Hyeon-Ju Y oon / International Journal on Computer Science and Engineering (1JCSE)

A Study on the Performance of Android
Platform

Hyeon-Ju Yoon

Department of Computer Engineering
Kumoh National Institute of Technology
Gumi, Republic of Korea
juyoon@kumoh.ac.kr

Abstract— As the Android platform is widely used for embedded systems including smart mobile devices,
the needs for systematic performance analysis have significantly increased. System performance is usually
measured by benchmarks and profiler software. We studied on the performance of Android platform
using a benchmark application and public profile software. For more detail and integrated performance
analysis, we proposed a profiling architecture of Android platform.

Keywords-Android; performance; benchmark; profile;

l. INTRODUCTION

Smartphones and tablet PCs are making big change in our life these days. The most popular operating systems
for smart devices are Apple’s iOS and Google’s Android. Because Android is open source software, and offers
developers free platform to make their own applications, lots of hardware vendors adopt Android and market
share is also increasing.

Even if the platform is common and has the same software capability, the actual performance varies with
hardware and other software components. So every hardware and software developers make great efforts to
achieve higher optimized performance. To release a smart phone product with some preferable house software,
developers should estimate the performance in detail so as to correct or enhance the weak points.

In this paper, we looked into two kinds of software tools for measuring system performance, benchmark and
profiling software. Benchmarks are useful for evaluating and estimating the relative level of each device and
overall system, so can help us choose hardware or adjust system variables to achieve higher performance.
Profiling software traces the program activities and gathers information about function calls, memory usage,
process, and communication. After we introduce representative benchmark and profile software respectively, we
propose a modification for standard tool and show a simple performance analysis result. These will be a basis for
future work to develop integrated and comprehensive performance analysis software.

1. ANDROID PLATFORM

Android is a software stack for mobile devices that includes an operating system, middleware and key
applications [1]. It is developed and maintained as an open source project led by OHA (Open Handset Alliance)
[2], which aims at building a better phone for consumers. The Android architecture is shown in Fig. 1.

APPLICATIONS

APPLICATION FRAMEWORK

ANDROID RUNTIME

| Core Libranes
LIERARIES
Dalvik Virtual Maclune

Livtx KERNEL

Figure 1. Android Architecture

ISSN : 0975-3397 Vol. 4 No. 04 April 2012 532

Hyeon-Ju Y oon / International Journal on Computer Science and Engineering (1JCSE)

The base system of Android architecture is Linux kernel 2.6. It supports security, memory management,
process management, network stack, and device driver model.

A set of C/C++ libraries is used by various components of the Android system. They consist of standard C
system library(libc), media libraries including MPEG4, H.264, MP3, JPG, and PNG, surface manager for display
subsystem, LibWebCore as a web browser engine, 2D graphics engine SGL, 3D graphics libraries, FreeType for
font rendering and SQL.ite, a lightweight relational database engine.

Android runtime includes a set of core libraries that provides functionality of Java programming language.
Dalvik virtual machine supports a runtime environment for Android Java applications. Every Android application
runs in its own process, with its own instance of the Dalvik virtual machine. Conventional Java virtual machine is
a stack-based machine, but Dalvik is register-based and executes files in Dalvik Executable(.dex) format.

Application developers usually access to the application framework layer through lots of APIs while they
develop programs with Java and XML. Application framework is an open software development platform that
includes view management, content providers, resource manager, notification manager, and activity manager.
Many reusable components are released in the framework, and the developer can replace the components or
publish its own capabilities.

I1l. OFF-THE-SHELF PERFORMANCE ANALYSIS TOOLS

There are several kinds of tools for evaluating and analyzing the performance of systems or applications. We
studied and tested some benchmark tools and performance measurement software for application developers.
They can be acquired from the open marketplace or open websites for free.

A. Benchmark

Benchmark tool is a programming application that evaluates or gauges the relative performance of a system. It
runs a special program on the target device and system, gathers the performance data, and shows them as a
guantitative value.

Amazon Kindle F{!

HTC EV@5D f
Google N% S

Samsunggfaxy S

SonyErgson X10i

Li 2| : 1461
& I 0 &

(a) score (b) ranking (c) comparison of devices

Figure 2. AnTuTu Benchmark results

Fig.2 shows the results of a well-known benchmark application, AnTuTu-Benchmark [3]. It can run a full test
of a key project, through the “Memory Performance”, “CPU Integer Performance”, “CPU Floating point
Performance”, “2D 3D Graphics Performance”, “SD card reading/writing speed”, and “Database 10
Performance” testing. The final score represents a relative value of the tested system and can be compared with
other devices’ results. Fig.2(b) shows the ranking among the same kind of devices, and Fig.2(c) depicts the
relative performance among different kinds of devices. We can see that even the same kind of devices may show
the very different performance according to the hardware tuning status and system software version.

