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Abstract— Today many adaptive filter structures are proposed for noise cancellation and error detection. 
The adaptive filter essentially minimizes the mean-squared error between a primary input, and a 
reference input, which is either noise that is correlated in some way with the noise in the primary input or 
a signal that is correlated in the primary input. An adaptive recurrent filter structure is design for 
acquiring the impulse response of the normal QRS decomposition. The primary input of the filter is the 
signal to be analyzed, while the reference input is an impulse train coincident with the QRS complexes. 
This method is applied to several noise detection problems. In this paper using the technique of LMS 
(least mean square) and by using the Newtown recursion method we made the filter which have minimize 
30% of mis adjustment and increase in adaptation. The result has been simulated and presented in 
Matlab simulink version 7.10. 
Keywords- Adaptive filter,LMS/ Newton algorithms, Recursion algorithms, FIR, QRS Decomposition Ease 
of Use 

I. INTRODUCTION 
The development of digital very large scale integration (VLSI) technology allowed the widespread use of 
adaptive signal processing techniques in a large number of applications. An adaptive filter is defined as a self-
designing system that relies for its operation on a recursive algorithm, which makes it possible for the filter to 
perform satisfactorily in an environment where knowledge of the relevant statistics is not available . Adaptive 
filter is filters are attractive in many applications as they exhibit a number of desirable properties such as 
stability and modal performance surface. Adaptive filters are mainly two types (i) linear and (ii) non linear, 

Linear adaptive filters compute an estimate of a desired response by using a linear combination of the 
available set of observables applied to the input of the filter. None linear adaptive filter categories in two types 
supervised and unsupervised adaptive filter. Supervised adaptive filters require the availability of a training 
sequence that provides different realizations of a desired response for a specified input signal vector. The 
desired response is compared against the actual response of the filter due to the input signal vector. and the 
resulting error signal is used to adjust the free parameters of the filter. The process of parameter adjustments is 
continued in a step-by-step fashion until a steady-state condition is established and second Unsupervised 
adaptive filters, performs adjustments of its free parameters without the need for a desired response. For the 
filter to perform its function, its design includes a set of rules that enable it to compute an input-output mapping 
with specific desirable properties. In the signal-processing literature, unsupervised adaptive filtering is often 
referred to as blind de convolution or blind adaptation. Application of  adaptive filter  VLSI implementation 
ECE ,Minimum error recursion method ,digital camera ,camcorders, medical monitoring equipment, cell phones 
and communication devices[3]. 

 

II. ADAPTIVE FILTER STRUCTURE 
The particular adaptive filter realizations can be  extract by a variable filter  with an estimate of desired signal. 

The structure has following assets. 
(a) The input signal is the sum of a desired signal which is compound of input data and  weighted signal 

identify Xlk and Wlk respectively.        
(b) The variable filter has a Finite  Impulse Response structure .For such structure the impulse response is 

equal to the Filter Coefficients . 
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(c) The error signal or cost function is the Difference between the desired and the estimated signal.  
(d) The variable filter or processor estimates the desired signal by convolving  the input signal with the 

impulse response. 
(e) The function of adaptive algorithm generates the correction factor for the Filter coefficients which is 

based on the input and error signal [3]. 
 

III. ADAPTIVE FILTER STRUCTURE 
The SER algorithm is manipulated by using Newton’s method for that purpose we using the LMS/Newton’s 
algorithms. Figure 2 shows the block diagram of LMS/Newton algorithm. The least mean square (LMS) 
algorithm was developed by windrow and Hoff in 1960 for use in training neural networks the algorithm is a 
member of stochastic gradiant  algorithm[. The LMS algorithm 

 

  
Figure 1.  Block Diagram LMS/Newton algorithm) 

 
is a linear adaptive filtering process which consist of two basic process filtering process  and adaptive process In 
basic LMS process the output of adaptive filter which represented y(n) and computing by vector input signal 
x(n) and generating an estimation error e(n) by comparing the output signal y(n) with desired response d(n).To 
derive the LMS/ Newton algorithm, the form of Newton's algorithm  which is given below  

₋  (1a) 
Equation (1) shows, under ideal condition the optimum weighted vector   and single step that is starting from 
.The ideal conditions are:µ=½ is a constant that governs stability and rate of Convergence.2. Exact knowledge 
of the gradient vector , at each iteration.3. Exact knowledge of the (unchanging) signal inverse correlation 
matrix, .If the first of these condition is removed and µ is made to be between 0 and 0.5the algorithm 
requires a larger number of steps, but still proceeds along a straight path to W *,. The latter is similar to except 
that µ has been reduced from 0.5 to 0.05, thus requiring more than just one step to reach the optimum weights.  
The specific error surface used is the same as that used in with N =16 and Ø =0.01.Next remove the second 
condition above and assume that we must use a noisy gradient  , in place of  . Then we have  

₋ k     (1b) 
The algorithm is now ideal only because of the third condition, that is, only because an exact knowledge of 

is still assumed.  Without relaxing the third condition, we can now convert into an "LMS" type of algorithm 
by using the same sort of gradient estimate used, by using  ε    as an estimate for  ζ   this gradient estimate is 
given by  

   (2) 
Where    is of course the input signal vector at the Kth iteration., we have  

 + 2  (3) 
Above equation (3) result same as the LMS algorithm in except for the presence of   in the weight 
increment term.  We can increase the similarity between the two algorithms by nothing that when R is diagonal 
with eigenvalues, Thus  given µ the same range of values as in by using   as scaling factor to obtain 

