
Fault tolerant workflow scheduling based
on replication and resubmission of tasks in

Cloud Computing

Jayadivya S K*
Department of Computer Science & Engineering

National Institute of Technology
Tiruchirappalli, Tamil Nadu, India

jayadivyask@gmail.com

Jaya Nirmala S
Department of Computer Science & Engineering

National Institute of Technology
Tiruchirappalli, Tamil Nadu, India

sjaya@nitt.edu

Mary Saira Bhanu S
Department of Computer Science & Engineering

National Institute of Technology
Tiruchirappalli, Tamil Nadu, India

msb@nitt.edu

Abstract—The aim of workflow scheduling system is to schedule the workflows within the user given
deadline to achieve a good success rate. Workflow is a set of tasks processed in a predefined order based
on its data and control dependency. Scheduling these workflows in a computing environment, like cloud
environment, is an NP-Complete problem and it becomes more challenging when failures of tasks are
considered. To overcome these failures, the workflow scheduling system should be fault tolerant. In this
paper, the proposed Fault Tolerant Workflow Scheduling algorithm (FTWS) provides fault tolerance by
using replication and resubmission of tasks based on priority of the tasks. The replication of tasks
depends on a heuristic metric which is calculated by finding the tradeoff between the replication factor
and resubmission factor. The heuristic metric is considered because replication alone may lead to
resource wastage and resubmission alone may increase makespan. Tasks are prioritized based on the
criticality of the task which is calculated by using parameters like out degree, earliest deadline and high
resubmission impact. Priority helps in meeting the deadline of a task and thereby reducing wastage of
resources. FTWS schedules workflows within a deadline even in the presence of failures without using
any history of information. The experiments were conducted in a simulated cloud environment by
scheduling workflows in the presence of failures which are generated randomly. The experimental results
of the proposed work demonstrate the effective success rate in-spite of various failures.

Keywords-Cloud computing; Scheduling; Workflows; Replication; Resubmission; Fault tolerance;

I. INTRODUCTION

Cloud computing [1][2] has emerged as a global – infrastructure for applications by providing large scale
services through cloud servers. The services can be either storage service or computation service. These services
can be configured dynamically by making use of virtualization. Any application in cloud computing environment
can be represented by a workflow. However, this computing environment still cannot deliver the quality,
robustness and reliability that are needed for the execution of various workflows because of different failures like
link failure, failure of server providing the service, malicious code in the executing node, datasets required by the
task may be locked by other tasks etc [3]. The scheduling system in a cloud should overcome such failures which
can be provided by fault tolerant scheduling algorithms.

Workflow is a sequence of tasks processed in a specific order based on data or control dependency between
these tasks. A workflow has a set of parameters and it is represented as a Directed Acyclic Graph (DAG) [4] in
which the nodes represent individual application tasks and directed arcs stand for precedence relationship among

Jayadivya S K et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 06 June 2012 996

the tasks. Mapping between the tasks and services depends on the deadline of a workflow and the computation
power of the resources available. Execution of these workflows can last for hours, days or even weeks and hence
the realization of workflow failure at the end may lead to missing of a deadline. The workflow execution system
with low tolerance for failures may lead to a situation that user may not realize the failure of workflow there by
tasks may miss their deadline. Hence the workflow scheduling system should exhibit high levels of tolerance for
failures.

Scheduling of workflows within the deadline is a challenging issue when fault tolerance is considered. There
are many fault-tolerant scheduling algorithms which make use of tasks replication and task resubmission [5] and
few algorithms make use of history of resource information to find failure probability [6]. Each method has its
own disadvantages and advantages which are discussed in section II.

In this paper, fault tolerance is achieved by compromising task replication and task resubmission methods.
Tasks are replicated based on heuristic metric and priority of the task. Heuristic metric is calculated by finding the
tradeoff between replication and resubmission factor which gives the replication number based on impact of the
resubmission [7]. The heuristic metric is considered because replication alone may lead to resource wastage and
resubmission alone may increase makespan. Tasks are prioritized based on out degree, earliest deadline and high
resubmission impact [8]. Tasks are scheduled to meet deadline by considering priority and thereby to reduce
wastage of resources by restricting unnecessary replication of tasks.