Quadrant standard edition [4] and SmartBench [5] are another well-known benchmark application for
Android devices, which can measure overall performance like AnTuTu. The other kinds of benchmark
applications such as CF-bench [6], GLBenchmark [7], Linpack [8], BenchmarkPI [9], are used for a specific area
of system, for example, CPU or graphics subsystem.

Benchmark applications are good tools for evaluating and estimating the relative level of each device and
overall system, so can help us choose hardware or adjust system variables to achieve higher performance.
However, it is difficult to indicate which part affects the performance or which part we should manipulate for the
better performance. The detailed software performance analysis is also not available from the benchmarks.

ISSN : 0975-3397 Vol. 4 No. 04 April 2012 533

Hyeon-Ju Y oon / International Journal on Computer Science and Engineering (1JCSE)

B. Android SDK Tools

In the Android SDK(Software Development Kit), several software tools are included for assisting developers
with debugging, monitoring, and profiling. Some of them can be used for performance analysis. Most useful and
convenient tools are DDMS(Dalvik Debug Monitor Server) and Traceview because they provide the graphical
view.

DDMS a debugging tool with graphical interface, which provides port-forwarding services, screen capture on
the device, thread and heap information on the device, logcat, process, and radio state information, incoming call
and SMS spoofing, location data spoofing, and more. While developing with Eclipse, we can open the DDMS
perspective as shown in Fig.3.

< DDMS - helloAndroid/src/com/android/helloAndroid/HelloAndroid.java - Eclipse E]@
File Edit Refactor Source Bun Mavigate Search Project Window Help
C3- BE M SBidi%-0-G% S5 ¥ R T oomMs |8 Java
Q Devices &3 = 0% Threads 52 @ Heap| @ Allocation Tracker File Explarer =0
#= F@ 0 %2 P @D Tid Slallus utime | stime Na.me
=l 1 176 weait 304 252 main
me) -2 177 wrnwait iz} 33 HeapWorker
B} emulator-5554 Online MNewone.., *3 HS wmwalt ? é ?IIJQWHSI Catcher
system_process 71 8600 X running -
e ot el T e 5 192 native D 0 Binder Thread #]
Jp.co.omransof.opel . [193 native 0 0 Binder Thread #2
com,android, phone 141 % 8602 7 313 native 0 0 Binder Thread #3
com.android, launch 176 % 8803/ 8.
android,process.acc 185 8604
com.android, alarmc 214 8605
android,process.me 221 8606
com.android. mms 241 8607
o el
< >
(@ Emulator Control 53 =0
Telephony Status [
Yoice: home ~| Speed: | Full " Class Method File Line | Mative
Data: |home w| Latency: Mone |+
Telephony Actions
Incoming number:
v
0 LogCat 3 =8
Saved Filters ok werbose v E ol
All messages (no filters) - —
.| Time FID Application Tag Text ~
I 03-20 19:08:03.345 71 Svstem process ActivityManager Displaved activity cow.android.browser/.BrowserActivity: 5489
I 03-20 19:06:05.089 320 con. android. brovser Datahase sglite returned: error code = 1, msg = no such tahle: IconDat
D 03-20 19:06:06.600 320 con. android. brovser dalwikvm GC_FOR_MALLOC freed 3425 cbiects / 237272 bytes in 261lms
D 03-20 19:08:13.120 320 con. android. browser dalvikvn GC_FOR_MALLOC freed 2462 objects / 341192 bytes in 174ms
D 03-20 19:06:17.812 273 com. android. quick. .. dalwikvm GC_EXPLICIT freed 2862 ohjects / 142456 hytes in 7178ms
D 03-20 19:08:19.380 320 con. android. browser dalvikvn GC_FOR_MALLOC freed 1425 objects / 240704 bytes in 323ms
D 03-20 19:06:25.730 71 SYSTEN_PrOCEss sntpClient request time failed: jawva.net.SocketException: Address family
D 03-20 19:07:01.199 320 com.sndroid.browser dalwikvm GC_EXTERNAL_ALLOC freed 3291 obiects / 649764 hytes in 195ma |
< >

Figure 3. Screenshot of DDMS

Of the debugging tools, method profiling tool is useful for tracing the flow of operations and duration time
spent executing the methods. It gathers method calls and estimates the execution time while we interact with
applications. Method profiling is invoked and ended with menu “Start Method Profiling” and “Stop Method
Profiling” of DDMS or program code startMethodTracing() and stopMethodTracing() of Debug class. The results
are recorded in a log file and sent to Traceview tool which displays the logs graphically as shown in Fig. 4 and 5.

