$, respectively. $X = [X_1, X_2, ..., X_m]^T$ denotes the observation data matrix. Let the correlation matrix be the *mxm* symmetric matrix as given below:

$$\rho = \begin{pmatrix} \rho_{11} & \rho_{12} & \dots & \rho_{1m} \\ \rho_{12} & \rho_{22} & \dots & \rho_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ \rho_{1m} & \rho_{2m} & \rho_{mm} \end{pmatrix}$$

where the correlation coefficient ρ_{ik} measures the amount of linear association between X_i and X_k that is defined in terms of covariance σ_{ik} and variances σ_{ii} and σ_{kk} as follows:

$$\rho_{ik} = \sigma_{ik} / (\sqrt{\sigma_{ii}} \sqrt{\sigma_{kk}})$$

Thus, the correlation matrix ρ can be defined as follows:

$$\rho = \begin{pmatrix} \sigma_{11} / (\sqrt{\sigma_{11}} \sqrt{\sigma_{11}}) & \sigma_{12} / (\sqrt{\sigma_{11}} \sqrt{\sigma_{22}}) & \dots & \sigma_{1m} / (\sqrt{\sigma_{11}} \sqrt{\sigma_{mm}}) \\ \sigma_{12} / (\sqrt{\sigma_{11}} \sqrt{\sigma_{22}}) & \sigma_{22} / (\sqrt{\sigma_{22}} \sqrt{\sigma_{22}}) & \dots & \sigma_{2m} / (\sqrt{\sigma_{22}} \sqrt{\sigma_{mm}}) \\ \vdots & \vdots & \vdots & \vdots \\ \sigma_{1m} / (\sqrt{\sigma_{11}} \sqrt{\sigma_{mm}}) & \sigma_{2m} / (\sqrt{\sigma_{22}} \sqrt{\sigma_{mm}}) & \dots & \sigma_{mm} / (\sqrt{\sigma_{mm}} \sqrt{\sigma_{mm}}) \end{pmatrix}$$

$$\Sigma = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \dots & \sigma_{1m} \\ \sigma_{12} & \sigma_{22} & \dots & \sigma_{2m} \\ \vdots & \vdots & \vdots \\ \sigma_{1m} & \sigma_{2m} & \dots & \sigma_{mm} \end{pmatrix}$$

where σ_{ik} represents the covariance between i^{th} and k^{th} attributes defined below:

$$\sigma_{ik} = 1/(n-1) \sum_{i=1}^{n} (X_i - \overline{X_i}) (X_k - \overline{X_k})$$

and σ_{ii} represents the variance of i^{th} attribute. and let V_{mxm} be standard deviation matrix that is defined below:

$$\mathbf{V}^{1/2} = \begin{pmatrix} \sqrt{\sigma_{11}} & 0 & \dots & 0 \\ 0 & \sqrt{\sigma_{22}} & \dots & 0 \\ \ddots & \ddots & \ddots & \ddots \\ 0 & 0 & \dots & \sqrt{\sigma_{mm}} \end{pmatrix}$$

Then, it can be easily verified that

 $\mathbf{V}^{1/2} \mathbf{\rho} \mathbf{V}^{1/2} = \boldsymbol{\Sigma}$

We can also write

$$\rho = (V^{1/2})^{-1} \Sigma (V^{1/2})^{-1}$$

The principal components may also be obtained for the standardized variables: $Z_1, Z_2,...,Z_m$ using the following equation:

$$Z_i = (X_i - \overline{X_i})/\sqrt{\sigma_{ii}}$$
 for i=1, 2, ..., m.

 $\overline{X} = [\overline{X}_1, \overline{X}_2, ..., \overline{X}_m]^T$ is the mean vector of X which is having *m* attributes/components i.e. X= [X₁, X₂,

..., X_m]. We can also represent it in a matrix form of dimension *mxm*: $Z = (V^{1/2})^{-1}(X - \overline{X})$, where $Z = [Z_1, Z_2, ..., Z_m]^T$ the column vector of the standardized observation data X. The principal components of Z are obtained from the eigenvectors of the correlation matrix ρ . Let Y_i be the ith principal component of Z and (λ_i, e_i) represent the ith eigenvalue/eigenvector pairs among *m* eigenvalues from ρ . If $(\lambda_1, e_1), (\lambda_2, e_2), ..., (\lambda_m, e_m)$ are *m* eigenvalue-eigenvector pairs, where $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_m \ge 0$, the ith principal component is given by

$$\begin{split} Y_i &= e_i^T Z \\ &= e_{i1} Z_1 + e_{i2} Z_2 \quad + ... + e_{im} Z_m, \quad i=1 \ , 2 \ , \ ..., \ m, \quad \text{where} \ e_i \ is \ given \ by \\ e_i &= \begin{pmatrix} e_{i1} \\ e_{i2} \\ . \\ . \\ e_{im} \end{pmatrix} \end{split}$$

Each eigenvalue of a principal component corresponds to the amount of variation it has. The larger eigenvalues are more significant and correspond to their projected eigenvectors. The points which lie at a far distance from these axes would exhibit abnormal behavior that can easily be identified. Using a suitable threshold value, the normal system generated data with Mahalanobis distance greater than the threshold is considered as an outlier and it is an attack. If the data is in the threshold boundary, sometimes it alerts as intrusion. The sum of squares of the partial principal component values equals to the principal component value that is given as follows:

$$\sum_{i=1}^{} Y_i^{2} / \lambda_i = Y_1^{2} / \lambda_1 + Y_2^{2} / \lambda_2 + \ldots + Y_m^{2} / \lambda_m$$

This sum is nothing but Mahalanobis distance of the dataset X from the mean of the normal sample dataset [9]. In general, Mahalanobis distance between two vectors x and y is calculated by

 $d^{2}(x, y) = (x - y)^{T} \rho (x - y)$, where ρ is the sample correlation matrix.

Here, the major principal components value is used to detect extreme deviations with large values and minor principal components value is used to detect slight deviations on the normal dataset. Thus, two thresholds are needed to detect attacks. Let q & r be the most significant principal components and least significant principal components and T_q & T_r be the thresholds for the major principal component and minor principal component. We say that an attack occurs for any observation of X if any one of the following condition is satisfied:

$$\sum_{i=1}^{q} \quad Y_{i}^{\,2} / \lambda_{i} > \ T_{q} \qquad \quad \text{or} \qquad \quad \sum_{i=m-r+1}^{m} Y_{i}^{\,2} / \lambda_{i} > \ T_{r}$$

These inequalities contain square of projections on the axes normalized by corresponding eigen values. The first inequality contains the sum of squares of first q principal component values (projections on first q axes) and the second one contains sum of squares of last r principal component values (projections on last r axes). If the first sum is greater than the threshold value T_q or the second sum is greater than the threshold value T_r, then there is

large deviation and such deviations are termed as abnormal behaviour of the system, i.e., an attack. Now we discuss confusion matrix that helps computing recall, precision, detection rates and false alarm rates.

