
Byte Level NIDS Improvement
Dr. Sameer Shrivastava

Associate Professor, Department of Computer Science and Engineering,
Global Nature Care Sanghatan Group of Institutions

Jabalpur, India

I. Abstract - Byte sequences are used in multiple network intrusion detection systems (NIDS) as
signatures to detect nasty activity. Though being highly competent, a high rate of false-positive rate is
found. Here we suggest the concept of contextual signatures as an enhancement to string-based signature-
matching. Instead of matching isolated fixed strings, we enhance the matching process with added
context. While designing a proficient signature engine for the NIDS, we provide low-level perspective by
using regular expressions for matching, and high-level perspective by taking advantage of the semantic
information made available by protocol analysis and scripting language. Thereafter, we greatly augment
the signature’s articulateness and hence the ability to reduce false positives. Multiple examples are
presented such as matching request matching with replies, using environmental knowledge, defining
dependencies between signatures to model step-wise attacks, and recognizing exploit scans.

Index Terms - intrusion detection, intrusion reply, Byte level signatures.

I. INTRODUCTION

Computer attacks can be detected by numerous kind of approach. We will be concentrating on one trendy
form of misuse detection, network-based signature matching in which the system examines network traffic for
matches against precisely-described patterns. The term signature generally defines the raw bytes of sequences
which are the patterns. Normally, when a site deploys a NIDS the signature-matching NIDS checks the passing
packets for these sequences. An alert is generated when it encounters one. Usually all commercial NIDSs follow
this approach, along with the most well-known freeware NIDS, Snort. This paper shall use the term signature in
the same manner as it has been used.

Signature-matching has several pleasing properties. First, the underlying conceptual notion is simple: it is easy
to explain what the matcher is looking for and why, and what sort of total coverage it provides. Second, because
of this simplicity, signatures can be easy to share, and to accumulate into large “attack libraries.” Third, for some
signatures, the matching can be quite tight: a match indicates with high confidence that an attack occurred.

On the other hand, many important limitations exists in signature-matching. In general, particularly matching
using tight signatures no attack is detected unless explicit signatures are used; the matcher will in general
completely miss attacks, which, unfortunately, continue to be developed at a brisk pace. In addition, often
signatures are not in fact “tight.” Loose signatures straight away raise the problem of false positives: alerts that do
not reflect an actual attack. A second form of false positive, which signature matchers often fail to address, is that
of failed attacks. Usually at many sites attacks occur at nearly constant rates that is why failed attacks are not of
much concern. The only thing is that it is important to differentiate between them and successful attacks.

Something that is of interest over here is that the problem of false positives can potentially be reduced at a
large scale if the matcher has extra context at its disposal: either some extra particulars regarding the exact
activity and its semantics, in order to pick over false positives due to overly general “loose” signatures; or the
supplementary information of how the attacked system responded to the attack, which often indicates whether the
attack succeeded.

In this paper, we shall be discussing over the concept of contextual signatures, in which the traditional form of
string-based signature matching is amplified by including additional context on different levels when assessing
the signatures. To start with, a competent pattern matcher has to be designed and implement that is similar in
spirit to traditional signature engines used in other NIDS. On this low-level we enable the use of additional
context by (i) the use of full regular expressions instead of fixed strings, and (ii) giving the signature engine a
notion of full connection state, which allows it to correlate multiple interdependent matches in both directions of a
user session. Then, if the signature engine reports the match of a signature, we use this event as the start of a
decision process, instead of an alert by itself as is done by most signature-matching NIDSs. Again, we use
additional context to judge whether something alert worthy has indeed occurred. This time the context is located
on a higher-level, containing our knowledge about the network that we have either explicitly defined or already
learned during operation.