ISSN : 0975-3397 Vol. 4 No. 04 April 2012 534

Hyeon-Ju Y oon / International Journal on Computer Science and Engineering (1JCSE)

[3] HelloAndroid, java ddms232604752926153371 3. trace ddrns G2672056463429434631 trace 2 =

msect |

1.267.78 max msect 11,600 (cpu tirme)
T android/view/View,draw (Landroid/araphics/Canvas:)V

ID II,DDD ‘E,DDD IS,DDD ‘4 i} ‘E,DDD IE,DDD LI’,DDD IE,DDD IB,DDD ‘1 01,000 Il 1 ,q]ﬂﬂ
R | s Dl it Dl L
C L i e L m LTI ity
[7] Binder Thread #3 I | | | | | I I

[5] Binder Thraad #1 | | | I |
[2] HeapWorker

[B] Binder Thread #2 | I | ‘ | |

[4] JDWP I

Figure 4. Traceview timeline panel

In timeline panel, each row represents threads with time increasing to the right. Each method is shown in
different colors which are used in round-robin pattern. If we select a method, we can see its log record in the
profile panel (Fig. 5). Profile panel shows exclusive execution time, inclusive time (with called functions), and
portion of total execution time. Total number of calls and number of recursive calls are written in the last column.

Name Incl Cpu Tirn.., | Incl Cpu Time Excl Cpu Ti.. | Ewxel Cpu Time | Callg+Recur... | Cpu Time/Call &
1 android/viewWew draw {Landroid/graphice/Canvasi iVt B2.8% £099,933 3.3% 379,654 13+232 24,808
Parents
B © andraid/widget/FrameLayout draw {Landroid/grap 100,02 6099,938 137245
Children
self 0.1% £.086
B 8 android/viewViewGroup, dispaichDraw (Landroid/ 99, 7% 6083172 13/85
113 android/graphics/drawable/ColorDrawable, draw 01% 8,635 13739
B 416 andraid/view, View, onDrawScrallBars (Landraid, 0.0% 1,413 137245
B 454 android/view,/View, onDraw (Landroid/graphics/ 0,0% 0,442 137245
Parents while recursive
- Children while recursive
« [8 android fview/iewGroup, dispatchDraw (Landroid/araphit 52 7% 6083172 0.5% 62,091 13+72 1,567
<[9 android/view/ViewGroup, drawChild (Landroid/graphics/t 52, 7% 6077, 765 2.3% 264,387 13+293 19,862
«- 10 android/view/View, buildDrawingCache (Z)V 433% 4395,844 0.1% 14,062 13+0 384,296
[11 android/widget/AbsListView, draw (Landroid/graphics,/C 42,3% 4884, 956 0.0% 0,631 80 610,625
12 android/widget/AbsListView, dispatchDraw {Landroid/ar: 40,8% 4712154 0.0% 2.005 g0 589,019
« [l 13 android/view/View. getDrawingCache (Z)Landroid/arapt I07% 4354313 013 7.999 12240 35,691
« [14 android/widget/ TextView. onDraw {Landroid fgraphics/C 21.8% 2519164 2.0% 234,092 147+0 17,137
<[15 android/widget/GridView, layoutChildren (% 18,3% 1764,678 0,0% 5,301 6+ 294,113
«- [l 16 android/widget/GridView. makeRow (IIZ)Landraid/view/ 14,6% 1680,103 0.1% 11,747 30+0 56,003
[17 android/widget/GridView, make sndAddView (IZIZ1)Land 14,3% 1646,970 0,2% 18,293 108+0 15,250
+ W 18 android/widget/GridView. fillDown (DLandroid/view /ey 1% 1632, 465 0.0% 3.064 G+ 272,076 -
10 nndvald Al Afinss s P8 19 79 1481 740 e A aEn 932 A1 e

Find:
Figure 5. Traceview profile panel

IV. PROFILING TOOL AND ANALYSIS RESULTS

For smartphones, absolute speed is important issue but the responsiveness is more critical for user satisfaction.
In addition to game applications which require complicate 3D graphic operations, even in simple web browsing
or address book, memo note apps, users may feel slow response to their touch input. We modified DDMS and
Traceview to make analysis procedure a little faster, and analyzed view system performance of Android
framework for Android 2.2 (Froyo).

A. Modification of DDMS

Although the Traceview offers nice graphical user interface, it is sometimes intolerably slow because it is
written in Java and runs as an eclipse plugin. To achieve better profiling speed, we decomposed the Traceview
into log data processing part and display part and newly implemented Pretrace program which processes the log
data. Call records and analysis on the start and end time are created and analyzed by Pretrace, and Traceview
displays the results in timeline and profile panel. Fig. 6 shows the structural diagram of our modification.

