
Enhanced Component Retrieval Scheme
Using Suffix Tree in Object Oriented

Paradigm

Karambir,
Assistant Professor

Department of Computer Science and Engineering
University Institute of Engineering and Technology(UIET)

Kurukshetra University, Kurukshetra
bidhankarambir@rediffmail.com

Nisha,

M. Tech.
Department of Computer Science and Engineering

University Institute of Engineering and Technology(UIET)
Kurukshetra University, Kurukshetra

ernisha.05@gmail.com

Abstract –In today’s world software are used everywhere i.e. every electronic devices use software. So
there is a large demand of software but in the same proportion the development is not growing. It is
similar to the supply demand problem of management. Hence there is need to resolve this issue. There is
a need to find some alternate methods that can help in improvement of this development. Some methods
may be like software reuse, develop common software that can be used by various users simultaneously.
In software reuse we use the design, code, architecture etc. Software reuse has become of much interest
in the software community due to its potential benefits, cost benefit, time saving, etc. which include
increased product quality and decreased product development cost and estimated schedule. To
select a component for reuse is becoming difficult, because before reusing there is need to retrieve the
component from the repository. Repository having a large in size and there are thousands no. of
component. Before retrieving a component there is need to search the relevant component as there are
many components with approximate same name, same functionality etc. which make the searching of
component very time consuming. Hence there is need of a new technique which makes the selection of
component efficient and fast. For this purpose, we proposed a scheme for the searching of component
using suffix tree, suffix tree is a way to maintain the component repository in well maintained way and
result an efficient and fast searching, which will be more efficient than earlier schemes.

Keywords: Software Component, Searching, Component Retrieval, Suffix Tree

I. INTRODUCTION
Software reuse is technique in which we use the already designed software’s code in our software system. There
are many benefits of software reuse. It saves the potential, cost, time etc. This result in increase in the product
quality, delivery on time, under budgeted development and decrease in the maintenance cost also [1]. From the
above discussed benefits, software reuse plays an important role in software development. When we reuse a
component there is need to select the proper component that will be used. For reusing there is a need to retrieve
the components form the repository which is a special database containing a large number of components that
may be reused in development process. Before retrieving a component there is need to search that component.
There are a lot of component having similar name, similar functionality etc. that make the searching process
difficult and ambiguous. Each component is stored with a name generally a string. So to search a component
keyword based searching is applied. So the existing string matching algorithms can be applied on the component
searching. Some techniques are earlier developed that can be used to search a component that are based on the
string matching algorithms which are described below. They have their own benefits and drawbacks but do not
fulfil all the requirements.

A. Rabin Karp Algorithm [2]: It is a string matching algorithm that uses hashing to find any one of a set
of pattern strings in a text. The text of length n and p patterns of combined length m, its average and
best case running time is O (n+m) in space O (p), but its worst-case time is O (nm). Rabin Karp can
rapidly search through a paper for instances of sentences from the given source material, ignoring
details such as case and punctuation.

Karambir et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 08 Aug 2012 1396

B. Brute Force Algorithm[3]: It is also known as proof by exhaustion, also known as proof by cases,
perfect induction, or the brute force method, is a method of mathematical proof in which the statement
to be proved is split into a finite number of cases and each case is checked to see if the proposition in
question holds. A proof by exhaustion contains two stages: proof that the cases are exhaustive; i.e., that
each instance of the statement to be proved matches the conditions of (at least) one of the cases and a
proof of each of the cases.

C. Boyer Moore Algorithm [4]: It is a particularly efficient string searching algorithm, and it has been the
standard benchmark for the practical string search literature. The algorithm pre-processes the target
string that is being searched for, but not the string being searched in. The execution time of the Boyer
Moore algorithm, while still linear in the size of the string being searched, can have a significantly
lower constant factor than many other search algorithms: it doesn't need to check every character of the
string to be searched, but rather skips over some of them. Generally the algorithm gets faster as the key
being searched for becomes longer. Its efficiency derives from the fact that with each unsuccessful
attempt to find a match between the search string and the text it is searching, it uses the information
gained from that attempt to rule out as many positions of the text as possible where the string cannot
match. BMH approach uses only the Bad

D. Knuth Morris Pratt Algorithm [5]: KMP string searching algorithm searches for occurrences of a
"word" W within a main "text string" T by employing the observation that when a mismatch occurs, the
word itself embodies sufficient information to determine where the next match could begin, thus
bypassing re-examination of previously matched characters.