The rest of this paper is structured as follows: The related work is explained in section 2. Section 3 discusses
about the proposed strategy. Section 4 describes about experimental results and section 5 gives the conclusion and
future work.

II. RELATED WORK

In this section, few fault tolerance techniques used in scheduling of workflows are discussed. As for cloud
workflow systems, similar to many other grid and distributed workflow systems, scheduling is a very important
component which determines the performance of a whole system. These workflow scheduling systems should be
fault tolerant for the failures that occur in the computing environment.

Fault tolerant scheduling algorithms can be categorized based on check pointing, traces of data, replication of
tasks and resubmission of tasks. Each category has its own advantages and disadvantages.

Fault tolerant workflow scheduling is provided by making use of failure probability which is considered in
algorithms [9][10][11]. Zhang et al. [9] described an approach for combined fault tolerance and scheduling
workflow applications in computational grids. Kandaswamy et al. [10] described a mechanism for fault tolerant
workflow by considering check pointing, migration, and over-provisioning. Liang et al. [11] developed a failure
prediction model based on failure analysis of BlueGene/L system. Analysis of failure probability requires traces
of failure data about each resource in the environment but often cloud providers do not reveal about their
infrastructure and most of the time, this information is hidden from the user.

Methods like replication and resubmission of tasks do not require any history of information. Few techniques
provide fault tolerance by making use of replication. All tasks are replicated to their maximum count which
provides very good fault tolerance but uses lot of resources. The tasks which can be executed on highly reliable
resources are also replicated and hence the resources are wasted. If there is enough number of resources available
then this method will give good fault tolerance power to the workflow scheduling system. Most of the times,
number of tasks will be very high when compared to the number of resources available and hence this method
may lead to task serialization instead of parallel execution [12].

Another technique provides fault tolerance by using resubmission of tasks. Here, tasks are resubmitted to the
same or different resource after its failure declaration which will not waste any resource but increases the
makespan of a workflow. This may also lead to missing deadline of a workflow and hence gives the less success
rate of scheduling when deadline is considered.

To overcome the disadvantages of replication and resubmission, few techniques are discussed which finds the
tradeoff between the replication and the resubmission [7]. Tasks are replicated without considering any other
parameters except the heuristic metric which may replicate all the tasks even if they are not critical and may lead
to resource wastage. Hence, in this paper, prioritization of tasks is considered along with heuristic metric. The
tradeoff between replication and resubmission factor helps to find the heuristic metric that indicates the
replication count for each task. Priority for the tasks is provided by using parameters like out degree, earliest
deadline and high resubmission impact. Prioritization of tasks helps to meet the deadline and reduces resource
wastage along with providing fault tolerance for the workflow system.

Here, the objective is to schedule the tasks within its deadline by tolerating the faults that may be present in a
cloud computing environment to provide good success rate of scheduling.

Jayadivya S K et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 06 June 2012 997

Figure 1. Architecture of FTWS Figure 2. Control flow diagram of modules

III. ARCHITECTURE AND METHODOLOGY

A. Overview of FTWS

Fig. 1 shows the architecture of the FTWS in a cloud environment. There are two major types of servers in
cloud which are storage server and computational server. Storage server provides the services related to data
storage and modification which does not require any mapping of services. Computational server provides the
service related to computing resources which requires mapping of services to a task.

FTWS process is designed with four major modules which are Preprocessor Module (PM), Replication based
Scheduler Module (RSM), Executor Module (ResEM) with Rescheduling if required and Data Scheduler (DS).
The control flow diagram of these modules is shown in Fig. 2.

FTWS replicates and schedules the tasks to meet the deadline of a workflow by using replication and
resubmission of tasks. Replication of tasks is performed in the scheduling phase where as resubmission is
performed in the execution phase.

