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Abstract—Practical face recognition systems are sometimes confronted with low-resolution face images. To 
address this problem, a super-resolution method that uses nonlinear mappings to infer coherent features 
that favor higher recognition of the nearest neighbor (NN) classifiers for recognition of single LR face 
image is presented. Canonical correlation analysis is applied to establish the coherent subspaces between 
the principal component analyses (PCA) based features of high-resolution (HR) and LR face images. The 
obtained features from PCA are not good enough for dimensionality reduction and computational 
complexity when large set of databases are taken into consideration. To overcome that problem Kernel 
PCA is introduced. Then, a nonlinear mapping between HR/LR features can be built by radial basis 
functions (RBFs) with lower regression errors in the coherent feature space than in the KPCA feature 
space. Thus, we can compute super-resolved coherent features corresponding to an input LR image 
according to the trained RBF model efficiently and accurately. And, face identity can be obtained by 
feeding these super-resolved features to a simple NN classifier. Extensive experiments on the Yale 
database show that the proposed method outperforms the state-of-the-art face recognition algorithms for 
single LR image in terms of both recognition rate and robustness to facial variations of pose and 
expression. 
 
Keywords: Face Recognition,  Kernel PCA, Canonical Correlation Analyses. 
 

I Introduction 
The face is our primary focus of attention in social intercourse, playing a major role in conveying 

identity and emotion. Although the ability to infer intelligence or character from facial appearance is suspect, 
the human ability to recognize faces is remarkable. We can recognize thousands of faces learned throughout our 
lifetime and identify familiar faces at a glance even after years of separation. This skill is quite robust, despite 
large changes in the visual stimulus due to viewing conditions, expression, aging, and distractions such as 
glasses, beards or changes in hair style. 

The performance of a real-world face recognition system usually declines when the input face images 
are degraded seriously, such as low-resolution (LR) with size of only 12ൈ 12 pixels. This is a critical problem 
for surveillance circumstances. Compared with high-resolution (HR) images, these LR images lose some 
discriminative details across different persons. These low-resolution (LR) images are common in practice, 
usually caused by the limited accuracy of available hardware and capturing device. Thus, enhancement of 
recognition performance under LR conditions is desirable in various applications. Typical scenarios include 
security surveillance, where subjects are far away from the camera and their faces are quite small in the field of 
view. Another application of face recognition for LR images is to automatically organize group photos in digital 
family albums or social networking service. In this paper, we focus on improving the recognition performance 
in the case where only a single face “snapshot” of LR is available. 

Researchers in the machine learning community strive for devising sophisticated classifiers 
(recognizers) in order to increase the recognition rate on inputs of low quality.Jun Liu proposed that, the point of 
notice that the facts that every image matrix can always have the well-known Singular Value Decomposition 
(SVD) and can be regarded as a composition of a set of base images generated by SVD, and can be further point 
out that the leading base images (those corresponding to large singular values) on one hand are sensitive to the 
aforementioned facial variations and on the other hand dominate the composition of the face image [1]. 
Kwak&Pedryczpreented a technique concerned with an enhanced independent component analysis (ICA) and its 
application to face recognition. Typically, face representations obtained by ICA involve unsupervised learning 
and high-order statistics [2]. 

A new method of face recognition based on fuzzy clustering and parallel NNs is proposed by Jianming 
Lu [3]. The face patterns are divided into several small-scale neural networks based on fuzzy clustering and they 
are combined to obtain the recognition result. The most widely used Fuzzy Clustering Algorithm is the FCM 
algorithm, is a data clustering algorithm in which each data point is associated with a cluster through a 

N.NagaMounica et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 08 Aug 2012 1454



membership degree. This technique divides a collection of data points into fuzzy groups and finds a cluster 
center in each group such that a cost function of a dissimilarity measure is minimized. Independent component 
analysis (ICA), which finds linear transformation of the data that maximize the statistical independence, 
appeared in the last two decade as a new data analysis tool proposed by Sezel [4]. 