E. Longest Common Subsequence (Lcs) Algorithm [6]: It is to find the longest subsequence common to all
sequences in a set of sequences. The subsequence is different from a substring, it is a classic computer
science problem, the basis of different (a file comparison program that outputs the differences between
two files), and has applications in bioinformatics.

The above discussed algorithms are string matching algorithms that are used to match the strings. In component
searching, the component is stored using a keyword that is also a string, so these mechanisms can be used.
These searching mechanisms are efficient and each has its own advantages and disadvantages. To improve the
above algorithms some more work has done in this field which are described in the section 2. Proposed work is
described in section 3, section 4 contains their results and conclusion is written in section 5.

2. RELATED WORK
Software component is stored with a name which is combination of characters known as keyword. To search a
component keyword matching is generally used. Simple string matching algorithms were discussed above. But
today these algorithms are not much in use, because they have many pitfalls. Some of the work has been done
on their pitfalls and some new relevant and efficient techniques are developed for component selection. Various
authors scheme are described below that make improvement in searching mechanism.
In this paper, Dixit et. Al. [7], gave an idea to retrieve a component using the genetic algorithms, they tried to
solve the issue of Component selection. This paper described how a Genetic Algorithms based approach can be
used for component selection to minimize the gap between components needed and components available. Now
a relevant objective has at hand in this direction that is to make use of these methodologies acceptable from the
software engineering community. Therefore, in this paper he developed Genetic Algorithms based approach for
selection component.
In this paper, Viana et al. [8] gave a new scheme named as ‘A Search Service for Software Components based
on Semi-Structured Data Representation Model’. This paper presented the architecture, functionalities and
implementation of a search service that adopts techniques for indexing semi structured data, making possible the
discovery of software assets through regular path expression queries. The search service proposed in this paper
performed the indexing of assets described using a semi structured data representation model, as opposed to
automatic extraction of information from the source code or textual documentation approaches.

In this paper, Li et. Al. [9] performed a work on, “Component Retrieval Based on Domain Ontology and User
Interest”. In this paper, a method of retrieving software components based on domain ontology and user interest
was studied and implemented. This paper emphasized the definition of ontology feature domain model, the
presentation of component description model based on ontology feature and the retrieval method of user
interest. Based on these, he presented the component retrieval framework and an algorithm for retrieving related
components. Finally, a component retrieval system was given, and an instance with components in E-Commerce
field proved validity comparing with the retrieval methods based on keywords and facet.
In this paper, Aboud et al. [10] premised a work on, “Automated architectural component classification using
concept lattices”. This paper discussed that, as the use of components grown in software development, building
effective component directories became a critical issue as architects required help to search components in
repositories. During the life-cycle of component-based software, several tasks, such as construction from scratch

Karambir et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 08 Aug 2012 1397

or component substitution, would benefit from an efficient component classification and retrieval. In this paper,
he analyzed how we can build a classification of components using their technical description (i.e. functions and
interfaces) in order to help automatic as well as manual composition and substitution. The approach was
implemented in the CoCoLa prototype, which was dedicated to Fractal component directory management and
validated through a case study.
In this paper, Peng et al. [11] performed a work on, “An Ontology-Driven Paradigm for Component
Representation and Retrieval”. Here the key factors of component reuse were discussed and it was pointed out
that component reuse is actually the reuse of knowledge about component. Component ontology was employed
to represent the knowledge about component. Domain-specific terms were used to represent component by
importing domain ontology into component ontology. In this paper component retrieving algorithm was
implemented by ontology query and reasoning. This model was used in a large scale distributed simulation
system and the fact revealed that component ontology was flexible enough for component reuse and efficiency
of retrieving algorithm.