Users first submit their workflows with deadline, replication factor and resubmission factor in the form of
Abstract data structure format to PM. The PM discovers the services required for those tasks and generates the
DAG [3] based on the data and control dependencies between them and divides the tasks based on computation
services and storage services. It also generates the threshold which helps in prioritizing the tasks and heuristic
metric which indicates replication count. The RSM replicates the tasks based on the priority and heuristic metric.
It allocates the particular services to these tasks based on the QWS (QoS based Workflow Scheduling) algorithm
[13] in cloud environment. After mapping, ResEM sends the tasks to the mapped servers and starts the timer
based on expected execution time. If ResEM receives the successful output from the server within the timer
expiry then it activates all the tasks which are dependent on the task. If it fails to receive successful output, then
ResEM waits for other replicas. If all replicas fail then it resubmits the task. The DS manages the datasets by
replicating them on different sites for the execution of replicated tasks. Detailed explanations of these modules
are explained in Section C.

B. Problem Definition

Workflow ωi is represented by a set of four tuples <Ti,j, Di, Repi, Resi > where Ti,j is a set of finite tasks { Ti,1,
Ti,2, Ti,3,… Ti,j }, Di is the Deadline of the workflow ωi before that the workflow has to be executed, Repi

indicates the replication count of a task in a workflow ωi and Resi is the maximum resubmission count of a
workflow ωi.

Each task Ti,j has a set of attributes like task-id, deadline, execution time, datasets and services needed, size,
etc. Deadline of each task is calculated by distributing the deadline of workflow among tasks in a critical path.
Most of the times the execution time of the task depends on the performance of the machine in which job has to
be executed [14]. For this reason, execution time is calculated when it is assigned to a node based on its MIPS
rate.

Let m be the number of services available in cloud and sk is the set of services which are capable of executing
the task Ti,j. The FTWS replicates and schedules a set of tasks by mapping each task to suitable sk

 by executing
tasks within the deadline as in QWS algorithm with few changes required to handle replication. It also reduces the
makespan required to execute a workflow. Makespan is calculated as shown in (1).

Jayadivya S K et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 06 June 2012 998

)1()(max jPimeexecutiont
nPj

makespan

iωtheinpathscriticaltheisnτwhere

C. Modules Description

1) Preprocessing Module (PM): The main functionality of this module is to calculate all the parameters like
heuristic metric, threshold, deadline of each task in a workflow etc., which are required in the process of
scheduling workflows.

 The PM accepts the data required for the workflow from the user in the form of an abstract data structure

template as shown in the following example.

6
6

20121853124
12710654

25101733
435422

213211
4

1

: factoronresubmissi
:n factorreplicatio

 :: un May Deadline:S
}Null:ctrl_on,ssservices:,,d,dd:datasets{:task

}task:ctrl_on,ssservices:,,d,dd:datasets{:task
}Null:ctrl_on,ssServices:,,d,dd:Datasets{:task
}Null: ctrl_on,ssServices:,,d,dd:Datasets{:task

tasks:ofNo.
:workflowsofNo.

 DAG is a directed set of arcs of the form (Ti,Tj) where Ti is called the parent task and Tj is called the child

task of Ti. Child task cannot be executed until all its parent tasks complete its execution. PM generates the DAG
by finding the data and control dependencies (Dep (Ti,Tj)) between the tasks of a workflow using the expression
shown below.

;0:1?))(_)(_(||

))!()((

),(

jTonctrliTidTask
jTdatasetsiTdatasets

jTiTDep

 It is essential that each task should be completed before a deadline so that the workflow meets the deadline Di

given by the user. So the deadline of the whole workflow is distributed in to sub-deadlines among the tasks in a
critical path based on their size[15]. Backtracking algorithm as shown below is used to find the critical paths in
a workflow.

}
)(_

{
)(

DAGpathcritical
workflowofDAGget

backtrackvoid

}
);,,(

)(
/*min

/*
{

)(_

endstartDAGallpaths
i

intasksendandstartofseteachfor
DAGinnodeatingterend

noderootstart

DAGpathcriticalvoid

Jayadivya S K et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 06 June 2012 999

}
);,,(

)0(

;
)(

);(
/*/*

{
),,(

endiDAGallpaths
iofneiboursofnumbertofromifor

i
ofsetpathcriticalintaskeachstore

endcurrentif
currentpush

foundbetohaspathwhichfromnodecurrent

endcurrentDAGallpathsvoid

 The PM finds the threshold which is used as one of the parameter to prioritize the tasks during replication in
scheduling phase. The threshold (Th) is calculated by finding the average number of children for a task in a
workflow as shown in (2).

