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Abstract-Software component reuse has become of much interest in the software community due to its 
potential benefits, cost benefit, time saving, etc. which  include  increased  product  quality  and  
decreased  product  development cost  and estimated schedule.  To select a component for reuse is very 
difficult because there are many components with approximate same name, same functionality etc. which 
make the reuse of component very time consuming. Hence there is required a technique which make the 
selection of component efficient and fast. For this purpose we purposed a scheme for the selection of 
component which will be more efficient than earlier scheme. 

I. Introduction 

A. What is Software Reuse? 
Software reuse is a process of creating software systems from the existing software rather than building them 
from low level design [1]. Software reuse is a fastest growing and very needy displine todays. Software reuse 
appears in various different forms from white-box reuse to black-box reuse, and from ad-hoc reuse to systematic 
reuse. in many different types software is reuse like SRS document, algorithm, design, source code, test case 
that are made during the software life cycle. Source code and tested modules are most commonly used. Many 
developer software reuse as the source code alone. Design reuse is popular in object oriented class libraries. The 
software community does not finalize what a software component exactly 
B. Benefits of Software Reuse 
 Software reuse has a positive impact on software quality, costs, and productivity.  
1. Quality Improvements 
Software reuse results in improvements in quality, productivity, performance, reliability and interoperability. 
a. Quality:- Error fixes accumulate from reuse to reuse. This produces higher quality for a reused component 
than would be the case for a component that is developed and used only once. 
b. Productivity:- A productivity gain is achieved due to less code that has to be developed. This results in less 
testing efforts and also saves overall yielding’s cost. When reuse is being installed, productivity may decrease 
shortly due to increased learning effort and the need to develop reusable components. This temporary decrease 
in productivity should easily be compensated by a long-term increase. 
c. Performance:- This may yield better performance of a reused component than might be practical for a 
component that is developed and used only once. However, generalizations that make components more 
reusable can have a negative influence on overall performance.  
d. Reliability:- Using well-tested components increases the reliability of a software system. The use of a 
component in several systems increases the chance of errors to be detected and strengthens condense in that 
component. 
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e. Interoperability:- Many systems can work better together if their interfaces are implemented consistently. 
They use the same components for these interfaces. Even though written standards improve interoperability, 
different implementations might differently interpret parts of these standards. 
The quality of reused components (numbers of errors per lines of code) was about 9 times better during 
component test and about 4.5 times better during system test. In another project there were even no errors found 
in reused components during the entire life cycle of the project. 
2.  Effort Reduction 
Software reuse reduces the work and development time, which yields to a shorter time to market. This is 
important considering the importance of good timing, i.e., early availability for software systems. Additionally, 
documentation costs as well as team sizes can be reduced. 
a. Redundant Work, Development Time:- Developing every system from scratch means redundant development 
of many parts like basic algorithms, user interfaces, communication, etc. This can be reduced when these parts 
are available as reusable components and can be shared, resulting in less development and less associated time 
and costs. 
b. Time to Market:- The success or failure of a software system is often determined by its time to market. By 
using reusable components we can get result in a reduction of that time.  
c. Documentation:- The documentation is very important for the maintenance of a system, it is often neglected. 
Reusing software components reduces the amount of documentation to be written but compounds the 
importance of what is written. There is need to structure of the software system and the newly developed 
components have to be documented.  
d. Maintenance Costs:- Fewer defects can be expected to occur when proven components have been used, and 
less of the software system must be maintained. The reusable components are maintained by a separate group 
rather than separately in each software system. 
e. Team size:- Large development teams suffer from a communication overload. It is clear that doubling the size 
of a development team does not result in doubled productivity. If many components can be reused, then 
software systems can be developed with smaller teams, leading to better communication and increased 
productivity. 
C.    Why Reuse Software?  
A software reuse process provides the facility the increase of quality, productivity and reliability, and the 
decrease in implementation time and development cost also. There is only investment in to start a software reuse 
process, but after that investment recovers in only few reuses. In short, the reuse process’s development and 
reuse repository produces a knowledge that improves in quality in every reuse, minimize the amount of 
development cost, development work needed for future projects and the reduce in risk of future projects. A 
software component is an independent part of the software system having complete functionalities.  
Four levels of component reuse have been proposed:  
1. Design level products  
2. Analysis level products  
3. Code level components (modules, procedures, subroutines, libraries, etc.)  
4. Entire applications  