 Khode et. al. [1] presented a paper entitled, “Improving Retrieval Effectiveness using Ant Colony
Optimization”. They proposed a technique that helps re-user to identify and retrieve software component. In
their first step it matched keywords, their synonyms and their interrelationships. And then made use of ant
colony optimization, a probabilistic approach to generate rule for matching the component against the re-user
query. The method also shows very good values of precision and recall.
Shao[12] presented a work on , “Research on Decision Tree in Component Retrieval”. In accordance with the
limitation of research on traditional software component library management, he proposed the idea to apply data
mining technology to the management of software component, provided auxiliary decision support to the
relevant personnel of the component library. Secondly, in accordance with actual application, he built an applied
model of software component retrieval management by data mining technology, and analyzed the execution step
of the applied model. Lastly, the model had been verified through experiment, thus the feasibility and validity of
this strategy had been verified.
From the above discussion, we can conclude that software searching is a difficult task and a lot of work is doing
in this field. There is still many pitfalls and required more work.

3. PROBLEM IDENTIFIED
In Component Retrieval there is need to search a component. To search component, the user enter a query into
the search interface of the searching module. The searching module returns a list of all the components
according to search query as a result. A lot of research goes into how to search the best component in return. To
provide results quickly and efficiently is a big challenge. As the repository size grows the time required to
search a component increases. This is also a major issue that needs to resolve. Hence we take these two issues as
a problem and gave a solution.

4. PROPOSED WORK
In the above section, the problem definition was discussed. Suffix Tree is a data structure that is also used for
the purpose of the string matching. The suffix tree is often used for storing words or sequences of words so they
can be looked up easily [13]. It was also called position tree but it was extremely difficult to understand. The
improved algorithm that was simpler and better space efficiency for suffix tree construction was given by
McCreight in 1979 is known as “A Space-Economical Suffix Tree Construction Algorithm” [14]. The tree was
working backward from the longest suffix to the shortest. Building the tree in this manner is simple and allows
the tree to be built in a single scan of the string.
A new algorithm named as “Constructing Suffix Trees On-Line in Linear Time” was given by Ukkonen[15] in
1992. This algorithm is easier to understand and offers several properties that make it useful for the language
modelling. Ukkonen’s algorithm for suffix tree formation is easiest and different from the previous algorithms.
It starts with an empty tree and extending it for each character in in the string in a single forward scan. The tree
formed in this manner called on-line algorithm: so that after inserting the Nth character the suffix tree is
complete for the first N characters of the input string.
Suffix tree [16] can be defined as: Let S=S [1...n] be a string of length n over a fixed alphabet Σ. A suffix tree

for S is a tree with n leaves (representing n suffixes) and the following properties:

 Every internal node other than the root has at least 2 children.
 Every edge is labeled with a nonempty substring of S.
 The edges leaving a given node have labels starting with different letters.
 The concatenation of the labels of the path from the root to leaf i spell out the i-th suffix S [i...n] of S.

We denote S [i...n] by Si.
 In the above paragraph some features and method to construct suffix tree has been discussed. Suffix

tree is a data structure that can be used for string matching purpose. If suffix tree can be applied on the

Karambir et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 08 Aug 2012 1398

In this ar
string to
generated
an input a
tree then
compone

We imple
Template
compone
figure 2.
and in t
correspon
compone
also linea

component se
suffix tree is
is added for
hierarchy of t
As the size o
So I proposed

rchitecture, th
be searched.

d according to
and in step 2 t

n the output m
ent and vice-v

emented our p
e.java file as
ents like class
In the figure

table 1. We
nding searchin
ent searching i
ar that makes

earching it ma
that at each le
the searching

the suffix tree
of the compon
d a new archit

Figure 1: - Ar

here is one in
 In the secon

o the number o
the input strin
module return
ersa.