+ 2    (4) 
The "LMS/Newton" algorithm is defined as the  units of   and  which are  units of power, the units of 

 and  µ are units of reciprocal of power and  W  is of course dimensionless, so that is correct dimensionally.  
Notice also that the range of µ has now been scaled by , and, from condition 1 above, we now have For 
convergence: 1/  > µ > 0,For one-step convergence µ= 1/ 2  under noiseless conditions. The 
LMS/Newton algorithm is ideal in the sense that an exact knowledge of  is assumed.  We have already 
discussed how such knowledge is usually not available in adaptive situations, that is, X is usually non stationary 
and R is considered to change slowly with time, in an unknown way.  The LMS/Newton algorithm is also ideal 
because, under noiseless conditions on a   parabolic error surface, the weight track is a direct path to W*. 
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 =    (5) 

 

     =  (6) 

Equation (5) and (6) elements r1 and r2 with N=16 and Ø = 0.01.  Also for the LMS/Newton algorithm, we need 
  by   

  ,  (7) 

= = 0.51  (8) 

IV. THE   SEQUENTIAL REGRESSION ALGORITHM 
Comparing the LMS and LMS/Newton algorithm, we see that it is the knowledge of   that allows W to take 
the direct path, rather than the path of steepest descent, to W *.  To develop an algorithm more like the 
LMS/Newton, we might therefore think in terms of estimating at each step, and thus approaching the ideal. 
The sequential regression (SER) algorithm [1, 2] embodies precisely this sort of improvement.  It computes an 
estimate of  that generally improves with each iteration, and thus approaches.  To develop the SER 
algorithm, let us look first at how we might estimate R, which is simpler problem than that of estimating 

.Using the notation, we have the elements of R given by the input correlation function, where n is the 
distance from the main diagonal: 

 (9) 
Thus we can write  

R=   (10) 
Instead of letting the expectation go over all values of k, suppose now that we have a finite number of 
observations of the signal X, say  through . Under stationary conditions, our best unbiased estimate of  R  
would then be 
 

 (11) 

In adaptive situations where X is non stationary, we can see that would not be a good estimate of R.  Because of 
its infinite memory, this estimate would become insensitive to changes in :R for large values of k. To provide 
the effect of a short-term memory in the estimate of R, consider the following function; 

 (12) 
Comparing  the equation(11) and (12) we have measure the scaling factor which is R times of the stationary 
vector X, thus the value of α 

0  <    <  1                         (13) 

From equation (13) the total value of this scaling factor over k iterations is 

             (14) 

and thus our modified estimate of R at the  iteration (which would be exact, for example, if  
were constant for k > 0).is 

                 (15) 
 

in the equations (12),(13),(14) and (15) it is being observed  that the limit of scaling factor where  is 
stationary for all time,  approaches 1 and if we take the limit as   approaches 1, we get agreement Having the 

estimate  and ready to begin the derivation of the SER algorithm.  we begin with the formula for the 
optimum weight vector given first(ref 4.3). 

= 2R.W -2.P                      (16) 
     (17) 

In the equation (16) and (17) the  estimates that have the relation P and R estimates respectively. then from 
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the definition of P  we obtain 
  =      (18) 

After  cancel the scaling factor and obtain  

  (19) 

 
The SER algorithm is now developed as follows beginning with  that    (rather than   ) is to be 

computed from terms of   and   Then we, 
   +          (20) 

                                           (21) 
                              (22)   

Referred to  iteration we get 
                                        (23) 

Next we substitute the desired signal, 

 (24) 
                                                (25) 

 
We now multiply on the left by  and finally obtain 

                         (26) 
Since   is scaled approximation to R we have here the form of the LMS/Newton algorithm.  Now we 

consider  to state here 
                   (27) 

And under the steady-state case where k is large enough to neglect    in, we make an approximation as 
follows 

                       (28) 
 

Note that under nonstationary conditions,   is changing quantity that may have to be adjusted during the 

adaptive process, Note also that omitting the factor (  ) from the last term is equivalent to using a 
larger value of   at first.  If initial conditions are important, one could include the factor and SER to obtain 

        (29)     

V.  SIMULATION RESULT 
The LMS/NEWTON Methodologies having a criterion for optimum performance of the filter. It has one way to 
remove the noise by using the potential loss of adaptive filter .The system simulation is used to see the real 
effect and implementation before its development. In the example we runs the adaptation process for 1000 
iteration which demonstrate quardrature phase shift keying (QPSK) adaptive equalization using a 32 co-efficient  
bit FIR filter as shown in Fig[2,3]. In this the existing system takes N=16 Number of delay samples that can be 
used to verify analytical solutions. In this technique we then take the numerator co-efficient of channel, 
Denominator co-efficient of  channel and Number of iteration respectively for decision is made for simulation. 
The QRD process with coefficients [1 0.7 1 -0.7 0   0.05] and signal step size and projection order is 4 is used in 
. It is essential to consider first what mathematical techniques might be applied to derive an analytical solution 
such as QRD or SVD methodology. Now we take a baseband signal which comprising a random Noise signal 
.This Baseband with Noise signal is received at the Filter input. Now we recover the received signal by desired 
signal or delayed QPSK signal by using the step and Projection order, The parameters in our experiment are 
mu=0.1 , Po= 4, offset= 0.05, B=exp(j*pi/4)*[-0.7 1]A= [1 -0.7];Ntr= 1000;This step, projection offset 
technique is probably done by adaptive filter and filter simulation methodologies as shown in Fig [4,5] .The 
existing system design can be used to verify analytical solution ,methodologies and  requirement can be 
determined by simulation different capabilities for the system. 
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Figure 3Quadrature component 

Figure 2In-phase components 
 

 
Figure 4 scatter plot of receive signal               Figure 5scater plot of equalized signal 
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