Confusion matrix:

False alarm rate and detection rate can be calculated using the confusion matrix that is given below.

		Predicted Cla	SS					
		С	NC					
Actual	Class	TN	FP	C				
		FN	ТР	NC				
				-				
		Fig. 1 Con	fusion matrix					
C – Anomaly class		Recall $(R) =$	TP / (TP + FN)					
NC – Normal class		Precision (P) =	= TP / (TP+FP)					
TN – True Negative		F-measure = 2	2*R*P/(R+P)					
FN – False Negative		= ($(1+\beta^2)$.R.P) / (β^2 .R	+P)				
TP – True Positive		where ,	β is the relative imposed	rtance of precision vs recall and				
FP – False Positive	it is usually set to 1.							

First, we calculate the mean vector for all the attributes that have been used for our experimental datasets. Then, we calculate the correlation matrix followed by the eigenvalues and eigenvectors from the correlation matrix. In order to calculate the principal components – major or minor- we sort the eigenvalues and their corresponding eigenvectors. We compute the summation of major and minor principal components and determine corresponding suitable threshold values from the normal dataset and compare with each observation of the mixed dataset. In order to evaluate the detection rate and false alarm rate accurately, we have used confusion matrix. The flow chart of the entire process is shown in the following Fig. 2.

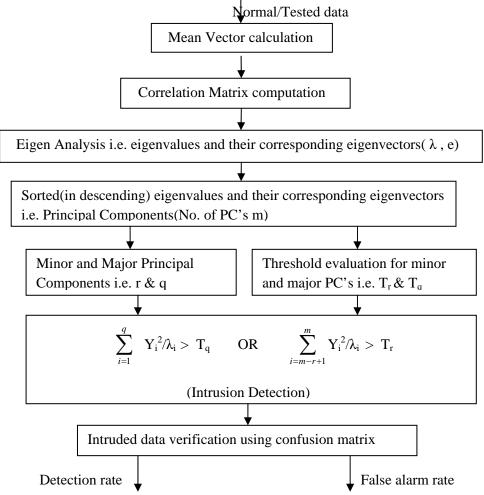


Fig 2. Various steps for verification of intrusion detection using PCA

4. Performance Log Analysis

We generate a log file of patterns with errors and without errors and then use PCA to analyze the results.

a. Performance Log

As PCA has wide area of applications, one area of application is HIDS. The analysis of the paper uses a host-based anomaly detection scheme to identify abnormal system behavior. Normal behavior of the system is created based on the processes running in the system. Then abnormal behavior is generated by creating problems in the system. Performance log are generated by taking some of the process attributes for the normal and abnormal behavior of the system. The performance of the personal computer can be measured by using the performance log. The hardware profile of the system that has been used for the experiment is as follows:

- Intel(R) Core 2 Duo CPU 1.60 GHz
- 1.99 GB RAM
- Microsoft Windows XP Professional Service Pack 2

b. Attributes used in performance log

Different attributes considered for Performance Log analysis are as follows:

- Committed byte in use (%): This is the ratio of memory committed bytes to memory commit limit. Here committed memory is physical memory in use for which space has been reserved in the paging file and should be written to the disk. The commit limit is determined by the size of the paging file. If the paging file is enlarged, the commit limit increases, and the ratio is reduced. This counter displays the current percentage value only (not an average).
- Available Mbytes: This is the amount of physical memory in Megabytes available to processes running in the computer. It is calculated by summing up the space of the Zeroed, Free, and Standby memory lists. Free memory is ready for use. Zeroed memory is pages of memory filled with zeros to prevent later processes from seeing data used by a previous process. Standby memory is memory removed from a process' working set (physical memory) on route to disk, but is still available to be recalled. This counter displays the last observed value only (not an average).
- Cache faults/sec: It is the rate at which faults occur when a page sought in the file system cache is not found and must be retrieved from elsewhere in memory (a soft fault) or from the disk (a hard fault). The file system cache is an area of physical memory that stores recently used pages of data for applications. Cache activity is a reliable indicator of most application I/O operations. This counter shows the number of faults, without regard for the number of pages faulted in each operation.
- Page faults/sec: It is the average number of pages faulted per second. It is measured in number of pages faulted per second because only one page is faulted in each fault operation; hence this is also equal to the number of page fault operations. This counter includes both hard faults (those that require disk access) and soft faults (where the faulted page is found elsewhere in physical memory.) Most processors can handle large numbers of soft faults without significant consequence. However, hard faults, which require disk access, can cause significant delays.
- Page writes/sec: It is the rate at which pages are written to disk to free up space in physical memory. Pages are written to disk only if they are changed while in physical memory, so they are likely to hold data, not code. This counter shows write operations, without regard to the number of pages written in each operation. This counter displays the difference between the values observed in the last two samples, divided by the duration of the sample interval.
- Page op/sec: It is the rate at which pages are written to disk to free up space in physical memory. Pages are written back to disk only if they are changed in physical memory, so they are likely to hold data, not code. A high rate of pages output might indicate a memory shortage. Windows writes more pages back to disk to free up space when physical memory is in short supply. This counter shows the number of pages, and can be compared to other counts of pages, without conversion.
- Pool non-paged allocs: is the number of calls to allocate space in the non-paged pool. The nonpaged pool is an area of system memory for objects that cannot be written to disk, and must remain in the physical memory as long as they are allocated. It is measured in numbers of calls to allocate space, regardless of the amount of space allocated in each call. This counter displays the last observed value only; it is not an average.

- Pool paged allocs: is the number of calls to allocate space in the paged pool. The paged pool is an area of system memory (physical memory used by the operating system) for objects that can be written to disk when they are not being used. It is measured in numbers of calls to allocate space, regardless of the amount of space allocated in each call. This counter displays the last observed value only; it is not an average.
- System driver total byte: It is the size, in bytes, of the pageable virtual memory currently being used by device drivers. Pageable memory can be written to disk when it is not being used. It includes physical memory (Memory\\System Driver Resident Bytes) and code and data paged to disk. It is a component of Memory\\System Code Total Bytes. This counter displays the last observed value only; it is not an average.
- Write copies/sec: It is the rate at which page faults are caused by attempts to write that have been satisfied by coping of the page from elsewhere in the physical memory. This is an economical way of sharing data since pages are only copied when they are written to; otherwise, the page is shared. This counter shows the number of copies, without regard for the number of pages copied in each operation.