workflowsofnumberindicatesnWhere

n

i
nitchildhT

1
/)(

 The heuristic metric is developed by using the algorithm shown below. Here the make span of a workflow is
calculated by making use of a QWS algorithm which was designed in our previous work [13]. In the heuristic

metric calculation, workflow data is copied to workflow / . Number of instructions required to execute a

task in workflow / is multiplied with resubmission factor which gives the worst case number of instructions

to execute a particular task. Then, the difference i between the makespan of and / is calculated which

helps in analyzing the impact of resubmission on a workflow with respect to one particular task iT .
Resubmission Impact (RI) is calculated by normalizing the difference. RI is one of the parameter which helps in
prioritizing tasks for replication. The heuristic metric is calculated by multiplying the RI fraction with the
replication factor mentioned by user for each workflow which gives the replication count for each task in a
workflow .

togivenisirepNew
factorrepiRIirep

nj
j

i
iRI

iRInormalize
makespanmakespani

factorresiTiT

_*
..0

max

)()/(

_*)(,
/

/

 Tasks can be divided into dependent tasks and independent tasks. Tasks which are independent from all other
tasks are said to be ready tasks. PM finds ready tasks using (3) in all workflows which are independent tasks
whose predecessor tasks executed successfully or they are the start tasks of workflows i.e., root nodes of all
DAGs and it sends these tasks to the scheduler module by placing them in to a ready queue.

workflowaintasksnumbertotalisnwhere

taskreadyis
k

Tthen

n

k

k

l
)

l
,T

k
(T

i
DAG

0 0

0

2) Replication based Scheduling module(RSM): This module sorts all tasks in the ready queue as in QWS
algorithm based on:

 Instructions_time_ratio
 Number of services

Jayadivya S K et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 06 June 2012 1000

Instructions_time_ratio is the ratio between the number of instructions in the task and the deadline of the task.
The tasks with less instructions_time_ratio are scheduled first.

If a task requires more number of services, it may block the tasks which require fewer services thereby
increasing the waiting time of these tasks. So the task with fewer services is scheduled first.

After sorting the tasks in ready queue, it checks whether the task requires computation service or storage
service. If the task is related to storage service, then it maps the task to the storage server. If it is related to the
computational service, then it replicates the task iT as shown in following snippet.

endif
valuemetricheuristicthe

onbasedtaskreplicate
then

e))_commn_timected

)i,j(Ttimeexecution_estimated_

mecurrent_ti)i,j(Tdeadline(||

).i,jTfor_impactsubmission(||

feasible)arei,jTofchildrenall&&)iωThreshold(

)i,j(Tchildrenofif((no.

exp

90Re

Here the condition for replication is based on task priority which is calculated by any of the following three

factors.

 No. of children
 Resubmission Impact
 Deadline

 If the number of children of iT is more than the threshold (Th), then the task becomes critical because

number of tasks waiting on its result is more. Since waiting time for children increases due to the failure, iT is

replicated. If the children of iT depends on the other tasks in addition to iT , then the replication of iT only wastes

the resources hence iT will not be replicated.

 Resubmission impact describes the overhead involved in the scheduling process if the task iT fails. Hence

if this RI factor is more than 90% then the task iT is replicated.

 Even in failure of above two conditions, if the expected completion time of task iT is very close to the

deadline then task iT is replicated.

After replication, the replicated tasks are placed next to the original task in the ready queue. Here the tasks are
adjusted based on the services required by the replicated tasks (Services(Trep)) and other tasks (Services(Tother))
in the queue.

;requiredadjustment:adjustmentno
?)otherTrep(Tnumber)resources(aviablenumber

:tadjustemenno?φ)otherServices(T)repServices(T

This adjustment is performed because if the available services are able to execute only replicated tasks, then all

other tasks may get delayed because of replication which may lead to miss deadline. This also helps in avoiding
serialization. If the adjustment is required, then tasks in ready queue are checked against deadline and readjusted
based on earliest deadline first. This rearrangement may reduce the number of replications but ensures meeting
deadline without increasing the makespan.