Dr. Sameer Shrivastava et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 03 March 2012 348

Further in the study, we will show several examples to demonstrate how the concept of contextual signatures
can help to eliminate most of the limitations of traditional signatures discussed above. We will see that regular
expressions, interdependent signatures, and knowledge about the particular environment have significant potential
to reduce the false positive rate and to identify failed attack attempts. For example, we can consider the server’s
response to an attack and the set of software it is actually running—its vulnerability profile—to decide whether an
attack has succeeded. In addition, treating signature matches as events rather than alerts enables us to analyze
them on a meta-level as well, which we demonstrate by identifying exploit scans (scanning multiple hosts for a
known vulnerability).

Instrumenting signatures to consider additional context has to be performed manually. For each signature, we
need to determine what context might actually help to increase its performance. While this is tedious for large sets
of already-existing signatures, it is not an extra problem when developing new ones, as such signatures have to be
similarly adjusted to the specifics of particular attacks anyway. Contextual signatures serve as a building block
for increasing the expressive of signatures; not as a stand-alone solution.

The thought of contextual signatures in the framework has already been provided by the freeware NIDS Bro.
In comparison to most NIDSs, Bro can neither be defined as an anomaly based system nor a signature-based
system rather said to be partitioned into a protocol analysis component and a policy script component. Also The
previous one feeds the second by generating a stream of events that reproduce different types of activities
detected by the protocol analysis; hence, the analyzer can also be called as the event engine. For example, when
the analyzer sees the establishment of a TCP connection, it generates a connection established event; when it sees
an HTTP request it generates http request and for the corresponding reply http reply; and when the event engine’s
heuristics determine that a user has successfully legalized during a Telnet or Rlogin session, it can generate login
success (otherwise, each failed attempt can result in a login failure event).

 The event engine of Bro is policy-neutral i.e it does not consider any particular events as reflecting trouble
but instead are available to the policy script interpreter. The predictor then defines the response to the stream of
events written in Bro’s custom scripting language. Here the language includes rich data types, persistent state, and
access to timers and external programs; hence the reply includes a great deal of context in addition to the event
itself. The response a script has to a particular event ranges from updating random state (for example, tracking
types of activity by address or address pair, or grouping related connections into higher-level “sessions”) to
generating alerts (e.g., via syslog) or invoking programs for a reactive reply.

Usually, a Bro policy script can execute signature-style matching—for example, inspecting the URIs in Web
requests, the MIME-encoded contents of email (which the event engine will first unpack), the user names and
keystrokes in login sessions, or the filenames in FTP sessions—but at a higher semantic level than as just
individual packets or generic TCP byte streams.

A very commanding approach of Bro is that it permits a wide range of different applications. But definitely
has a significant shortcoming i.e. the policy script is capable of doing traditional signature-matching, which is
burdensome for large sets of signatures, as each signature has to be coded as part of a script function. This is what
makes it dissimilar from the brief, low-level languages used by most traditional signature-based systems. Also, if
the signatures are matched in order, then the transparency of the matching can become exorbitant. Finally, much
of community effort has already been there on developing and disseminating packet-based and byte-stream-based
signatures. For example, the 1.9.0 release of Snort comes with a library of 1,715 signatures. It can be a great
benefit if we can control these efforts by incorporating such libraries.

Hence an enthusiastic work would be to combine Bro’s flexibility with the capabilities of other NIDSs by
implementing a signature engine. While on comparing with the traditional systems, which use their signature
matcher more or less on its own, we tightly incorporate it into Bro’s architecture so as to provide contextual
signatures. As we already know, we have two main level which uses additional context for signature matching.
First, at a comprehensive level, we extend the expressiveness of signatures. Even though byte-level pattern
matching is a central part of NIDSs, mostly signatures allow it to be expressed in terms of fixed strings but Bro
already provides regular expressions for use in policy scripts, and can be used for signatures as well. The clarity
of such patterns provides us an instantaneous way to express syntactic context. For example, with regular
terminology it is easy to express the notion “string XYZ but only if preceded at some point earlier by string
ABC”. One significant point to be memorized regarding regular expression matching is that, once we have fully
constructed the matcher, which is expressed as a Deterministic Finite Automaton (DFA), the matching can be
done in O(n) time for n characters in the input, and also (n) time. (That is, the matching always takes time linear
in the size of the input, regardless of the specifics of the input.) The “parallel Boyer-Moore” approaches that have
been explored in the literature for fast matching of multiple fixed strings for Snort have a wide range of running
times—potentially sublinear in n, but also potentially super linear in n. So, on seeing the particulars of the strings
we want to match and the input against which we do the matching, regular expressions might prove