5. Experiment Methodology

To carry out the experiment, the performance logs are generated. The steps for generating the performance logs are as follows [16]:

- On the start menu, point to settings, point to Control Panel, double click Administrative Tools, and double click Computer Management.
- Explore performance Logs and Alerts, right click Counter Logs, and then click New Log Settings.
- Type a name for the counter log and then click OK.
- Click Add Counters.
- In the Performance object box, select a performance object that need to be monitored.
- Counters added for experiment.
- On the General tab under Sample data, every sampling interval of 15 seconds is configured.
- On the Log Files tab, log files properties are configured as Comma delimited files that can be viewed later in reporting tools such as Microsoft Excel.

After the performance log has been generated each day, the log is divided into 4 groups, and the average values for each column of the table are calculated. These values are used as our normal data set. In the meanwhile, for one day the system is left to work when the graphics driver, audio driver, and USB driver have been disabled. This generates the logs for system performance that have been considered as intruded data. We have taken the same number and same type of attributes in our experiment. For our experiment, we have taken the normal dataset and the testing dataset i.e. mixture dataset (normal and intrusion), which are given Tables 1 and 2, respectively. We have also shown how our proposed methodology detects and verifies the true intrusion in data flow diagram (DFD) (ref. Fig. 2).

Commit	Availab	Cache	Page	Page	Page	Pool	Pool	System	Write
ted byte	le	faults/se	faults/s	writes/s	op/sec	Non-	Paged	driver	copies/s
in use	Mbytes	с	ec	ec		paged	Allocs	total	ec
						Allocs		byte	
3.82441	1724.57	101.612	295.36	0.06857	1.09718	26682	42251.7	750315	3.33582
8508	2519	4671	30973	4005	4087		6336	2.855	1308
3.64145	1736.84	57.1504	256.09	0.24534	3.92547	23133.4	32497.9	750387	4.44542
3572	8485	0864	14499	2241	5853	2424	697	2	9107
5.11114	1680.81	79.4770	334.48	0.14372	2.29958	37059.2	52290.0	760777	1.91861
4298	9718	8971	68715	3968	3495	0563	2817	1.944	6972
5.63854	1654.26	36.1708	162.96	0.03686	0.58990	32614.1	45698.5	750387	2.13336
6946	1628	794	19512	9153	6451	1047	5233	2	7554
4.57840	1702.97	51.1199	280.35	0.15858	2.53736	27955.8	37290.3	750387	5.54100
4615	1429	8798	27608	5618	9884		7143	2	7434
4.77965	1696	49.9333	128.97	0.16840	2.69441	33171.6	48146.6	750387	1.32170
7979		1807	45175	0988	5815	1811	0236	2	4214
6.23580	1640.77	94.4721	308.61	0.13230	2.11694	54970.7	71052.6	750387	3.68972
037	8065	2975	62728	9061	497	5613	1742	2	7265
5.61765	1648.30	46.0269	219.40	0.01555	0.24880	33495.5	43982.1	750368	7.98484