The tasks in ready queue are mapped with the available services in a data center by using the information
present in the registry. If the services available in a datacenter are busy then it checks for other datacenters and
assigns to the next free server. If all are busy then it will be mapped to the wait queue of the data center which has
lesser load compared to others. The algorithm for mapping and scheduling tasks on services is shown below:

Jayadivya S K et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 06 June 2012 1001

}
}

busyassmake
e)ready_queudequeue(

queueruninplacingbycenterdatathetotasksend
(t)getservices

eready_queuintaskfirstt
{

)emptynoteready_queu(while
service*/s
taskt/*

{

)
i

(t,ωschedulevoid

}
Sreturn

)deadline(time(t)executiont
thatsuchSserviceselect

{
(t)getservice

int

All available data centers will be registered in the registry with the attributes MIPS rate, available memory,
services it can provide, etc.

3) Resubmission based Executor module: ResEM sends all mapped tasks to the respective data centers and also
waits for the acceptance and reply from the data center. The data center can accept the task or reject the task
based on surplus information as shown in (4).

i
ttaskbyuseddatasetsgettorequiredtime

i
tresolve

taskgincotheexecutetorequiredtime
i

t

queuewaitintasksexecutetorequiredtime
queuewait

t

queuereadyintasksexecutetorequiredtime
queueready

tWhere
i

tDeadline
i

tresolve
i

t
queuewait

t
queueready

tT

)(

min
_

_

)(

))(
__

(

If the datacenter accepts the task, then ResEM sends the task to the data center by assinging a unique version
identity to the task and then waits for the result. While sending the task it also starts a timer by spawning the
thread with the expected time to execute the task as shown below.

 e);ected_etim_timer, &lc
, NULL, mer_eate (&tipthread_cr

exp
var

ResEM waits till the timer expiry or till the result comes back. Once ResEM gets the result, it checks for the
correctness of a task by checking the given version id and the obtained version id. If the completed task is correct
then, it sends the signal to the node where the task was executed to update the datasets in data store and also to
stop all the other replicas. ResEM sends the result to preprocessor which masks the dependencies of all its child
tasks.

Jayadivya S K et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 06 June 2012 1002

Figure 3. Process of FTWS

If the completed task does not meet the requirements or timer expired before getting the result, then ResEM
waits for the result of other replicas. If all the replicas fail then it resubmits the task by calculating its parameters
again and the task is scheduled on the same node with a new set of parameters. If the task fails again then it is
resubmitted till it reaches maximum failure factor. Failure factor is a variable and in this work it is assumed to be
75% of the maximum number of resubmission count. If the failure of the task had reached the failure factor, it is
considered as a new task and re-scheduled on a different node. If the task fails and reaches the maximum
resubmission count on the new node then ResEM sends an error signal to preprocessor which displays message to
the user.

The complete process of the FTWS is shown in Fig. 3. This shows how the tasks can move from initiation
state to completion state.

4) Data Scheduler: Tasks may be replicated in different nodes so all those nodes may require accessing the
same set of datasets. Hence the data sets are also replicated. The management of these data sets is done by the DS.
The strategy followed here is to maintain two copies of datasets. They are primary copy and local copy. After
getting the datasets from the data store to the node, the copy of datasets in node becomes a local copy. All the
changes done by the node are modified locally. Once the signal comes from the ResEM, the updated datasets are
sent to the data store and also DS invalidates all the local copies in other nodes. DS maintains a table to keep
track of all the replica information which helps in invalidating the datasets. The process of data replication and
updation of datasets is shown in Fig. 4.

IV. EXPERIMENTAL RESULTS

In this section, the experimental results of the proposed FTWS model are discussed. The Cloud environment
is simulated using VMware virtual machines. Communication between them is achieved by using SSH
programming. Different types of faults that can occur in a cloud environment are also simulated.

There are around 25 services in cloud environment which are scattered in different computational data centers
and storage servers. To evaluate the performance of multiple workflows ranging from 5 to 50 with a minimum of
8 tasks in each workflow with different set of parameters are generated randomly using random generation
algorithm with uniform distribution.

