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Abstract- 
Wireless Sensor Networks (WSNs) are widely used in applications like location monitoring, object 
tracking and decision making systems. Movement patterns of mobile sensor nodes play an important role 
in such systems. This paper is aimed at simultaneous localization of mobile nodes. This is done based on 
RSSIs (Received Signal Strength Indicators) with correlated in time measurement noises. We proposed a 
framework with two multi model auxiliary particle filters. The first one is with a noise augmented state 
vector while the second one is to implement noise decorrelation. The performance of the proposed 
framework is validated using a simulator and the empirical results revealed that our framework provides 
high localization accuracy.  
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I. INTRODUCTION 
In wireless networks mobile users move freely in given area. Finding their patterns is an important task. It does 
mean that localization of mobile nodes has important applications in wireless networks. Using this object 
tracking, sensor data fusion, and decision making [17], [22] kind of tasks can be done easily and for this 
localization of the positions of nodes and their movement [21], [23] is essential. Other motivating examples of 
wireless networks are monitoring of warehouses, production processes. The nodes in wireless network have 
limitations in terms of energy and bandwidth. With this constraint, processing noisy data is a challenging job. 
To improve the possibilities in mobile networks, location methods are invented. However, the range based 
methods as discussed in [6], [18], and [12] are widely used. They are evaluated using RSS, angle of arrival or 
difference of arrivals, signal time of arrivals as they depend on distances between nodes. The techniques which 
are based on rage are further divided into acoustic ranging and radio frequency (RF). In case of RF, it is possible 
to find the distance between the transmitter and receiver based on the signal strength. Another approach is to 
find difference of arrival of ultrasonic and acoustic signals [18], [24]. Range based algorithms only need 
information like distance, angle and positioning of nodes while the range-free algorithms do not need such 
information. These are further sub divided into outdoor and indoor environments [7]. Many methods pertaining 
to localization depend on Carlo methods [15], [16], Kalman filters [14], [19] and also nonparametric belief 
propagation [8] and the connectivity know how among the nodes. Due to bandwidth and energy constraints, the 
communication between nodes while location is reduced to minimum. Multiple model particle filtering 
techniques were introduced in [25] and [11]. They are used for tracking mobility of users of mobile networks. 
The filtered used here are compared with Kalman filter with real and simulation data from base stations. 
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Multiple model particle filter is proposed in [20], [5] solving tracking problems. A different approach is used in 
[20] where multiple off springs are derived from a single particle. Each offspring represents a target maneuver 
and hence it is known as maneuvering target tracking.  
In binary sensor networks PF is used in target tracking as described in [13]. Its drawbacks are overcome by a 
new approach proposed in [10]. Many of the approaches discussed so far are able to localize mobile devices. 
However, they are not considering correlated measurement noise. In [17] a common correlation model is used. 
Decreasing autocorrelation function is used in Gudmunsson. In [3], autoregressive correlation model is used 
along with another filter named Kalman filter. In [4] the study of shadow fading is done. In this paper we 
present a new solution to the self localization problem considering temporal correlation in the measurement 
noise. This paper has innovative aspects when compared with prior works. It makes use of multiple model 
auxiliary particle filters. The empirical results with simulations on real and synthetic data have been validated. 
Autoregressive model is used to model correlated noise as described in [1]. Two approaches have been used 
namely state vector and decorrelation with differenced measurement [2]. Two algorithms have been proposed in 
this paper in order to make experiments with and without considering correlated measurement noise. The 
mobility model is based on the discrete-time command Markov process (linear system) while the measurement 
models are nonlinear. As the mobile nodes control process is known, the node mobility is modeled with multiple 
acceleration modes.  

II. MOTION MODEL FOR THE MOBILE NODES 
A. Observation Model 

RSSIs (Received Signal Strength Indicators) can be used to measure the distance between mobile node and 
other node who involve in communication. It does mean that distance between transmitter and receiver. The 
received RSSI (zlj, k) at mobile node Nl with coordinates (xl, k, yl, k) at time k, after it has been transmitted 
from node Nj with its coordinates (xj, k, yj, k), propagates [21], [1] as follows. 
zlj,k = kl - 10γlog10(dlj,k) + vlj,k, 

B. Correlated In Time Measurement Noise 

The shadowing component or autocorrelation function of the measurement noise (ulj, k) in urban and suburban 
environments is modeled as follows [1], [3]. 
Cv(r) = σv

2 exp{-v|r|/Dc}, 
where  is the time lag,  is standard deviation, of the shadowing process, Dc denotes effective correlation 
distance. The Dc is very important in a wireless environment and v is the velocity of the mobile node.  

III. A Multiple Model Auxiliary Particle Filtering for Localization 
A. The Particle Filtering Framework 

The localization of mobile nodes within the particle filtering can be reduced to approximation of PDF 
(Probability Density Function) based on the sequence of measurements. As per the Bayes’ rule the filtering PDF 
p(X

k|Z1:k)   of the state vector  
 Xk ε ℝn*n

x   based on a sequence of sensor measurements Z1:k  up to time k. It can be written as follows. 
p(X

k|Z1:k) = p(Zk|Xk)p(Xk|Z1:k-1) 
  p(Zk|Z1:k-1,) 
where (Zk |Z1:k-1) is he normalizing constant. 
B.  Auxiliary Multiple Model Particle Filtering for Localization 

Pitt and Shephard [9] introduced the auxiliary SIR (Sampling Importance Resampling) PF.  The PD draws 
particles from something which is close to possible optimal one. That something is known as importance 
function. Algorithm 2 presents the MM AUX-PF for mobile nodes localization. It takes speed constraints into 
account. The speed can’t exceed Vmax. Only when efficient number of particles, Neff is smaller than given 
threshold Nthresh resampling is performed.  
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Algorithm: A multiple model auxiliary  PF for mobile nodes localization 
    Initialization   
I . K=0, for i=1, ……. N(i)   
Generate samples { x0