Table 1 : Normal dataset with some selective attributes

4.11134 1720.17 132.121 525.63 0.06567 1.05075 26849.5 37876.3 75017 7.74730 8119 0732 0622 92525 2177 484 3659 3537 5.61 1195 9.08474 1619.29 68.3286 458.02 0.60135 9.62174 42900.9 47518.9 747065 4.44356 6823 0476 9399 7867 9321 913 6667 2857 5.39 2404 10.7049 1580.08 76.9729 512.52 1.16544 18.6470 49948.0 62041.1 747066 10.8575 4185 8785 0274 4161 1987 7179 1402 2617 3.776 9362 10.8421 1563.67 102.997 469.88 0.46537 7.44597 86950.0 $100841.$ 747094 8.17171 5109 4455 176 37442 3406 4504 7321 3692 4.498 7948 8.92087 1650.93 35.1183 189.85 0.29024 4.64387 36718.6 45366.9 747004 9.02677 5732 9551 123.52 660.77 1.23764 19.8022 37276.3 44230.8 747004 9.02677 5732 9551 1235 78565 2668 8269 9326 5393 5.483 0954 8.15211 1669.16 46.8869 185.93 0.32143 5.14289 36697.4 <	10.40	0071	0007	00404	0506	0.41.0	10.00	0007	0.070	2001
811907320622925252177484365935375.6111959.084741619.2968.3286458.020.601359.621744290.0947518.97470654.4435668230476939978679321913666728575.39240410.70491580.0876.9729512.521.1654418.647049948.062041.174706610.8575418587850274416119877179140226173.776936210.84211563.67102.997469.880.465377.4459786950.0100841.7470948.17171510944551763744234064504732136924.49879488.920871650.9335.1183189.850.290244.6438736718.645366.97470917.522110039625509516929623116977812752196.33525969.019441629.35123.152660.771.2376419.802237276.344230.87470049.026775732955112357856526688269932653935.48309548.152111669.1646.8899185.930.321435.142836697.442494.67470852.60437776883124779772610616979831212999.30426869.789731564.33108.41968	1849	0971	8896	03424	0526	8412	1262	0097	9.072	3091
9.084741619.2968.3286458.020.601359.6217442900.947518.97470654.4435668230476939978679321913666728575.39240410.70491580.0876.9729512.521.1654418.647049948.062041.174706610.8575418587850274416119877179140226173.776936210.84211563.67102.997469.880.465377.4459786950.0100841.7470948.17171510944551763744234064504732136924.49879488.920871650.9335.1183189.850.290244.6438736718.645366.97470917.522110039625509516929623116977812752196.33525969.019441629.35123.152660.771.2376419.802237276.344230.8747049.026775732955112357856526688269932653935.48309548.152111669.1646.8869185.930.321435.1428936697.442494.67470852.60437776883124779772610616979831212999.30426869.789731564.33108.419688.671.0120116.19223928.642273.774693011.226249793333<	4.11134	1720.17	132.121	525.63	0.06567		26849.5	37876.3	750017	7.74730
6823 0476 9399 7867 9321 913 6667 2857 5.39 2404 10.7049 1580.08 76.9729 512.52 1.16544 18.6470 49948.0 62041.1 747066 10.8575 4185 8785 0274 4161 1987 7179 1402 2617 3.776 9362 10.8421 1563.67 102.997 469.88 0.46537 7.44597 8695.00 $100841.$ 747094 8.17171 5109 4455 176 37442 3406 4504 7321 3692 4.498 7948 8.92087 1650.93 35.1183 189.85 0.29024 4.64387 36718.6 45366.9 747091 7.52211 0039 6255 0951 69296 2311 6977 8127 5219 6.335 2596 9.01944 1629.35 123.152 660.77 1.23764 19.8022 37276.3 44230.8 74704 9.02677 5732 9551 1235 78565 2668 8269 9326 5393 5.483 0954 8.15211 1669.16 46.8869 185.93 0.32143 5.14289 36697.4 4249.6 747085 2.60437 776 8831 2477 97726 1061 6979 8312 1299 9.304 2686 9.78973 1564.33 108.419 68.67 1.01201 16.1922 39289.6 42273.7 <td>8119</td> <td>0732</td> <td>0622</td> <td>92525</td> <td>2177</td> <td>484</td> <td>3659</td> <td>3537</td> <td>5.61</td> <td>1195</td>	8119	0732	0622	92525	2177	484	3659	3537	5.61	1195
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.08474	1619.29	68.3286	458.02	0.60135	9.62174	42900.9	47518.9	747065	4.44356
4185 8785 0274 4161 1987 7179 1402 2617 3.776 9362 10.8421 1563.67 102.997 469.88 0.46537 7.44597 86950.0 $100841.$ 747094 8.17171 5109 4455 176 37442 3406 4504 7321 3692 4.498 7948 8.92087 1650.93 35.1183 189.85 0.29024 4.64387 36718.6 45366.9 747091 7.52211 0039 6255 0951 69296 2311 6977 8127 5219 6.335 2596 9.01944 1629.35 123.152 660.77 1.23764 19.8022 37276.3 44230.8 74704 9.02677 5732 9551 1235 78565 2668 8269 9326 5393 5.483 0954 8.15211 1669.16 46.8869 185.93 0.32143 5.14289 36697.4 42494.6 747085 2.60437 776 8831 2477 97726 1061 6979 8312 1299 9.304 2686 9.78973 1564.33 108.419 688.67 1.01201 16.1922 39289.6 42273.7 746930 11.2262 4979 3333 3887 77162 838 9409 8571 4286 9.562 4646 8.82137 1635.53 70.4130 401.79 0.52689 8.43039 36366.8 41617.4	6823	0476	9399	7867	9321	913	6667	2857	5.39	2404
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10.7049	1580.08	76.9729	512.52	1.16544	18.6470	49948.0	62041.1	747066	10.8575
5109 4455 176 37442 3406 4504 7321 3692 4.498 7948 8.92087 1650.93 35.1183 189.85 0.29024 4.64387 36718.6 45366.9 747091 7.52211 0039 6255 0951 69296 2311 6977 8127 5219 6.335 2596 9.01944 1629.35 123.152 660.77 1.23764 19.8022 37276.3 44230.8 747044 9.02677 5732 9551 1235 78565 2668 8269 9326 5393 5.483 0954 8.15211 1669.16 46.8869 185.93 0.32143 5.14289 36697.4 42494.6 747085 2.60437 776 8831 2477 97726 1061 6979 8312 1299 9.304 2686 9.78973 1564.33 108.419 688.67 1.01201 16.1922 39289.6 42273.7 746930 11.2262 4979 3333 3887 77162 838 9409 8571 4286 9.562 4646 8.82137 1635.53 70.4130 401.79 0.52689 8.43039 36366.8 41617.4 747037 7.55144 9.22601 1605.61 82.6517 478.15 0.81245 11.993 44724.5 48669.6 747048 5.78276 2337 8421 3496 3206 8579 3727 763 4	4185	8785	0274	4161	1987	7179	1402	2617	3.776	9362
8.920871650.9335.1183189.850.290244.6438736718.645366.97470917.522110039625509516929623116977812752196.33525969.019441629.35123.152660.771.2376419.802237276.344230.87470049.026775732955112357856526688269932653935.48309548.152111669.1646.8869185.930.321435.1428936697.442494.67470852.60437776883124779772610616979831212999.30426869.789731564.33108.419688.671.0120116.192239289.642273.774693011.2262497933333887771628389409857142869.56246468.821371635.5370.4130401.790.526898.4303936366.841617.47470377.551440882846230818046994451119561549.32364729.226011605.6182.6517478.150.8124512.999344724.548669.67470485.782762337842134963206857937277634.211190313.13811567.8260.9771335.720.8017612.828249766.058386.97470946.01478852877597436	10.8421	1563.67	102.997	469.88	0.46537	7.44597	86950.0	100841.	747094	8.17171
0039625509516929623116977812752196.33525969.019441629.35123.152660.771.2376419.802237276.344230.87470049.026775732955112357856526688269932653935.48309548.152111669.1646.8869185.930.321435.1428936697.442494.67470852.60437776883124779772610616979831212999.30426869.789731564.33108.419688.671.0120116.192239289.642273.774693011.2262497933333887771628389409857142869.56246468.821371635.5370.4130401.790.526898.4303936366.841617.47470377.551440882846230818046994451119561549.32364729.226011605.6182.6517478.150.8124512.999344724.548669.67470485.7827623378421349632068579372777634.211190313.13811567.8260.9771335.720.8017612.828249766.058386.97470446.01478852877597436658474537326217491646.462382510.23761621.77107.500639.69 <t< td=""><td>5109</td><td>4455</td><td>176</td><td>37442</td><td>3406</td><td>4504</td><td>7321</td><td>3692</td><td>4.498</td><td>7948</td></t<>	5109	4455	176	37442	3406	4504	7321	3692	4.498	7948