To super-resolve faces, adapt the robust method in which models the image formation process and does 
not rely on a facial image prior, thus avoiding hallucination. As is typically done for super-resolution methods 
will describe the algorithm using standard notation from linear algebra, assuming each image has all of its pixel 
values in a vector. In the actual implementation, the solution process is carried out with more practical 
operations on 2D pixel arrays [17].The system presented here is based on a face recognition system described in. 
In the proposed system, individual faces were represented by a rectangular graph, each node labeled with a set 
of complex Gabor wavelet coefficients, called a jet. Only the magnitudes of the coefficients were used for 
matching and recognition [18]. 
 The main disadvantages of conventional methods are pose, illumination and facial expressions and also 
low resolution images. To overcome the drawback of conventional method a new algorithm is designed. 
Specifically the holistic PCA features of training HR and their corresponding LR face images in the training 
phase are calculated. The PCA features give a set of components in feature space which may not be easily 
interpretable in terms of the input space. To overcome that problem Kernel PCA is presented and KPCA 
features of HR and LR are calculated.  Subsequently, CCA is applied to extract coherent features that have 
maximal correlation between the training HR and LR features. In order to directly connect the LR features to 
their HR counterparts, RBFs are employed to construct the nonlinear mappings between the features in the 
coherent subspaces. Given an input LR face image, the coherent SR feature is obtained by mapping the LR 
feature via the learnt RBFs in the coherent subspace for recognition. Higher recognition rates can be achieved 
by a simple NN classifier. 
 The rest of this paper is organized as follows. In Section II, review related works on SR for face 
recognition and applications of CCA and RBF model are briefed. In Section III, the framework of proposed 
method is introduced. Section IV gives the details of proposed method, and is followed by extensive 
experiments in Section V. Section VI concludes this paper. 
 

II. Related Works 
The work applies KPCA, CCA and RBF to feature domain SR for the recognition of LR face images. 

The most relevant works are briefly reviewed. 
Kernel principal component analysis (kernel PCA) is an extension of principal component analysis 

(PCA) using techniques of kernel methods. Using a kernel, the originally linear operations of PCA are done in a 
reproducing kernel Hilbert space with a non-linear mapping [8]. The K-PCA based Face recognition reduces the 
no. of features to be compared in the processing. To understand the utility of kernel PCA, particularly for 
clustering, observe that, while N points cannot in general be linearly separated in ݀ ൏ ܰdimensions, they can 
almost always be linearly separated in ݀  ܰ dimensions. That is, given N points, ݔ, if we map them to an N-
dimension space with  Φሺݔሻ ൌ :Φ	݁ݎ݄݁ݓ	ߜ Rୢ ⟶ Rand Φis the Kronecker delta. Kernel PCA has been 
demonstrated to be useful for novelty detection and image de-noising. 

SR techniques are central to a variety of applications ranging from digital photography to publishing. 
Furthermore, face image SR methods are often applied to enhance the face recognition rate of LR image 
sequences. Lin et al. [5] applied optical flow SR algorithm as a preprocessing stage to improve the face 
recognition performance of LR face images. A sequence of video frames of a subject is also applied for creating 
a SR image of the face with increased resolution and reduced blur for face recognition. Given a single LR face 
image, Jiaet al. generated the SR identity parameter vector for recognition  by incorporating the tensor structure 
that models multiple factors into the similar Bayesian framework as that in [6]. These studies strive for an 
effective approach to combining information from multiple images/sources into recognition. Instead, we aim at 
extracting SR features from a single LR image which is suitable for performance improvement on NN 
classifiers. 

CCA was first developed by Hotelling to find bases for two sets of random vectors such that the 
correlation between the projections of the vectors onto the bases is maximized. Classical CCA has been 
generalized in various ways, such as kernel CCA to maximize nonlinear correlation, and tensor CCA for 
multiple sets of variables [9]. CCA and its extensions can be used whenever there is a need to establish a 
relationship between two sets of variables. The main difference between CCA and KPCA is that CCA is closely 
related to mutual information. CCA can also be used to measure the similarity between two image sets for object 
and action recognition [9]. In this paper, we apply CCA to establish the coherent subspaces for HR and LR face 
images. 

RBF was introduced by Broom head and Lowe for the purpose of exact function interpolation. 
Algorithms based on RBFs are commonly applied for statistical learning, geometric data analysis, and pattern 
recognition. RBFs can also be applied for the problem of reconstructing a surface from scattered points sampled 
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ܭ ൌ ݇ሺݔ, ሻݕ ൌ ൫Φሺxሻ,Φሺyሻ൯ ൌ ΦሺxሻΦሺyሻ       (1) 
which represents the inner product space (see Gramian matrix) of the otherwise intractable feature space. The 
dual form that arises in the creation of a kernel allows us to mathematically formulate a version of PCA in 
which we never actually solve the eigenvectors and Eigen values of the covariance matrix in the Φሺxሻ -space 
(see Kernel trick). The N-elements in each column of K represent the dot product of one point of the 
transformed data with respect to all the transformed points (N points).To evaluate the projection from a point in 
the feature space Φሺxሻ onto the kth principal component V (where exponent k means the component k, not 
powers of k) is  