D.				Types of Reuse  
  Components are used the following types is given below. 
1. Horizontal reuse  
Horizontal reuse refers to those software components that are used across a wide variety of applications in terms 
of code. Reuse of third-party application or modules within a system, such as an e-mail, Facebook access 
program. Various software libraries and repositories containing these code and documentation exist on the 
internet today.   
2. Vertical reuse   

The basic idea is the reuse of system functional areas, or domains that are potentially very useful, can be used by 
the systems with similar functionality [2]. Domain engineering is “achieve iterative, comprehensive, life-cycle 
process that an organization can use to strategic business objectives. It increases the throughput of application 
engineering projects through the normalization of a product family and a related production process [3]”. 
Domain engineering concentrations on the formation and preservation of reuse repositories of functional areas. 

3. Systematic software reuse 
 Systematic software reuse and the reuse of components impact almost the whole software development process 
[2]. Software process models were established to provide guidance in the creation of high-quality product at 
predictable costs. Software process models are adapted based on experience, changes and improvements were 
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suggested by classic waterfall model. New models are also based on efficient reuse of useful components that 
have been developed in other projects [2].   
E.    Software Component  
1. Describing a Software Component  
Component is fundamental unit of a software construction. Every component has his own interface and an 
Implementation. The following are the exclusive aspects of a Software Component that must not only be 
described, but also searchable:  

 Version data  

 OS/Platform compatibility  

 Development  

 Scalability  

 Testing specification, and performance data 

 Known deficiencies  

 Functional specification  

 Interface specifications  

 Use cases, use scenarios  

 Supportability data 

 Evaluations  

F.     Reusable Software Component  
A component is an autonomous part of software that interacts with other components in a definite manner to 
accomplish a specific task. Components can be used to build both shrink-wrap software and enterprise critical 
software [5]. Reusable software points to those software components can be combined with a variety of 
programs without modification. Reusable software components are designed to take benefit of reusability in 
software construction. Software reuse is the use of knowledge or artifacts from existing software components to 
build a new software system. There are numerous work products that can be reused, for example designs, 
specifications, architectures, source code and documentation [4, 6]. 
G.   Existing Methods of Components Classifications 
What is Component classification: reusable software item is generally known as a component. Components may 
consist of, ideas, designs, source code, linkable libraries and testing strategies but they are not necessary. In 
classification, the developer has to specify what components or what type of components they want. These 
components then should be retrieved from a library, evaluated as to their suitability, and improved if required. 
When the developer is satisfied that they have retrieved an appropriate component, then it can be added to the 
current system under development. The aim of a component retrieval system [5] is to make able to located either 
the exact component necessary, or the closest match, in the minimum amount of time, by using a suitable query. 
The retrieved component(s) should available for possible selection.  
      Classification is the process of selecting of interest. The classification of components for reuse is more 
difficult than classifying books in a library. Library systems always use structured data for its classification 
system (e.g., the Dewey Decimal number). Current classification process to classify software components 
divided into the following categories: Free text, enumerated, attribute-value, and faceted. The selection of each 
of the methods is evaluated as to how well they perform against the described criteria for a good retrieval 
system. 
a.  Existing techniques 