(i)  
~ p(X0), M0

(i)
 ~ Po(M) } , 

And set initial weights wo
(i)  = 1/N  

II. Fork k= 1,2,…… 
(1) For i = 1 ………,N * r, 

    Calculate the conditional mean: 
      μk

(i) (MK) = E (Xk Ι X(i)
k-1 ,Mk) for every Mk ε  S 

(2) Generate {ij, Mk
(j) } j=1, ….., N 

 by sampling from q(I,Mk|Z1:k), 
where q(i,Mk|Z1:k) α p(Zk|μk

(i) (Mk))p(Mk|Mk-1
(i)) w(i)

k-1. 
(3) Prediction Step 

For j=1,…….,N, predict the particles according to 
X(j)

k = f(Xk-1
ij, M(j)

k,w(j)
k) 

With noise realizations wk
(j) ~ N(0,Q). 

Impose the speed constraints. 
(4) Measurement update 

For j=1,……,N compute the weights 
Wk

(j) = p(Zk|Xk
(j))/p(Zk|μk

(ij) (Mk)). 
Normalise the weights: wk

~(j) = wk
(j)

/∑
N

j=1 wk
(j) 

(5) Output estimate 
The posterior mean E[Xk|zk] 
^ 
x k = ∑N

j=1 wk
~(j) xk

(j). 
(6) Resampling step: 

Compute the effective sample size 
Neff = 1/∑N

j=1 (wk
~(j))2, 

Resample if Neff < Nthresh 
*For i=1,………,N, set wk

(i) = 1/N. 

Fig. 1: Algorithm for multiple model auxiliary PF for mobile nodes localization 

IV. Implementation 
In addition to sensor deployment architecture presented in [13] (as described in section 5.1), a custom simulator 
has been developed using C# programming language in order to demonstrate the concept of localization of 
mobile nodes in WSN. The implementation is done using Win Forms technology in C#. The GUI is as shown in 
fig. 2. 
 

 

(a)                                                                                (b) 
Fig. 2: GUI of the application 

As can be seen in fig.2 (a), a provision is given to specify number of nodes for simulation. On clicking Create 
button, the nodes are randomly created as shown in fig. 2 (b).  
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Fig. 3: Longitude and Node to Node distances 
As can be seen in fig. 3, sensor nodes are randomly located on the field. In the above screen it shows 6 nodes 
randomly distributed. Nodes’ longitude and latitude are also shown in grid view. The distance between mobile 
nodes is also shown in another grid view in fig. 3.  
The application also has provision to have clusters and nodes can be associated with clusters. Node to cluster 
distances and node regions are presented in fig. 4.  
 

 

Fig. 4: Nodes and Clusters 

As can be seen in fig. 4, there are three clusters formed and nodes are associated with the clusters. On clicking 
the Node to Cluster Distances button a grid view is shown and it contains cluster to node distances. Nodes 
belong to certain regions. On clicking, Node Region button the region and the nodes belong to the regions is 
shown in another grid view.  

V. PERFORMANCE EVALUATION 
A. Results with Simulated Data 

Sensor deployment architecture presented in [13] is used for the experiments. In Urban area, three mobile 
sensors are moving within the Wireless Sensor Network. Each node can measure RSSI of other node based on 
the signal strength. However, only the RSSIs with highest strength are used for localization.  
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Fig. 5: Three mobile nodes in WSN 

Table1: Representation for strength of mobile nodes 

S.No Nodes Parameters 

1 Mn1 -1400,-1500,-1300,-1100,-
1000,-800,-750,-500,-400,-
200,0,350 

2 Mn2 -1300,-1200,-1000,-900,-750,-
700,-600,-400,-200,-100,200,0 

3 Mn3 -1400,-1200,-1100,-1000,-
800,-700,-600,-
450,0,100,150,150 

As can be seen, the fig. 5 presents the estimated and actual trajectories of the three mobile nodes. The MM 
AUX-PF AS is executed for estimating the augmented state vector. This vector contains the mobile state vectors 
of three nodes. Actual speed of the mobile nodes is visualized in fig.6. 

 
Fig. 6: Actual speed of three moving nodes 

 
Table2: Representation for speed of moving nodes 

S.No Nodes Parameters 

1 Mn1 17,23,17,23,15,31 

2 Mn2 17,23,15,17,18,18 

3 Mn3 21,27,21,29,19,29 

As can be seen in fig. 6, the actual speed with which mobile nodes are moving in WSN is visualized. The results 
for position RMSE obtained with the MM AUX-PF with an augmented state vector are shown in fig. 7.  
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Fig. 7: Results for position RMSE obtained with the MM AUX-PF with an augmented state vector 

As can be seen in fig. 7, it is evident that the position of the nodes over a period of time is shown in terms of  x, 
y coordinates.  

 

Fig. 8: Results of speed RMSE obtained with the MM AUX-PF with an augmented state vector 
As can be seen in fig. 8, it is evident that the mobile nodes speed over a period of time is visualized and the 
speed is measures in m/s.  
 

VI. CONCLUSIONS 
In Wireless Sensor Networks, the problem of simultaneous location of mobile nodes with correlated in time 
measurement noise is solved by this paper. To solve the problem, two auxiliary filters are proposed. The first 
filter is with an augmented state vector while the second filter is with an artificial measurement. The simulations 
revealed that the proposed filters give high accuracy of location of mobile nodes. The proposed techniques can 
be used in real time applications like vehicle tracking, GPS etc.  
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