5.
proposed work
s a componen
ses available,
3, we showed
searched the
ng time is sh
is also perform
it more efficie

Fig 2:-

ay return the
evel of suffix
g it is simply
e. Hence there
nent repository
ecture for the

rchitecture of Pro

nput module f
nd module, w
of component
ng is searched
n the result co

IMPLEMENT
k in J2SE. We
nt repository
methods ava

d the suffix tre
various com

own in tabula
med in the lin
ent than alread

Finding the comp

efficient and
tree, there are

y add with th
e is not much
y increases th
component se

oposed Searching

from which w
which is search
ts presented in
on the suffix

omponent fou

TATION AN
e formed a pro

to the proto
ailable, and th
ee formed acc

mponents in t
ar form. The

near time henc
dy existing alg

ponents in compo

qualitative re
e at least two n
he existing no
effect of the i

here will be lit
earching from

g Scheme Based O

we can enter
hing module,
n the compone
tree. If the co

und with the

ND RESULT
ototype of the
otype. It foun
he fields avail
cording to com
the suffix tre
suffix tree is

ce the searchin
gorithms.

onent repository

esults and the
nodes hence w

odes so there
increase in the
ttle increment

m repository us

On Suffix Tree

component re
in step 1, th

ent repository
omponent foun

time used in

 above archite
nd and show
lable. This is

mponents foun
ee and got re
formed in a l

ng time of this

e another bene
when a new c
is least chan

e size of the r
t in the search
sing suffix tre

epository and
he suffix tree

that is given
nd on the suff

n searching th

ecture and gav
wed the all th

 also shown
nd in reposito
esult and the
linear time an
s architecture

efit of the
omponent

nge in the
epository.
hing time.
ee.

a
is
as

fix
hat

ve
he
in
ry
eir
nd
is

Karambir et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 08 Aug 2012 1399

Sr.N

1
2
3
4
5
6
7

In this p
suffix tre
compone
compone
tree, if th
algorithm
in a seri
searching
shown in
useful for

[1] Sande
[2] Karp
[3] Nimis

Volum
[4] Boyer

0001-
[5] Knuth
[6] Thom

ed.) M
[7] Dixit

Engin
[8] Viana

Confe
[9] Li et.

4244-
[10] Abou

Confe

No. Ty

1
2
3
4
5
6
7

aper, we pres
ee. In our me
ents presented
ent found in re
he query is m
m is linear that
ies that make
g that was sol
n above table.
r the software

eep G. Khode et a
et al., “Efficient r
sha singla et al., “
me-I, Issue-6, Jan
r et. al., “A fast
-0782.
h et al., “Fast patt

mas H.Corman, Ch
MIT PRESS and M

et. al., “Softwar
neering, 2009 IEE
a et. al., “A Sear
erence on informa
al., “Component

-2909-7, pp. 1-4.
ud et. al., “Auto
erence on Softwa

Fig 3:- Su

Table1

ype Of Compo

Method
Class

Method
Method
Class

Method
Method

sented an app
ethod, we gav
 in the reposit
epository the

matched it retu
t made it fast a
e the qualitat
lved using our
. As a conclu
e industry to se

al., “Improving R
randomized patte
“String Matching

nuary 2012.
string searching

tern matching in
harles E. Lierersi
McGraw-Hill. Pp
re Component R
EE, ISBN: 978-0-
rch service for s
ation technology,
t Retrieval Based

omated architectu
are Architecture W

uffix Tree generat

:- Searching time

onents Nam

6. C
proach to sear
ve the path of
tory like class
suffix tree is

urns their sear
and efficient;
ive results. T
r proposed sy

usion, we can
earch a compo

REF

Retrieval Effective
ern-matching algo
g Algorithms and

g algorithm.”, Co

strings”, SIAM jo
in, Ronald L. Riv
p. 350-355. ISBN
Retrieval Using G
-7695-3569-2, pp
software compon
, IEEE, ISBN: 97
on Domain Onto

ural component
WICSA/ECSA@2

ted according to c

e of different com

me of compon

getdata()
area

total()
mark1()
student

getdetails ()
getarea()

CONCLUSION
rch a compon
f component
es, methods e
generated. Th

rching time ot
this algorithm

These two iss
ystem. This al

say that prop
onent for reus

ERENCES

eness using Ant C
orithms”, march 1
d their Applicabil

omm. ACM page

ournal on Compu
vest and Clifford

N 0-262-53196-8
Genetic Algorithm
p. 151-155.
nents based on a
78-1-4244-3770-2
ology and User In

classification u
2009 IEEE, ISBN

components foun

mponents using su

ent Time
(Search

N
nent from the

repository. Th
etc. That may b
he user’s quer
therwise failu

m matched all
sues were ma
gorithm takes

posed approac
se.