ISSN : 0975-3397 Vol. 4 No. 04 April 2012 535

Hyeon-Ju Y oon / International Journal on Computer Science and Engineering (1JCSE)

APPLICATIONS

APPLICATION FRAMEWOREK

Log P
D Data T
ANDROID File tace

|' Dalvik Virtual |
Machine |

dmemamasE R

[.IBRARIES

Lmvux KERNEL

Figure 6. Modified method tracing

Another problem with DDMS s that it focuses on the application and application framework based on the
internal behavior of Dalvik virtual machine, so the native library, Linux kernel and overall integration effect on
performance cannot be observed in detail. But this requires introduction of other tools or new implementation of
complicated profiling software, we established it as a future research topic.

B. View System Performance

Poor responsiveness may be caused by several reasons. Froyo, our experimental platform, was known as that
suffered from event delivery mechanism and poor system dynamics. (It is said that Gingerbread improved the
system dynamics significantly [10].) Garbage collection mechanism is also not so good because of the
synchronization problem among threads and meaningless waiting time. We focused on the view system to
analyze the responsiveness performance.

With the help of the method call records and dmtracedump tool, we can depict the view system execution
structure as in Fig. 7. According to the view hierarchy, existing views are invalidated, and new canvas is
constructed from layout objects. Actual drawing and displaying occur when the View.onDraw() method is called.
Objects are in tree structure, and the view system traverses the tree and draw child objects recursively.

The problem is the recursion is executed in single thread, so total rendering time can be very long, resulted in
skipping frames or stopping animation. When we observe the portion of each method in profile panel of
Traceview, we see that many applications spend largest time in view system and rendering. Moreover, many of
recent smart devices use multi-core CPU. Because recursion in single thread cannot utilize of high performance
of multi-core high-end CPUs, other view system mechanism is needed for better performance.

View.invalidate()

| ViewGroup.invalidateChild()
SRR ' ¥

! ViewRoot E —»| ViewGroup.inva!idateChiIdInParent{)|

] invalidate() | S-——— I_ R ; 1

l draw() | ViewRoot.invalidateChildInParent() |
ViewGroup 1
: | ViewRoot.draw()

| ViewRoot.invalidateChild() |

il
] o] :
Wi Vi :

L e e | ViewRoot.scheduleTraversals() |

}

View.draw()

|

] Fo—. T} 14 1
o " | DO_TRAVERSAL Message |
View i .[y | ViewGroup.dispatchDraw() | |View.dispatchDraw{} |
(2) View hierarchy l ViewRoot.handleMessage() |
1 | ViewGroup.drawChild()

. Vrew free recursion
| ViewRoot.performTraversals() |—

(b) View system execution flow

Figure 7. View System

ISSN : 0975-3397 Vol. 4 No. 04 April 2012 536

Hyeon-Ju Y oon / International Journal on Computer Science and Engineering (1JCSE)

V. CONCLUSION AND FUTURE WORKS

We reviewed some software tools for analyzing the performance of Android platform. Benchmark
applications are useful for estimating relative device performance and can be used for tuning and adjusting the
performance variables. For application and framework performance, we can utilize the Android SDK tools such
as DDMS and Traceview.

With modified debugging and method trace tool, we analyzed the performance of Android view system.
Recursive view tree traversal may slow down the rendering process, and sometimes cause cut between smooth
animations on display.

We have only worked for the Android 2.2 Froyo version. Recent versions such as Gingerbread(Android 2.3)
and Ice Cream Sandwich(Android 4.0) are reported as they significantly improved the system dynamics and some
time-consuming components, so resulted in better performance. We will test more programs on newer platforms,
analyze the performance degrading factors. We expect the result can help the performance improvement. Another
future topic is integrating the Linux kernel profiler, such as Ftrace [11], with Android profiler programs because
they are both excellent system but their harmony in operation needs to be examined more for performance issue.

ACKNOWLEDGMENT
This paper was supported by Research Funds of Kumoh National Institute of Technology.

REFERENCES
[1] http://developer.android.com
[2] http://openhandsetalliance.com
[3] http://www.antutulabs.com/AnTuTu-Benchmark
[4] http://www.aurorasoftworks.com
[5] http://smartphonebenchmarks.com
[6] http://www.chainfire.eu
[7]1 http://www.glbenchmark.com
[8] http://www.greenecomputing.com/apps/linpack
[9] http://AndroidBenchmark.com
[10] “Android 2.3 platform highlights,” http://developer.android.com/sdk/android-2.3-highlights.html..
[11] http://elinux.org/Ftrace

AUTHORS PROFILE
Hyeon-Ju Yoon is working as an assistant professor of Department of Computer Engineering at Kumoh
National Institute of Technology, Korea since 2005. She earned the Ph.D. degree in computer engineering from
KAIST(Korea Advanced Institute of Science and Technology) in 1997. Her research areas of interest are
computer systems including operating system, distributed system, and embedded systems.

ISSN : 0975-3397 Vol. 4 No. 04 April 2012 537