9.019441629.35123.152660.771.2376419.802237276.344230.87470049.026775732955112357856526688269932653935.48309548.152111669.1646.8869185.930.321435.1428936697.442494.67470852.60437776883124779772610616979831212999.30426869.789731564.33108.419688.671.0120116.192239289.642273.774693011.2262497933333887771628389409857142869.56246468.821371635.5370.4130401.790.526898.4303936366.841617.47470377.551440882846230818046994451119561549.32364729.226011605.6182.6517478.150.8124512.999344724.548669.67470485.7827623378421349632068579372777634.211190313.13811567.8260.9771335.720.8017612.828249766.058386.97470946.01478852877597436658474537326217491646.462382510.23761621.77107.500639.690.618029.8884749423.056112.7757143.40091	8.92087	1650.93	35.1183	189.85	0.29024	4.64387	36718.6	45366.9	747091	7.52211
5732955112357856526688269932653935.48309548.152111669.1646.8869185.930.321435.1428936697.442494.67470852.60437776883124779772610616979831212999.30426869.789731564.33108.419688.671.0120116.192239289.642273.774693011.2262497933333887771628389409857142869.56246468.821371635.5370.4130401.790.526898.4303936366.841617.47470377.551440882846230818046994451119561549.32364729.226011605.6182.6517478.150.8124512.999344724.548669.67470485.782762337842134963206857937277634.211190313.13811567.8260.9771335.720.8017612.828249766.058386.97470946.01478852877597436658474537326217491646.462382510.23761621.77107.500639.690.618029.8884749423.056112.7757143.40091	0039	6255	0951	69296	2311	6977	8127	5219	6.335	2596
8.152111669.1646.8869185.930.321435.1428936697.442494.67470852.60437776883124779772610616979831212999.30426869.789731564.33108.419688.671.0120116.192239289.642273.774693011.2262497933333887771628389409857142869.56246468.821371635.5370.4130401.790.526898.4303936366.841617.47470377.551440882846230818046994451119561549.32364729.226011605.6182.6517478.150.8124512.999344724.548669.67470485.7827623378421349632068579372777634.211190313.13811567.8260.9771335.720.8017612.828249766.058386.97470946.01478852877597436658474537326217491646.462382510.23761621.77107.500639.690.618029.8884749423.056112.77577143.40091	9.01944	1629.35	123.152	660.77	1.23764	19.8022	37276.3	44230.8	747004	9.02677
776883124779772610616979831212999.30426869.789731564.33108.419688.671.0120116.192239289.642273.774693011.2262497933333887771628389409857142869.56246468.821371635.5370.4130401.790.526898.4303936366.841617.47470377.551440882846230818046994451119561549.32364729.226011605.6182.6517478.150.8124512.999344724.548669.67470485.7827623378421349632068579372777634.211190313.13811567.8260.9771335.720.8017612.828249766.058386.97470946.01478852877597436658474537326217491646.462382510.23761621.77107.500639.690.618029.8884749423.056112.77577143.40091	5732	9551	1235	78565	2668	8269	9326	5393	5.483	0954
9.789731564.33108.419688.671.0120116.192239289.642273.774693011.2262497933333887771628389409857142869.56246468.821371635.5370.4130401.790.526898.4303936366.841617.47470377.551440882846230818046994451119561549.32364729.226011605.6182.6517478.150.8124512.999344724.548669.67470485.7827623378421349632068579372777634.211190313.13811567.8260.9771335.720.8017612.828249766.058386.97470946.01478852877597436658474537326217491646.462382510.23761621.77107.500639.690.618029.8884749423.056112.77577143.40091	8.15211	1669.16	46.8869	185.93	0.32143	5.14289	36697.4	42494.6	747085	2.60437
497933333887771628389409857142869.56246468.821371635.5370.4130401.790.526898.4303936366.841617.47470377.551440882846230818046994451119561549.32364729.226011605.6182.6517478.150.8124512.999344724.548669.67470485.7827623378421349632068579372777634.211190313.13811567.8260.9771335.720.8017612.828249766.058386.97470946.01478852877597436658474537326217491646.462382510.23761621.77107.500639.690.618029.8884749423.056112.77577143.40091	776	8831	2477	97726	1061	6979	8312	1299	9.304	2686
8.821371635.5370.4130401.790.526898.4303936366.841617.47470377.551440882846230818046994451119561549.32364729.226011605.6182.6517478.150.8124512.999344724.548669.67470485.7827623378421349632068579372777634.211190313.13811567.8260.9771335.720.8017612.828249766.058386.97470946.01478852877597436658474537326217491646.462382510.23761621.77107.500639.690.618029.8884749423.056112.77577143.40091	9.78973	1564.33	108.419	688.67	1.01201	16.1922	39289.6	42273.7	746930	11.2262
0882846230818046994451119561549.32364729.226011605.6182.6517478.150.8124512.999344724.548669.67470485.7827623378421349632068579372777634.211190313.13811567.8260.9771335.720.8017612.828249766.058386.97470446.01478852877597436658474537326217491646.462382510.23761621.77107.500639.690.618029.8884749423.056112.77577143.40091	4979	3333	3887	77162	838	9409	8571	4286	9.562	4646
9.226011605.6182.6517478.150.8124512.999344724.548669.67470485.7827623378421349632068579372777634.211190313.13811567.8260.9771335.720.8017612.828249766.058386.97470486.01478852877597436658474537326217491646.462382510.23761621.77107.500639.690.618029.8884749423.056112.77577143.40091	8.82137	1635.53	70.4130	401.79	0.52689	8.43039	36366.8	41617.4	747037	7.55144
23378421349632068579372777634.211190313.13811567.8260.9771335.720.8017612.828249766.058386.97470946.01478852877597436658474537326217491646.462382510.23761621.77107.500639.690.618029.8884749423.056112.77577143.40091	0882	8462	3081	80469	9445	1119	5	6154	9.323	6472
13.13811567.8260.9771335.720.8017612.828249766.058386.97470946.01478852877597436658474537326217491646.462382510.23761621.77107.500639.690.618029.8884749423.056112.77577143.40091	9.22601	1605.61	82.6517	478.15	0.81245	12.9993	44724.5	48669.6	747048	5.78276
8528 7759 7436 65847 4537 326 2174 9164 6.462 3825 10.2376 1621.77 107.500 639.69 0.61802 9.88847 49423.0 56112.7 757714 3.40091	2337	8421	3496	3206	8579	3727		7763	4.211	1903
10.2376 1621.77 107.500 639.69 0.61802 9.88847 49423.0 56112.7 757714 3.40091	13.1381	1567.82	60.9771	335.72	0.80176	12.8282	49766.0	58386.9	747094	6.01478
	8528	7759	7436	65847	4537	326	2174	9164	6.462	3825
	10.2376	1621.77	107.500	639.69	0.61802	9.88847	49423.0	56112.7	757714	3.40091
1/08 0221 139 /3908 9/32 6038 /537 8125 0.706 2746	1708	0221	139	73908	9752	6038	7537	8125	0.706	2746