1.  Free text classification: Free text retrieval is based upon a keyword search. In this type classification 
technique, a user inputs keywords to search. The retrieval system does searches using the text contained within 
documents [7]. Indexes are searched to try to find a suitable entry for the required keyword and as a result a 
ranked list of documents is returned. The ambiguous nature of the keywords is major drawback of this method. 
Another disadvantage is that a search returns many irrelevant components as a result. An example of free text 
retrieval is the grep command of UNIX operating system. This type of classification makes large expenses in the 
time taken to index the components, and the time taken to make a query. All the relevant text in each of the 
documents related to the components are index, which must be searched from starting to end when a query is 
fire. Relevant keywords are derived by their statistical and positional properties, thus resulting is called 
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automatic indexing. Two processes indexing and searching are involved in keyword search. Keyword search 
provides a freedom to users to freely submit their query to search engines;  
 
2.  Enumerated classification:  Enumerated classification is a single dimensional classification that uses a set of 
mutually exclusive classes [9]. An example of this is the Dewey Decimal system that is used in a library to 
classify books [8].  Each subject area, e.g. mathematics, physics, computer related etc, has its own classifying 
code. sub code further represents the a specialist subject area within the main subject. These codes can further 
sub coded by author or publisher. This classification method has their own advantages and disadvantages 
pivoted around the concepts of a unique classification for each item. The classification scheme allow a user to 
find more than one item that is classified within the same division/ subdivision assuming that if more than one 
exists. For example, there may be more than one book of a subject, each published by different publishers. 
Major problem in this type of classification schemes as is one dimensional do not allow flexible classification of 
components into more than one place for reusable software components.  However it provides significant 
support for best effort retrieval of components. 
 
3.  Attribute value: The attribute value classification scheme uses set of attributes to classify a component [10]. 
For an example, a book has many attributes such as the publisher, the author name, a unique ISBN number and 
classification code in the Dewey Decimal system. These are the only example of the possible attributes. Based 
on the search query of reader a book can be combed in no. of ways e.g. number of pages, the size of the paper 
used, the type of print face, the publishing date, etc. clearly, the attributes relating to a book can be:  

 Bulky. All possible combinations of attributes could run into many tens, which may not be known at 

the time of classification. 

 Multidimensional. The book can be classified by different attributes in different places.  
4.  Faceted: Faceted classification was proposed by Prieto-Diaz and Freeman in 1987[11] also known as faceted 
navigation or faceted browsing that relies on facets which are mined by experts to describe the features about 
components ex:- Features, such as the component’s functionality, how to run the component, and 
implementation details. Like attribute classification method, various facets are used to classify components 
however there are usually a lot fewer facets than there are potential attributes. Sometimes users are given choice 
to select features for search. This helps the users to achieve his search goals rapidly and efficiently. Faceted 
classification and retrieval has verified to be very effective in retrieving reuse component from repositories.  
Ruben Prieto-Diaz has proposed a faceted scheme that uses six facets. 

 The functional facets are: Function, Objects and Medium. 
 The environmental facets are: System type, Functional area, setting [1].  

Each facet has to have values assigned at the time the component is classified. 
Faceted classification scheme is very attracting the most attention within the software reuse community. Like 
the attribute classification method, facets classify components however there are generally a lot fewer facets 
than there are potential attributes.  
Each of the facets has values assigned at the time the component is classified.  
The individual components can then be distinctively identified by a tuple,  
for example. < add, arrays, buffer, database manager, billing, book store >  
Frakes and Pole conducted an investigation on the above classification methods [9]. The investigation found no 
any major differences between the four different classification schemes; however, the following about each 
classification method was noted:  

 Free text classification  
             Ambiguous, indexing costs  

 Enumerated classification  
             Fastest method, difficult to expand  

 Attribute value classification  
             Slowest method, no ordering,       

 Faceted classification  
             Easily expandable, most flexible   
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Classification 
Schemes/Characteristics 

Ambiguity Flexibility Speed Indexing  Cost Expend  Quality Index Ordering 

Free Text Classification YES Moderate Average High Normal YES 

Enumerated YES Least Fastest More Difficult YES 

Attributed Value NO Normal Slowest Less Normal NO 

Facet Classification NO Most Slow Very less Easily NO 

 

Table 1. shows the comparison among all the four existing component selection scheme. 

