
AN EFFECTIVE RETRIVAL SCHEME
FOR SOFTWARE COMPONENT REUSE

Vishal
Department of Information Technology

BPS Women University
Khanpur Kalan(Sonipat) India
vishal_pasricha@yahoo.Com

Subhash Chander
Research Scholar

Dravidian University
Kuppam India

Jasmer Kundu
BPS Women University

Khanpur Kalan(Sonipat) India
Jasmer_kundu@rediffmail.com

Abstract-Software component reuse has become of much interest in the software community due to its
potential benefits, cost benefit, time saving, etc. which include increased product quality and
decreased product development cost and estimated schedule. To select a component for reuse is very
difficult because there are many components with approximate same name, same functionality etc. which
make the reuse of component very time consuming. Hence there is required a technique which make the
selection of component efficient and fast. For this purpose we purposed a scheme for the selection of
component which will be more efficient than earlier scheme.

I. Introduction

A. What is Software Reuse?
Software reuse is a process of creating software systems from the existing software rather than building them
from low level design [1]. Software reuse is a fastest growing and very needy displine todays. Software reuse
appears in various different forms from white-box reuse to black-box reuse, and from ad-hoc reuse to systematic
reuse. in many different types software is reuse like SRS document, algorithm, design, source code, test case
that are made during the software life cycle. Source code and tested modules are most commonly used. Many
developer software reuse as the source code alone. Design reuse is popular in object oriented class libraries. The
software community does not finalize what a software component exactly
B. Benefits of Software Reuse
 Software reuse has a positive impact on software quality, costs, and productivity.
1. Quality Improvements
Software reuse results in improvements in quality, productivity, performance, reliability and interoperability.
a. Quality:- Error fixes accumulate from reuse to reuse. This produces higher quality for a reused component
than would be the case for a component that is developed and used only once.
b. Productivity:- A productivity gain is achieved due to less code that has to be developed. This results in less
testing efforts and also saves overall yielding’s cost. When reuse is being installed, productivity may decrease
shortly due to increased learning effort and the need to develop reusable components. This temporary decrease
in productivity should easily be compensated by a long-term increase.
c. Performance:- This may yield better performance of a reused component than might be practical for a
component that is developed and used only once. However, generalizations that make components more
reusable can have a negative influence on overall performance.
d. Reliability:- Using well-tested components increases the reliability of a software system. The use of a
component in several systems increases the chance of errors to be detected and strengthens condense in that
component.

Vishal et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 07 July 2012 1354

e. Interoperability:- Many systems can work better together if their interfaces are implemented consistently.
They use the same components for these interfaces. Even though written standards improve interoperability,
different implementations might differently interpret parts of these standards.
The quality of reused components (numbers of errors per lines of code) was about 9 times better during
component test and about 4.5 times better during system test. In another project there were even no errors found
in reused components during the entire life cycle of the project.
2. Effort Reduction
Software reuse reduces the work and development time, which yields to a shorter time to market. This is
important considering the importance of good timing, i.e., early availability for software systems. Additionally,
documentation costs as well as team sizes can be reduced.
a. Redundant Work, Development Time:- Developing every system from scratch means redundant development
of many parts like basic algorithms, user interfaces, communication, etc. This can be reduced when these parts
are available as reusable components and can be shared, resulting in less development and less associated time
and costs.
b. Time to Market:- The success or failure of a software system is often determined by its time to market. By
using reusable components we can get result in a reduction of that time.
c. Documentation:- The documentation is very important for the maintenance of a system, it is often neglected.
Reusing software components reduces the amount of documentation to be written but compounds the
importance of what is written. There is need to structure of the software system and the newly developed
components have to be documented.
d. Maintenance Costs:- Fewer defects can be expected to occur when proven components have been used, and
less of the software system must be maintained. The reusable components are maintained by a separate group
rather than separately in each software system.
e. Team size:- Large development teams suffer from a communication overload. It is clear that doubling the size
of a development team does not result in doubled productivity. If many components can be reused, then
software systems can be developed with smaller teams, leading to better communication and increased
productivity.
C. Why Reuse Software?
A software reuse process provides the facility the increase of quality, productivity and reliability, and the
decrease in implementation time and development cost also. There is only investment in to start a software reuse
process, but after that investment recovers in only few reuses. In short, the reuse process’s development and
reuse repository produces a knowledge that improves in quality in every reuse, minimize the amount of
development cost, development work needed for future projects and the reduce in risk of future projects. A
software component is an independent part of the software system having complete functionalities.
Four levels of component reuse have been proposed:
1. Design level products
2. Analysis level products
3. Code level components (modules, procedures, subroutines, libraries, etc.)
4. Entire applications