Table 2 : Testing dataset with some selective attributes

Commi	Availab	Cache	Page	Page	Page	Pool	Pool	System	Write
tted	le	faults/s	faults/s	writes/s	op/sec	Nonpag	Paged	driver	copies/s
byte in	Mbytes	ec	ec	ec		ed	Allocs	total	ec
use						Allocs		byte	
4.6013	1700.0	26.040	132.99	0.0876	1.4017	29212.	39788.	753300	2.9401
87552	22388	43396	67699	10478	67647	34328	48507	2.507	84286
4.9466	1690.1	85.354	371.75	0.2828	4.5255	32166.	43517.	750358	7.6550
0698	79012	08783	05326	49872	97951	55556	9321	1.235	12219
9.2519	1632.7	220.42	905.32	0.3761	6.0188	63023.	72219.	749744	8.4206
20893	54655	84527	87534	7982	77122	91566	42935	3.119	12447
9.8730	1584.6	64.198	766.80	0.4248	6.7972	48472.	57402.	747078	4.5066
66812	42612	29632	79994	27439	39025	48454	49828	0.261	49959
7.5678	1692.2	68.284	324.15	0.9445	15.113	35413.	38624.	747035	5.4890
23945	06349	57374	01421	6778	08448	93651	19048	6.317	3716
8.8310	1646.6	54.316	264.23	0.3255	5.2080	39974.	44790.	747101	5.5179
54122	37537	47998	89394	04227	67639	58491	88183	0.447	03309
9.1107	1635.1	51.967	234.46	0.4299	6.8788	49530.	54235.	747084	3.0219
5792	58042	54351	9843	25858	1372	98042	6993	0.481	82506
8.0382	1653.0	71.370	399.82	0.9420	15.073	35642.	39465.	747036	5.8815
68296	70313	37658	83644	87728	40364	40625	27344	8	60678
9.8113	1581.9	87.210	427.90	0.7074	11.319	43191.	52279.	747075	10.645
94241	2963	2098	725	88741	81986	15556	08889	5.081	23952
13.241	1585.8	64.641	316.88	0.6753	10.805	53580.	61298.	747098	4.5726
4429	45865	90334	36163	52729	64366	36842	03383	5.945	03869