Colony Optimizat
1987.
ity in various Ap

e no. 762-772 D

uting 6(2): 323-35
Stein (2001). “15

ms”, Internationa

semi-structured
2, pp. 1478-1484.
nterest”, EBISS I

using concept la
N: 978-1-4244-49

d

uffix tree

e Complexity
hing time from

1030
1008
1030
1014
1014
1217
1009

component re
he prototype
be reused. Th
y is matched

ure. The runni
the characters
ajor in softw
s very small ti
ch will be ver

tion”, IEEE 2009

pplications”, ijsce

DOI: 10.1145/359

50. DOI: 10. 1137
5.4”. Introduction

al Conference on

data representati
.
nternational Con

ttices”, Software
984-2, pp. 21 -30.

in millisec
m suffix tree)

epository usin
distinguish th

hen according
from the suff

ing time of th
s of input strin

ware compone
ime that is als
ry efficient an

9.

e ISSN: 2231-230

9842.359859. ISS

7/020624.
n to Algorithms (2

n Computer and

ion model”, 6th i

nference, IEEE, IS

e Architecture &
.

ng
he
to

fix
his
ng
ent
so
nd

07,

SN

2nd

Automation

international

SBN: 978-1-

& European

Karambir et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 08 Aug 2012 1400

[11] Peng et al.,“ An Ontology-Driven Paradigm for component Representation and Retrieval”, Ninth International Conference on
Computer and Information Technology © IEEE, ISBN: 978-0-7695-3836-5, Vol. 2., pp. 187-192.

[12] Shao et. al., “Research on Decision Tree in Component Retrieval”, Seventh International Conference on Fuzzy Systems and
Knowledge Discovery (FSKD) IEEE, ISBN: 978-1-4244-5931-5, Vol. 5, pp. 2290- 2293.

[13] Weiner et. al., “Linear pattern matching algorithms” Proceedings of the 14th Annual Symposium of Switching and Automata Theory,
IEEE Computer Society,pp.1-11.

[14] McCreight,E., (1976) “A space-economical suffix tree construction algorithm” ACM,Vol.23, pp.262-272.
[15] Ukkonen,E., “Constructing suffix trees on-line in linear time” In Proceedings of the IFIP 12th World

Computer Congress on Algorithms, Software, Architecture Information Processing '92,Vol.1,pp.484-492.
[16] Gusfield et. al., “Algorithms on Strings, Trees, and Sequences” Computer Science and Computational

Biology. Cambridge University Press.

Authors Profile

Mr. Karambir is currently working as a assistant professor in Department of Computer Science and
Engineering,University Institute of Engineering and Technology (UIET) Kurukshetra University, Kurukshetra.
He did his B.Tech from Nagpur University and received his M.Tech degree from GJU, Hisar, Haryana.

Nisha was born in Haryana, India in 1989. She received her B.Tech degree in Computer Engineering from
DIET, Karnal. Presently she is a M.Tech scholar and pursuing M.Tech from UIET, Kurukshetra University,
Haryana, India.

Karambir et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 08 Aug 2012 1401

	Enhanced Component Retrieval SchemeUsing Suffix Tree in Object OrientedParadigm
	Abstract
	Keywords
	I. INTRODUCTION
	2. RELATED WORK
	3. PROBLEM IDENTIFIED
	4. PROPOSED WORK
	5. IMPLEMENTATION AND RESULT
	6. CONCLUSION
	REFERENCES
	Authors Profile