II,     PROPOSED SYSTEM 
Various kinds of classification schemes are available to classify a component but one problem is how to 
implement this, many systems follow the principle: Once a new component has been identified, an administrator 
is responsible for the classification should be proficient. The system is employed for two reasons. First, the 
administrator must know how to classify the components according to the scheme. Second, a lexicographical 
consistency is necessary across the whole of the system. The classification system is always separate to the 
retrieval system, which is for the users. Well-known systems works with one classification and retrieval scheme, 
such as enumerated or faceted. Others work with a different classification system. 
      In this research, we propose a new classification scheme that integrates the features of existing classification 
schemes.  
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. Shows the new efficient component retrieval scheme for component classification 

In this system (Fig.1), we set up the proposed scheme. Here the developers develop a new component and put 
their components into library at the same time if required the developers can also retrieve components from the 
library. Query tracking system should be maintained to improve the proposed scheme. The proposed system will 
provide the following functionality to the users.  

 Storing components:-  To store the newly developed and maintained components in the reuse 
repository for future use. 

  Searching components:-  This functionality is given to user to search the available components from 
the libraries.  

 Browsing components:-  This functionality is used to extract the copy of the available component for 
the reuse and modification from the libraries. 
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    A.     Proposed algorithm 
      Step1:- User enter the query through the interface 
       Step2:- Build the query and apply the enumerated classification scheme using the query on the reuse 
repository. 
      Step3:- Store the results extracted by enumerated classification in temporary buffer. 
      Step4:- Now apply the attributed value classification on the results available in buffer. 
      Step5:- The final result which comes after the attributed value classification is returned to user. 
Each of the four main classification schemes has both advantages and disadvantages. The free text classification 
method does not offer the flexibility and has many problems with synonyms and search spaces. The faceted 
classification method offers the most flexible method of classifying components and has problems when trying 
to classify similar components for use. The enumerated classification scheme provides a fast way to drill down 
into a library, but does not offer the flexibility to classify components for use in more than one way. The 
attribute value classification scheme permits multidimensional classification of the same component, but does 
not offer any ordering of the different attributes.  
 
    The efficient classification scheme took the advantages or positive sides of both schemes i.e. enumerated 
classification and attributed values classification. Our solution to these problems would be to use an enumerated 
classification scheme combined with attribute value classification scheme to classify the components details. 
The enumerated scheme is initially used to reduce the search domains. By using the enumerated classification 
scheme we make the search space to be restricted to specific points. The components selected by the enumerated 
classification scheme are the available components in the buffer are considered for attribute value scheme. By 
reducing the size of the search domain attribute value have to search in limited domain so it gives the more 
accurate results and efficiently. The particular component is then classified using attribute value scheme. 
 
Figure 2 shows the architecture of proposed system. The repository is library of components and their 
information. Users are provided interface through which they can interact with components. To upload a 
component User will provide the details. To retrieve a component the user will give his query or he will give 
details so that the system will provide the matching components.   
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iii.    Experimental results 

 

Graph 1. Shows efficiency to relevant components in blue color and their corresponding Search time in red color  
 

We implement all the classification schemes’s prototype in Matlab. We analyse their efficiency in searching 
relevant components and their search time to find relevant component. In the graph we can see that the new 
scheme known as robust scheme is providing most efficient results whereas its searching time is also high. But 
its provide the components more correctly which is demand of today’s market. Hence by see result we can say 
that it is efficient technique for fulfilling the demand of market.  

iv.    Conclusion 
In this paper four classifications (free text, attribute value, enumerated and faceted classification) are   examined 
and opened their advantages and disadvantages. The effective system take advantage of two classification 
scheme. An effective software tool with user friendly interface is developed with integrated classification 
scheme which restricts search space and reduces search time increasing the efficiency of classification of 
software component and also showing the good results when its prototype is implemented on Matlab.   
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