8.7429 1644.1 32.311 22.822 0.2964 4.7425 36625. 41421. 747088 4.2557 37931 83962 56115 07108 11962 91388 95755 07547 1.811 07607 84021 24786 07225 20724 03814 61019 66239 31197 8.803 10055 9315 06428 32714 29696 75138 74279 15965 5.113 72064 9.0750 38354 84211 42964 45806 3937 94288 42915 31579 1.182 43219 12.423 15855 73.917 38300 1.1148 17.836 52191. 57598. 747034 9.0753 8.3011 1657.9 225.52 470.62 0.3058 4.8404 04272. 51679. 747084 4.632 8.3011 1657.9 225.52 470.62 0.3058 4.8023. 55900. 746893 4.632 8.4161	·	1	1		1			1	1	
8.2136 1634.3 62.828 336.10 0.5346 8.5536 38311. 44574. 747029 3071. 84021 24786 07225 20724 03814 61019 66239 31197 8.803 10265 12.961 1484.2 62.837 446.22 0.5594 8.9508 39357. 50919.7 747089 5.6460 38354 84211 42964 45806 3393 94288 42915 31579 1.182 43219 12.423 1585.5 73.917 38300 1.1148 17.84 62191. 57598. 747034 9075 8.3011 1657.9 225.52 470.62 0.3058 4.8040 40272. 51679. 747084 36557 4161 4199 64.766 314.71 0.8764 44023 5590. 746893 14.632 13.843 1499.3 64.766 314.71 0.8764 46097.47070 4.622 20911 41876 0.7924 58557										
84021 24786 07225 20724 03814 61019 66239 31177 8.803 10265 12.961 1484.2 62.837 446.22 0.5594 8.9508 39367. 50919. 747089 5.6460 9.5993 1608.6 83.176 498.38 0.9669 15.470 40983. 45584. 74703 4.2017 12.423 1585.5 73.917 383.00 1.1148 17.836 52191. 57598. 747093 4.4846 02175 87703 82982 54702. 07342 91747 46293 28571 3.642 65122 483011 16579 25.52 47026 79715 75434 80297 31413 9.727 37869 11.656 1522.1 189.69 1189.3 2.6241 41.023 58342. 60071. 747084 3.6252 9011 1053 22069 7163 8557 76892 58105 7.335 2402 9113										
12.961 14.84.2 62.837 44.622 0.9594 7.938 7.4279 15965 5.113 7.2064 9.5993 10.668 83.176 498.38 0.9669 15.470 498.38 458.4 747.034 9.0750 38354 84211 42064 458.06 3333 942.88 42915 31579 1.82 43219 12.423 1585.5 73.171 383.00 1.114.8 17.836 52191. 57598. 747003 4.4846 8.3011 1657.9 225.52 470.62 0.3058 4.8940 40272. 51679. 746893 14.632 8.3011 1657.9 225.52 470.62 0.3058 4.8940 40272. 51679. 74683 14.632 11.656 152.1 189.69 1189.3 2.6241 41.9023 5842. 66071. 747070 4.6228 20911 41053 22069 77163 85557 76892 59158 7.335 2402 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
23187 99335 06428 32714 29696 75138 74279 15965 5.113 72064 9.5993 1608.6 83.176 498.38 0.9669 15.470 40983. 46584. 747034 9.0750 8354 84.211 42964 45800 11.148 17.836 52191. 57598. 74703 4.4846 02175 87703 82982 54702. 0.7342. 91747. 40232 251679. 747084 3.6557 44161 4197. 67105. 44796. 79715. 75434 80297. 34143. 9.727. 37869 11.656 15521. 189.69 1818.3 6.8754 41023 58342. 66071. 747074 46232 20911 41053 22069 77163 8557 76892 59105. 7.333 7.302 17234 1540.4 99.735 500.43 0.3282 5.2523 58790. 63676. 750942 3.9933 11.234 </td <td></td>										
9.5993 1608.6 83.176 498.38 0.9669 15.470 4098.3 4658.4 7470.4 43219 12.423 1585.5 73.917 383.00 11.148 17.836 521.91 57598. 747093 4.4846 02175 87703 82982 54702 07342 91747 46293 28571 3.642 65132 8.3011 1657.9 225.52 470.62 0.3058 4.8940 40272. 51679. 747084 3.6557 4161 4197 67105 44796 79715 75434 80297 34143 9.727 37869 11.656 1522.1 189.09 1189.3 2.6241 41.986 48923 55990. 74683 14.632 20911 41053 22069 77163 85557 76892 58105 59158 7.332 15073 3.1030 14288 98941 92101 37987 73938 8316 27542 78072 1559 5074 </td <td></td>										
38354 84211 42964 45806 3393 94288 42915 31579 1.182 43219 12.423 1585.5 73.917 38.300 1.1148 17.836 52191. 57598. 747093 4.4846 02175 87708 22852 54700. 07342 91747 46292 28571 3.642 65132 8.3011 16579 225.52 470.62 0.3058 4.8940 40272. 51679. 74683 14.632 44161 4197 67105 44796 79715 75434 80297 34143 9.727 37869 13.843 1499.3 64.766 314.71 0.8764 40009 47552. 74070 4.622 9.7392 1581.8 68.704 415.76 0.5480 8.7694 40609. 47552. 74073 71.302 9.732 1581.8 68.704 415.76 0.5480 8.7694 40609. 47552. 74072 12.322 9.1234										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
8.3011 1657.9 225.52 470.62 0.3058 4.8940 40272. 51679. 747084 3.6557 44161 4197 67105 44796 79715 75434 80297 33143 9.7273 37869 11.656 1522.1 189.06 1189.3 2.6241 41.986 48923. 5590. 74673 14.632 248745 72414 87689 93533 74933 79892 3908 70115 8.299 83051 13.843 1490.3 24066 71163 85557 76892 58105 59158 7.335 2402 9.7392 1581.8 68.704 415.76 0.5480 8.7694 40609. 47562. 747070 4.6228 9.7392 1581.8 68.704 30.3282 5.2523 58790. 63676. 750942 3.9933 11.234 1540.4 997355 50.434 2480 9271 1.559 5076 3.1960 25371 97910										
44161 4197 67105 44796 79715 75434 80297 34143 9.727 37869 11.656 1522.1 189.69 1189.3 2.6241 41.986 48923. 55990. 746893 14.632 13.843 1499.3 64.766 314.71 0.8764 14.023 58342. 66071. 747070 4.6228 20911 41053 22069 77163 85557 76892 58105 59158 7.332 2402 9.7392 1581.8 68.704 415.76 0.5480 8.7694 40609. 47562. 747073 7.1302 66809 27451 80606 79794 92356 77698 1098 47052. 78992 3933 11.34 154.04 92735 500.43 0.3282 5.2523 58700. 63676. 750942 39933 11.23 9841 92101 37987 73926 9843 2242 28 55050 7.0803 16										
48745 72414 87689 93533 74933 79892 3908 70115 8.299 83051 13.843 1499.3 64.766 314.71 0.8764 14.023 58342. 66071. 747070 4.6228 9.7392 1581.8 68.704 415.76 0.5480 8.7694 40609. 47562. 747073 7.1302 66809 27451 86069 79794 92356 77698 1098 47059 4.557 39303 11.234 1540.4 99.735 500.43 0.3282 5.2523 58790. 63676. 3.5992 12.55 5076 3.1962 1740 1602.5 4193.3 1.8655 29.848 22480 28030 2727859 12.22 85306 7.0980 1613 3708.6 48843. 4.6006 73.609 26335 31848 727859 504.42 92873 29397 19072 24828 99725 2 56508 7.6333										
20911 41053 22069 77163 85557 76892 58105 59158 7.335 2402 9.7392 1581.8 68.704 415.76 0.5480 8.7694 40609. 47552 747073 7.1302 66899 27451 86069 79794 92356 77698 1098 47059 4.557 39303 11234 1540.4 99.735 500.43 0.3282 5.2523 58790. 63676. 750942 39393 44288 98941 92101 37987 73963 83416 27542 78072 1.559 5076 3.1962 1740 1602.5 4193.3 1.8655 9.848 22803 31848 727859 504.42 92873 0.2731 197744 66836 09948 82197 71516 0 0 00556 7.6434 1603 1006.7 1956.8 6.002 96.003 2951 40935 737280 27.801 7.542										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
44288 98941 92101 37987 73963 83416 27542 78072 1.559 5076 3.1962 1740 1602.5 4193.3 1.8655 29.848 22480 28030 727859 123.22 85306 7.0980 1613 3708.6 48843. 4.6006 73.609 26335 31848 727859 56508 7.0980 1613 3708.6 48843. 4.6006 73.609 26335 31848 727859 56508 7.6333 1600 2531.4 29764. 6.0829 97.327 29131 37788 737280 287.25 7616 66836 09948 82197 71516 0 19371 00657 19574 0 00055 82629 1590 461.14 2469.6 5.2001 83.202 31214 45784 737280 204.47 78777 64486 15926 77508 24012 2 14466 6.1918 1643										
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	11.234	1540.4		500.43		5.2523			750942	
9803 92741 97458 28638 45821 () 2 85306 7.0980 1613 3708.6 48843. 4.6006 73.609 26335 31848 727859 504.42 92873 29397 19072 24828 99725 2 56508 7.6333 1600 2531.4 29764. 6.0829 97.327 29131 37788 737280 287.25 7616 66836 09948 82197 71516 0 19371 7.6444 1603 1006.7 1956.8 6.0002 96.003 29534 40935 737280 27.801 7.5742 69784 7085 17242 47587 0 0 29878 3.3246 1738 1762.7 4682.1 1.6780 26.849 22296 28074 727859 141.01 75742 64486 15926 77508 24012 2 16819 717248 99556 13253 82767	44288	98941	92101	37987	73963	83416	27542	78072	1.559	5076
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1740					22480	28030	727859	123.22
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9803		92741	97458	28638	45821			2	85306
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.0980	1613	3708.6	48843.	4.6006	73.609	26335	31848	727859	504.42
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	92873		29397	19072	24828	99725			2	56508
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7.6333	1600	2531.4		6.0829	97.327	29131	37788	737280	287.25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7616		66836	09948	82197	71516			0	19371
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.6484	1603	1006.7	1956.8	6.0002	96.003	29534	40935	737280	27.801
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	79754		69784			47587				00656
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1590					31214	45784	737280	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									•	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1738					22296	28074		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	78577			15926	77508					44466
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1643					25054	31251		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1651					31232	31145	737689	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1600					34482	35446		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1602					31029	44443		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1601					36112	36112		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1600					36439	42058		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1649					31382	31160		
76794414085401606249299986550227.84361601480.201513.86.000096.000361903769974711048.60034084461481454857662922584467065.747216531971.020561.3.393354.2933131631052737689284.2015523685678466632869325916509347.656216022656.131600.2.532840.5263436935563737689220.16										
7.8436 1601 480.20 1513.8 6.0000 96.000 36190 37699 747110 48.600 34084 46148 14548 57662 92258 92258 4 46706 5.7472 1653 1971.0 20561. 3.3933 54.293 31316 31052 737689 284.20 15523 68567 84666 32869 32591 6 50934 7.6562 1602 2656.1 31600. 2.5328 40.526 34369 35563 737689 220.16		1598					34623	35585		
34084 46148 14548 57662 92258 4 46706 5.7472 1653 1971.0 20561. 3.3933 54.293 31316 31052 737689 284.20 15523 68567 84666 32869 32591 6 6 50934 7.6562 1602 2656.1 31600. 2.5328 40.526 34369 35563 737689 220.16										
5.7472 1653 1971.0 20561. 3.3933 54.293 31316 31052 737689 284.20 15523 68567 84666 32869 32591 6 50934 7.6562 1602 2656.1 31600. 2.5328 40.526 34369 35563 737689 220.16		1601					36190	37699		
15523 68567 84666 32869 32591 6 50934 7.6562 1602 2656.1 31600. 2.5328 40.526 34369 35563 737689 220.16										
7.6562 1602 2656.1 31600. 2.5328 40.526 34369 35563 737689 220.16		1653					31316	31052		
										50934
30282 99819 57928 88158 21053 6 13049		1602					34369	35563		
	30282		99819	57928	88158	21053			6	13049