D.				Types of Reuse
 Components are used the following types is given below.
1. Horizontal reuse
Horizontal reuse refers to those software components that are used across a wide variety of applications in terms
of code. Reuse of third-party application or modules within a system, such as an e-mail, Facebook access
program. Various software libraries and repositories containing these code and documentation exist on the
internet today.
2. Vertical reuse

The basic idea is the reuse of system functional areas, or domains that are potentially very useful, can be used by
the systems with similar functionality [2]. Domain engineering is “achieve iterative, comprehensive, life-cycle
process that an organization can use to strategic business objectives. It increases the throughput of application
engineering projects through the normalization of a product family and a related production process [3]”.
Domain engineering concentrations on the formation and preservation of reuse repositories of functional areas.

3. Systematic software reuse
 Systematic software reuse and the reuse of components impact almost the whole software development process
[2]. Software process models were established to provide guidance in the creation of high-quality product at
predictable costs. Software process models are adapted based on experience, changes and improvements were

Vishal et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 07 July 2012 1355

suggested by classic waterfall model. New models are also based on efficient reuse of useful components that
have been developed in other projects [2].
E. Software Component
1. Describing a Software Component
Component is fundamental unit of a software construction. Every component has his own interface and an
Implementation. The following are the exclusive aspects of a Software Component that must not only be
described, but also searchable:

 Version data

 OS/Platform compatibility

 Development

 Scalability

 Testing specification, and performance data

 Known deficiencies

 Functional specification

 Interface specifications

 Use cases, use scenarios

 Supportability data

 Evaluations

F. Reusable Software Component
A component is an autonomous part of software that interacts with other components in a definite manner to
accomplish a specific task. Components can be used to build both shrink-wrap software and enterprise critical
software [5]. Reusable software points to those software components can be combined with a variety of
programs without modification. Reusable software components are designed to take benefit of reusability in
software construction. Software reuse is the use of knowledge or artifacts from existing software components to
build a new software system. There are numerous work products that can be reused, for example designs,
specifications, architectures, source code and documentation [4, 6].
G. Existing Methods of Components Classifications
What is Component classification: reusable software item is generally known as a component. Components may
consist of, ideas, designs, source code, linkable libraries and testing strategies but they are not necessary. In
classification, the developer has to specify what components or what type of components they want. These
components then should be retrieved from a library, evaluated as to their suitability, and improved if required.
When the developer is satisfied that they have retrieved an appropriate component, then it can be added to the
current system under development. The aim of a component retrieval system [5] is to make able to located either
the exact component necessary, or the closest match, in the minimum amount of time, by using a suitable query.
The retrieved component(s) should available for possible selection.
 Classification is the process of selecting of interest. The classification of components for reuse is more
difficult than classifying books in a library. Library systems always use structured data for its classification
system (e.g., the Dewey Decimal number). Current classification process to classify software components
divided into the following categories: Free text, enumerated, attribute-value, and faceted. The selection of each
of the methods is evaluated as to how well they perform against the described criteria for a good retrieval
system.
a. Existing techniques

1. Free text classification: Free text retrieval is based upon a keyword search. In this type classification
technique, a user inputs keywords to search. The retrieval system does searches using the text contained within
documents [7]. Indexes are searched to try to find a suitable entry for the required keyword and as a result a
ranked list of documents is returned. The ambiguous nature of the keywords is major drawback of this method.
Another disadvantage is that a search returns many irrelevant components as a result. An example of free text
retrieval is the grep command of UNIX operating system. This type of classification makes large expenses in the
time taken to index the components, and the time taken to make a query. All the relevant text in each of the
documents related to the components are index, which must be searched from starting to end when a query is
fire. Relevant keywords are derived by their statistical and positional properties, thus resulting is called

Vishal et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 07 July 2012 1356

automatic indexing. Two processes indexing and searching are involved in keyword search. Keyword search
provides a freedom to users to freely submit their query to search engines;

2. Enumerated classification: Enumerated classification is a single dimensional classification that uses a set of
mutually exclusive classes [9]. An example of this is the Dewey Decimal system that is used in a library to
classify books [8]. Each subject area, e.g. mathematics, physics, computer related etc, has its own classifying
code. sub code further represents the a specialist subject area within the main subject. These codes can further
sub coded by author or publisher. This classification method has their own advantages and disadvantages
pivoted around the concepts of a unique classification for each item. The classification scheme allow a user to
find more than one item that is classified within the same division/ subdivision assuming that if more than one
exists. For example, there may be more than one book of a subject, each published by different publishers.
Major problem in this type of classification schemes as is one dimensional do not allow flexible classification of
components into more than one place for reusable software components. However it provides significant
support for best effort retrieval of components.