Jayadivya S K et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 06 June 2012 1003

 Figure 4. Datasets Maintenance Figure 5. Success Rate of Scheduling

 Figure 6. Resource Utilization Figure 7. Cost Comparison

The most common method for generating the random sequence {r1, r2, r3, ……, rk} over the [n, m] is the
linear congruent method. This method multiplies the previous random number ri-1 by the constant ‘n’ and adding
with constant ‘c’ to it, then the modulus of the result is taken by dividing it by ‘m’ which gives ri as shown in (5).
This helps in distributing the values over [n, m] uniformly. ‘1’ is added in the expression (5) to avoid generation
of zero.

mcnrr ii mod)(1 (5)

The services are chosen for each task randomly in the set {S1, S2, S3, ……., S25}. Then this information is sent
to PM which starts the process of FTWS as explained in section III.

Various faults generated in nodes are link failure, malicious code attack, deleting results, request loss, no route
to data store etc. Randomly we generate the MTBF (Mean Time Between Failures) and MTTR (Mean Time To
Repair) values in each node. The timer thread is started using the value of MTBF. After the expiry of MTBF
thread, new thread with MTTR is started and till the expiry of MTTR thread different faults are generated like
deleting the results generated by the node, deleting the request, changing the execution time to maximum or
minimum or deleting the communication address for the data store etc. After the MTTR timer expiry i.e., after
repair it activates the MTBF thread, the node works properly till expiry of MTBF thread and the cycle continues.

The proposed FTWS algorithm was run to evaluate its performance for various test cases with different
number of workflows with different deadlines and with various types of faults. The experiments were repeated
with different replication and resubmission factors and averages of different results were found.

Jayadivya S K et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 06 June 2012 1004

 Figure 8. Performance Comparison Figure 9. Failure Probability

The graph for comparison between success rate with replication and success rate without replication is shown
in Fig. 5. Since the tasks are replicated on different resources, the usage of resources may be more compared to
scheduling without replication. Fig. 6 shows the graph for resource usage. Cost may also increase because of
replication which is showed in Fig. 7. Fig. 8 shows the ratio between success rate and the resource usage and also
the failure probability is compared between scheduling with replication and without replication as shown in Fig.
9.

From the analysis we found that, the success rate of the scheduling is better than QWS (which is the scheduling
algorithm without any consideration of fault tolerance) i.e., the success rate of scheduling with replication is
better than the success rate of scheduling without replication with little compensation of resource usage. This
work is an enhancement of the previous work [13].

V. CONCLUSION AND FUTURE WORK

Many failures may occur while scheduling workflows in Cloud Environment. Hence the workflow scheduling
application should be fault tolerant for failures. The main goal is to schedule workflows and execute these
workflows within the deadline in-spite of many failures that occur in the environment. Many existing systems
have addressed for providing fault tolerance but without considering the user given deadline.

The proposed work, Fault tolerant workflow scheduling (FTWS), allows users to execute their workflows by
satisfying deadline in-spite of different failures that occur in the environment.

Experiments were conducted to test FTWS with random generation of workflows in a simulated cloud
computing environment with simulated faults. The results of these experiments were compared with replication
and without replication. This showed that FTWS algorithm produced good success rate of scheduling even after
considering different failures that occur in the environment.

In future, other failures like data center shutdowns, network failures, etc., may be added to the faults. Mapping
of tasks and resources may be improved by maintaining valid datasets at various nodes, so that the transmission
overhead of datasets can be reduced.

REFERENCES
[1] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona Breandic, “Cloud Computing and Emerging IT

Platforms: Vision, Hype, and Reality for Delivering Computing as the 5th Utility”, Future Generation Computer Systems, Elsevier
Science, Amsterdam, June 2009, Volume 25, Number 6, pp. 599-616.

[2] C. Germain-Renaud and O.Rana, “The Convergence of Clouds, Grids and Autonomics”, IEEE Internet Computing, p. 9, 2009

[3] Goverdhan P.V and S.Y.Kulkarni, “Error detection in Grid Computing”, Second International Conference on Computer and Electrical
Engineering, 2009.

[4] Z. Shi and J.J.Donagarra, “Scheduling workflow applications on processors with different capabilities,” Future Gen. Comupter
systems 22, pp.665-675, 2006.

[5] K.Plankensteiner, R.Prodan, T.Fahringer, A.Kertesz, and P.Kacsuk, “Fault-tolerant behavior in state-of-the-art grid workflow
management systems”, Technical Report TR-0091, Institute on Grid Information, Resource and Workflow Monitoring Services, Core
GRID-Network of Excellence, October 2007.