ܸ
்
Φሺxሻ ൌ ሺ∑ a୧

୩
୧ୀଵ Φሺx୧ሻሻΦሺxሻ   (2) 

The Gaussian kernel is defined as 

݇ሺݔ, ሻݕ ൌ ݁
ష∥ೣష∥మ

మమ         (3) 
B. Feature Vector Extraction 

In this section, the detailed procedure of proposed algorithm is present. Different from the mixture 
models, kernel PCA just works with a single PCA. It is an extension of PCA to non-linear distributions. Instead 
of directly doing a PCA, the n data points ݔ  are mapped into a higher-dimensional (possibly infinite-
dimensional) feature space [12].As stated, the problem of SR of feature domain  for face recognition is 
formulated as the inference of the HR domain  feature  ch  from  an input  LR  image  Il ,  given  the training sets 
of HR and LR face images, IH=ሼܫ

ுሽୀଵ
 and IL=ሼܫ

ሽୀଵ
 where m denotes the size of the training sets. The 

dimension of  the  image  data,  which  is  much  larger  than  the  number of  training  images,  leads  to  huge  
computational costs.  So, the holistic features of face images are obtained by KPCA, which represents a given 
face image by a weighted  combination of eigenfaces. We define  

xi
H  = (B H )T (Ii

H  − μH )   (4) 
where μH is the corresponding mean face of HR training face images and ݔ

ுis the feature vector of face 
image ܫ

ு . BH is the feature extraction matrix obtained by the HR training face images and is made up of 
orthogonal eigenvectors of(ÎH)T×ÎH corresponding to the Eigen values being ordered in descending order. 
Similarly, the feature of LR face image is represented as 

x
=(Bሻ்(ܫ

-ߤ)   (5) 
Where BL and μL are the feature extraction matrix and the mean face obtained by LR training face 

images, respectively. Then, we have the PCA feature vectors of HR and LR training sets. The following process 
of our algorithm is based on these KPCA feature vectors. 
C. Canonical Correlation Analysis 

Canonical correlation analysis has been used to study the correlations between two sets of variables. In 
our study of feature-domain SR for LR face recognition, the relationship between HR and LR feature vectors 
should be learned by the training sets. Thus, given an input LR face features, the corresponding SR features can 
be obtained for recognition. In the existing methods, this relationship is directly obtained by the KPCA features 
of LR and HR face images. Corresponding HR and LR images of the same face have differences only in 
resolution, thus, they are coherent through their intrinsic structures. In order to learn the relationship between 
HR and LR feature vectors more exactly, we apply CCA to incorporate the intrinsic topological structure as the 
prior constraint. In the coherent subspace obtained by CCA transformation, the solution space of HR feature 
corresponding to a given LR image is reduced. Then, the more exact coherent SR features can be obtained for 
recognition in the coherent subspace. 

Specifically, from the PCA feature training sets  X H  and X L ,  we  first  subtract  their  mean  values 
ܺு   and ܺ  ,  respectively,  which  yields  the  centralized  data  sets.CCA finds two base vectors  

V H and V L for datasets XH  and X L  in order to maximize the correlation coefficient between vectors 
C H   and  C L .  The correlation coefficient is defined as 

ߩ ൌ
ாሾಹಽሿ

ඥாሾሺಹሻమሿாሾሺಽሻమሿ
                                  (6) 

Where ܧሾܥுܥሿdenotes mathematical expectation. To find the base vectors V Hand VL, we define ܿଵଵ ൌ
ሾݔ~ுሺݔ~ுሻ்ሿandܿଶଶୀሾݔ~ሺݔ~ሻ்ሿ as the within-set covariance matrices ofˆܺு andˆܺ , respectively, while 	
ܿଵଶ ൌ ሾݔ~ுሺݔ~ሻ்ሿandܿଶଵ ൌ ሾݔ~ሺݔ~ுሻ்ሿas their between-set covariance matrices. Then, we compute 

		ܴଵ ൌ ଶଶܥଵଶܥଵଵିଵܥ
ିଵܥଶଵ           (7) 

	ܴଶ ൌ ଶଶܥ
ିଵܥଶଵܥଵଵିଵܥଵଶ            (8) 

 
V His made up of the eigenvectors of R1 when the Eigen values of R1 are ordered in descending order. 

Similarly, the eigenvectors of R2 compose V L. We obtain the corresponding projected coefficient sets C Hand 
CL of the KPCA feature sets X Hand XL projected into the coherent sub spaces using the following base vectors: 
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