3. Attribute value: The attribute value classification scheme uses set of attributes to classify a component [10].
For an example, a book has many attributes such as the publisher, the author name, a unique ISBN number and
classification code in the Dewey Decimal system. These are the only example of the possible attributes. Based
on the search query of reader a book can be combed in no. of ways e.g. number of pages, the size of the paper
used, the type of print face, the publishing date, etc. clearly, the attributes relating to a book can be:

 Bulky. All possible combinations of attributes could run into many tens, which may not be known at

the time of classification.

 Multidimensional. The book can be classified by different attributes in different places.
4. Faceted: Faceted classification was proposed by Prieto-Diaz and Freeman in 1987[11] also known as faceted
navigation or faceted browsing that relies on facets which are mined by experts to describe the features about
components ex:- Features, such as the component’s functionality, how to run the component, and
implementation details. Like attribute classification method, various facets are used to classify components
however there are usually a lot fewer facets than there are potential attributes. Sometimes users are given choice
to select features for search. This helps the users to achieve his search goals rapidly and efficiently. Faceted
classification and retrieval has verified to be very effective in retrieving reuse component from repositories.
Ruben Prieto-Diaz has proposed a faceted scheme that uses six facets.

 The functional facets are: Function, Objects and Medium.
 The environmental facets are: System type, Functional area, setting [1].

Each facet has to have values assigned at the time the component is classified.
Faceted classification scheme is very attracting the most attention within the software reuse community. Like
the attribute classification method, facets classify components however there are generally a lot fewer facets
than there are potential attributes.
Each of the facets has values assigned at the time the component is classified.
The individual components can then be distinctively identified by a tuple,
for example. < add, arrays, buffer, database manager, billing, book store >
Frakes and Pole conducted an investigation on the above classification methods [9]. The investigation found no
any major differences between the four different classification schemes; however, the following about each
classification method was noted:

 Free text classification
 Ambiguous, indexing costs

 Enumerated classification
 Fastest method, difficult to expand

 Attribute value classification
 Slowest method, no ordering,

 Faceted classification
 Easily expandable, most flexible

Vishal et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 07 July 2012 1357

Classification
Schemes/Characteristics

Ambiguity Flexibility Speed Indexing Cost Expend Quality Index Ordering

Free Text Classification YES Moderate Average High Normal YES

Enumerated YES Least Fastest More Difficult YES

Attributed Value NO Normal Slowest Less Normal NO

Facet Classification NO Most Slow Very less Easily NO

Table 1. shows the comparison among all the four existing component selection scheme.

II, PROPOSED SYSTEM
Various kinds of classification schemes are available to classify a component but one problem is how to
implement this, many systems follow the principle: Once a new component has been identified, an administrator
is responsible for the classification should be proficient. The system is employed for two reasons. First, the
administrator must know how to classify the components according to the scheme. Second, a lexicographical
consistency is necessary across the whole of the system. The classification system is always separate to the
retrieval system, which is for the users. Well-known systems works with one classification and retrieval scheme,
such as enumerated or faceted. Others work with a different classification system.
 In this research, we propose a new classification scheme that integrates the features of existing classification
schemes.

Fig 1. Shows the new efficient component retrieval scheme for component classification

In this system (Fig.1), we set up the proposed scheme. Here the developers develop a new component and put
their components into library at the same time if required the developers can also retrieve components from the
library. Query tracking system should be maintained to improve the proposed scheme. The proposed system will
provide the following functionality to the users.

 Storing components:- To store the newly developed and maintained components in the reuse
repository for future use.

 Searching components:- This functionality is given to user to search the available components from
the libraries.

 Browsing components:- This functionality is used to extract the copy of the available component for
the reuse and modification from the libraries.

New Components

Existing

Component

Adapt

User

Enumerated

Classification

Attribute

Value

Classification

Reuse

Repository

Fire

Query

Query

Extraction

Query

Formation

Vishal et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 07 July 2012 1358

 A. Proposed algorithm
 Step1:- User enter the query through the interface
 Step2:- Build the query and apply the enumerated classification scheme using the query on the reuse
repository.
 Step3:- Store the results extracted by enumerated classification in temporary buffer.
 Step4:- Now apply the attributed value classification on the results available in buffer.
 Step5:- The final result which comes after the attributed value classification is returned to user.
Each of the four main classification schemes has both advantages and disadvantages. The free text classification
method does not offer the flexibility and has many problems with synonyms and search spaces. The faceted
classification method offers the most flexible method of classifying components and has problems when trying
to classify similar components for use. The enumerated classification scheme provides a fast way to drill down
into a library, but does not offer the flexibility to classify components for use in more than one way. The
attribute value classification scheme permits multidimensional classification of the same component, but does
not offer any ordering of the different attributes.