7.8977 88417	1599	866.33 54261	2194.6 76453	5.9940 1817	95.904 29071	36073	37570	747110 4	37.895 51487
12.938	1429	233.86	1094.2	0	0	55611	63459	747110	67.800
51347		71284	68827					4	13385
13.700	1405	282.06	2013.0	0	0	58759	68319	747110	76.800
15193		85421	80051					4	51064

Table 3: Detection rate and false alarm rate using different number of major and minor principal components

Used Dataset	q (Major)	r (Minor)	Detection Rate	False Alarm Rate
Testing Dataset	4	3	92.5%	5%
(Table 2)	4	4	97.5%	5%
	3	3	87.5%	7.5%
	5	2	97.5%	2.5%
	3	4	90%	7.5%

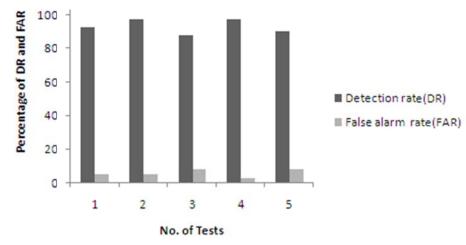


Fig 3. Detection rate and false alarm rate

6. Results and Discussion

In our experimental results, we have evaluated the detection rate and false alarm rate of the used tested data (ref. Table 2) for different number of major and minor principal components. We observe from our experimental results that the detection rate varies from 90% to 97.5% and the false alarm rate from 2.5% to 7.5% (ref. Fig. 1 & Table 3) by taking five different numbers of major and minor principal components for the used dataset. The above results of detection rate and false alarm rate have also been displayed in the bar chart (ref. Fig. 3). Furthermore, the detection rate and false alarm rate depend on the number of major principal components and minor principal components. It has been observed that the major principal components are more effective than the minor principal components because the major principal component specifies the sharp deviation of the value and the minor principal component specifies the slight deviation of the value. We have calculated the threshold value for the major principal component and minor principal component for the normal dataset and have been compared with all the data of the tested dataset. When the number of major principal components are greater than or equal to the number of minor principal components, the detection rate is high and false alarm rate is low (ref. Fig. 1 & Table 3).

7. Conclusions

In this paper, we have developed an intrusion detection system using principal component analysis (PCA) which has been implemented for HIDS on the basis of performance log. Our experimental results show that our proposed system provides detection rate in the range of 90% to 97.5% and false alarm rate in the range of 2.5% to 7.5%, which are supposed to fairly good detection and false alarm rates.

8. Acknowledgement

The authors express their sincere thanks to Prof. S. Chand for his invaluable comments and suggestions.

References

- [1] M.L. Shyu, S.C. Chen, K. Sarinnapakorn, and L. Chang, "A novel anomaly detection scheme based on principal component classifier," IEEE Foundations and New Directions of Data Mining Workshop, Nov. 2003, pp. 172-179.
- [2]
- D.E. Denning, "An Intrusion Detection Model," IEEE Trans. on Software Engineering, SE-13, No. 2, 1987, pp. 222-232. D.M. Hawkins, "The Detection of Errors in Multivariate Data Using Principal Components," Journal of the American Statistical [3] Association, Vol. 69, No. 346, 1974, pp. 340-344.
- [4] N.Ye and Q. Chen, "An Anomaly Detection Technique Based on a Chi -Square Statistic for Detecting Intrusions into Information Systems," Quality and Reliability Eng. Int'l, Vol. 17, No. 2, 2001, pp. 105-112.
- J. McHugh, "Testing Intrusion Detection Systems: A Critique of the 1998 and 1999 DARPA Intrusion Detection System [5] Evaluations as Performed by Lincoln Laboratory," ACM Transactions on Information and System Security, Vol. 3, No. 4, 2000, pp. 262-294.
- N.J. Puketza, K. Zhang, B. Mukherjee and R.A. Olsson, "Testing Intrusion Detection Systems: Design Methodologies and Results from an Early Prototype," Proc. 17th Natrional Computer Security Conference, Vol. 1, Oct. 1994, pp.1-10. [6]
- [7] F.N.M. Sabri, Md. Norwawi, and K. Seman, "Identifying False Alarm Rates for Intrusion Detection System with Data Mining," International Journal of Computer Science and Network Security, Vol.11, No.4, Apr. 2011.
- Z.K. Baker and V.K. Prasanna, "Efficient Hardware Data Mining with the Apriori Algorithm on FPGAs," In Proceedings of the [8] Thirteenth Annual IEEE Sym. on Field Programmable Custom Computing Machines 2005.
- J.D. Jobson, "Applied Multivariate Data Analysis," Volume II: Categorical and Multivariate Methods. Springer- Verlag, N Y, 1992. [9]
- [10] I. T. Jolliffe, "Principal Component Analysis," Springer- Verlag, NY, 2002.
- [11] Jungsuk Song, Hiroki Takakura and Yasuo Okabe, "A proposal of new benchmark data to evaluate mining algorithms for intrusion detection," In 23rd Asia Pacific Advanced Networking Meeting, 2007.
- [12] N. Athanasiades, R. Abler, J. Levine, H. Owen and G. Riley, "Intrusion detection testing and benchmarking methodologies," In IEEE International Information Assurance Workshop, 2003. [13] H. Song and J.W. Lockwood, "Efficient packet classification for network intrusion detection using FPGA," Intl. Symp. On Field
- Programmable Gate Arrays, Feb. 2005.
- N. Ye, S.M. Emran, Q. Chen, and S. Vilbert, "Multivariate Statistical Analysis of Audit Trails for Host-Based Intrusion Detection," IEEE Trans. on Computers, Vol-51, No.7, 2002. [14]
- [15] R.A. Johnson, D.W. Wichern, "Applied Multivariate Data Analysis," 3rd Edition, Prentice-Hall, Inc., Englewood Cliffs, N.J., U.S.A.,
- [16] H. Om and T.K. Sarkar, "Neural network based intrusion detection system for detecting changes in hardware profile," Journal of Discrete Mathematical Sciences & Cryptography, Vol. 12, No. 4, 2009, pp. 451-466.
- C.M. Chen, Y.L. Chen, H.C. Lin, "An efficient network intrusion detection," Computer Communications, Vol. 33, 2010, pp 477-484.
- [18] P. Casas, J. Mazel, P. Owezarski, "Unsupervised Network Intrusion Detection Systems: Detecting the Unknown without Knowledge," Computer Communications, Vol. 35, 2012, pp. 772-783.

Authors:

Hari Om is presently working as Assistant Professor in the department of Computer Science & Engineering at Indian School of Mines, Dhanbad, India. He earned his Ph.D. in Computer Science from Jawaharlal Nehru University, New Delhi, India. He has published more than 50 research papers in International and National Journals including various Trans. of IEEE, Springer, Elsevier etc., International and National conferences of high repute. His research areas are Video-on-Demand, Cryptography, Network security, Data Mining, and Image Processing.

Tanmoy Hazra completed his M.Tech in Computer Applications, department of Computer Science and Engineering from Indian School of Mines, Dhanbad in May, 2012. He is presently working as Assistant Professor in the department of Computer Engineering at ISB & M School of Technology, Pune. His research interest is mainly on Intrusion Detection Systems.