Jayadivya S K et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 06 June 2012 1005

[6] Zhifeng Yu, Chenjia Wang and Weisong Shi, “FLAW: FaiLure-Aware Workflow Scheduling in High Performance Computing
Systems,” Journal of Cluster Computing, Kluwer Academic Publishers Hingham, MA, USA, Vol. 13 Issue 4, pp. 421-434, December
2010.

[7] Kassian plankensteiner, Radu Prodan, and Thomas Fahringer, “A New Fault Tolerance Heuristic for Scientific Workflows in Highly
Distributed Environments based on Resubmission Impact”, Fifth IEEE International Conference on e-Science, 2009.

[8] Raul Sirvent, Rosa M. Badia and Jesus Labarta, “Graph-based task replication for workflow application”, 11th IEEE International
Conference on High Performance Computing and Communications, 2009.

[9] Y. Zhang, A. Mandal, and K. Cooper, “Combined fault tolerance and scheduling techiques for workflow applications on computational
grids,” in International Symposium on Cluster Computing and the Grid. IEEE Computer Sociery, 2009, pp. 244-251.

[10] G. Kandaswamy, A. Mandal, and D. A. Reed, “Fault tolerance and recovery of scientific workflows on computational grids,” Cluster
Computing and the Grid, IEEE International Symposium on, vol. 0, pp. 777-782, 2008.

[11] Y. Liang, A. Sivasubramaniam, and J. Moreira, “Filtering failure logs for a bluegene/l prototype,” in Proceeding of 2005 International
Conference on Dependable Systems and Networks (DSN’05). Washington, DC, USA: IEEE Computer Society, 2005, pp. 476-485.

[12] R. Prodan and T. Fahringer. Overhead analysis of scientific workflows in Grid environments. IEEE Transactions on Parallel and
Distributed Systems, 19(3):378-393, mar 2008.

[13] Jayadivya S. K. and S. Mary Saira Bhanu, “QoS based Workflow Scheduling in Cloud Computing,” in Proceeding of International
Conference on Cloud Comuting ICCC-2012, Interscience Research Netwrok, 2012, in Press.

[14] H. Topcuouglu, S. Hariri and M. Wu, “Performance-effective and low-complexity task scheduling for heterogeneous computing,”
IEEE Transactions on Parallel and Distribution Systems, vol. 13, no. 3, pp. 260-274, 2002.

[15] Jia Yu, Rajkumar Buyya and Chen Khong Tham, “Cost-based Scheduling of Scientific Workflows Applications on Utility Grids”, In
1st IEEE International Conference on e-Science and Grid Computing, Melbourne, Australia, Dec. 5-8,2005.

AUTHORS PROFILE

Jayadivya S K received the B.E Degree in Computer Science & Engineering from Visveshwaraiah
Technological University, Bangalore, Karnataka. Currently, she is pursuing the MTech Degree in Computer
Science from National Institute of Technology, Tiruchirappalli, India. Her areas of interests include cloud
computing, Grid Computing and Real Time Operating Systems.

S. Jaya Nirmala received the B.E Degree in Computer Science and Engineering from Periyar University,
Salem and the M.E Degree in Computer Science and Engineering from Anna University, Chennai. Currently,
she is pursuing her doctoral degree in the area of Service Discovery in Cloud Computing in the Department of
Computer Science and Engineering, National Institute of Technology, Tiruchirappalli, India . She is an Assistant
Professor in National Institute of Technology, Tiruchirappalli, India. Her areas of interest include Cloud
Computing, Cryptography and Operating Systems.

Mary Saira Bhanu S received the B.E Degree in Electronics and communication from Madurai Kamaraj
University, the M.E Degree in Computer Science from Bharathidasan University and the Ph.D. Degree from
National Institute of Technology, Tiruchirappalli. Currently, she is an Associate Professor in the Department of
Computer Science and Engineering in National Institute of Technology, Tiruchirappalli, India. Her research
interests include OS, Real Time Systems, Distributed Computing, Grid Computing and Cloud Computing.

Jayadivya S K et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 06 June 2012 1006