 The efficient classification scheme took the advantages or positive sides of both schemes i.e. enumerated
classification and attributed values classification. Our solution to these problems would be to use an enumerated
classification scheme combined with attribute value classification scheme to classify the components details.
The enumerated scheme is initially used to reduce the search domains. By using the enumerated classification
scheme we make the search space to be restricted to specific points. The components selected by the enumerated
classification scheme are the available components in the buffer are considered for attribute value scheme. By
reducing the size of the search domain attribute value have to search in limited domain so it gives the more
accurate results and efficiently. The particular component is then classified using attribute value scheme.

Figure 2 shows the architecture of proposed system. The repository is library of components and their
information. Users are provided interface through which they can interact with components. To upload a
component User will provide the details. To retrieve a component the user will give his query or he will give
details so that the system will provide the matching components.

Enumerated

Classification

Reuse

Repository

Temp

Buffer

Attributed

value clas

Result

Query Interface

Vishal et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 07 July 2012 1359

iii. Experimental results

Graph 1. Shows efficiency to relevant components in blue color and their corresponding Search time in red color

We implement all the classification schemes’s prototype in Matlab. We analyse their efficiency in searching
relevant components and their search time to find relevant component. In the graph we can see that the new
scheme known as robust scheme is providing most efficient results whereas its searching time is also high. But
its provide the components more correctly which is demand of today’s market. Hence by see result we can say
that it is efficient technique for fulfilling the demand of market.

iv. Conclusion
In this paper four classifications (free text, attribute value, enumerated and faceted classification) are examined
and opened their advantages and disadvantages. The effective system take advantage of two classification
scheme. An effective software tool with user friendly interface is developed with integrated classification
scheme which restricts search space and reduces search time increasing the efficiency of classification of
software component and also showing the good results when its prototype is implemented on Matlab.

V. References

[1] Charles W. Krueger Software Reuse “ACM Computing Surveys (CSUR) Volume 24, Issue 2 (June 1992) Pages: 131 - 183.
[2] Sametinger, Software Engineering with Reusable Components, Springer-Verlag, ISBN 3-540-62695-6, 1997.
[3] Department of the Navy. DON Software Reuse Guide, NAVSO P-5234-2, 1995.
[4] B.Jalender, N.Gowtham, K.Praveen kumar, K.Murahari, K.sampath ”Technical Impediments to Software Reuse” International Journal

of Engineering Science and Technology (IJEST) , Vol. 2(11),p. 6136-6139.Nov 2010.
[5] M. Pat Schuler, “Increasing productivity through Total Reuse Management (TRM),” Proceedings of technology2001: The Second

National Technology Transfer Conference and Exposition, Volume 2, Washington DC, December 1991, pp. 294-300.
[6] M. Aoyoma, “New Age of Software Development: How Component-Based Software Engineering Changes the Way of Software

Development?,” in Proceedings of the 1998 International Workshop on CBSE,.
[7] Gerald Jones and Ruben Prieto-Diaz, “Building and Managing Software Libraries”, © 1998 IEEE, pp.228-236.
[8] E. Smith, A.Al-Yasiri and M. Merabti, ‘A multi tiered classification scheme for component retrieval’. Proc. 24th Euro micro

conf.,1998, pp. 882–889.
[9] Vicente Ferreira de Lucena Jr., “Facet-Based Classification Scheme for Industrial Automation Software Components”
[10] Ruben Prieto-Diaz, “Implementing Faceted Classification for Software Reuse” © 1990 IEEE, pp.300-304
[11] Gerald Kotonya, Ian Sommerville and Steve Hall, “Towards A Classification Model for Component Based Software Engineering

Research”, Proceeding of the of the 29th EUROMICRO Conference © 2003 IEEE

Authors Profile

Vishal is currently working as a assistant professor in BPS women university, Khanpur Kalan(Sonepat). He did
his B.Tech from Kurukshetra university, Kurukshetra with 69.92%. He did his M. Tech from YMCA university,
Faridabad with 77.6%. His area of interest is Software Engineering, web crawling. He has also published papers
in the field of web crawling.

Vishal et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 07 July 2012 1360

Subhash chander is pursuing PhD(research scholar) in computer science from Dravidian university, Andhra
Pradesh. He did his MCA from Kurukshetra university, Kurukshetra. He is also university medalist(K.U.). His
area of interest is web crawling and software engineering. He has also published several papers in the web
crawling.

Jasmer Kundu is currently working in BPS women university, Khanpur Kalan (Sonepat). He did his MCA
from Rajasthan Univ. and M.Tech from Karnataka State open University. His area of interest is Artificial
Intelligence and Software Engineering.

Vishal et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 07 July 2012 1361