Dr. Sameer Shrivastava et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 03 March 2012 349

fundamentally more efficient, or might not; and hence need experimental evaluations to conclude the relative
performance in practice. Also, in the making of a regular expression the matcher requires time potentially
exponential in the length of the expression, clearly unaffordable.

Secondly, when on a higher level, the rich contextual state of Bro can be implemented to improve plain
matching as described above. While using Bro’s architecture, the engine sends events to the policy layer. Here the
policy script uses all of Bro’s already existing mechanisms to decide how to react.

Due to Snort’s large user base, it enjoys a wide-range and up-to-date set of signatures. Hence for flexibility we
have designed a custom signature language for Bro is designed, which uses Snort libraries via a conversion
program. This program takes an unmodified Snort configuration and creates a corresponding Bro signature set.
Although, by just using the same signatures in Bro as in Snort, we are unable to improve the resulting alerts in
terms of quality. But even though if we do not go along with additional context, they immediately give us a
baseline of already widely deployed signatures. Hence, Snort serves us as a reference. Throughout the paper we
compare with Snort both in terms of quality and performance. But in doing so, we found several general problems
for evaluation and comparison of NIDSs. We consider that these arise independently of our work with Bro and
Snort, and hence described in some detail .While keeping the above limitations in mind, we can now evaluate the
presentation of our signature engine and find out that it performed well.

II. CONTEXTUAL SIGNATURES

The centre of Bro’s contextual signatures is a signature engine designed with three main goals in mind: (i)
expressive power, (ii) the ability to improve alert quality by utilizing Bro’s contextual state, and (iii) enabling the
reuse of existing signature sets. We shall discuss each in turn. Afterwards, we will present our experiences with
Snort’s signature set, and finally show examples which reveal applications for the described concepts.

III. REGULAR EXPRESSIONS

A conventional signature usually contains a series of bytes that envoy a specific attack. An indicator of a
possible attack can be seen when such a sequence is found in the payload of the packet. Hence the central part of
any signature-based NIDS is the matcher. Quiet a lot of NIDSs only allow fixed strings as search patterns, but we
would ask for the use of regular expressions. As we are aware that regular expressions present with several
significant advantages: firstly, they are flexible than fixed strings, also the perspicuity has made them a well-
known tool in many applications, and their power arises in part from providing additional syntactic framework
with which to sharpen textual searches. In particular, character classes, union, optional elements, and closures
demonstrate the useful for specifying attack signatures.

Astoundingly, given their power, regular expressions can be matched very competently which is performed by
compiling the expressions into DFAs whose terminating states indicate whether a match is found or not. A
sequence of n bytes can therefore be matched with O(n) operations, and each operation is simply an array
lookup— highly efficient.

The total number of patterns contained in the signature set of NIDSs can be quite large. Snort’s set, for
example, contains 1,715 distinct signatures, of which 1,273 are enabled by default. Matching them independently
is very expensive. Nevertheless, in case of fixed strings, there are algorithms for matching sets of strings at the
same time. thus, Snort’s default engine works iteratively, there has been recent work to replace it with a “set-
wise” matcher [8, 12].1 Also regular expressions enable us set-wise matching for free: by using the union
operator on the individual patterns, we get a new regular expression which effectively combines all of them. The
result is a single DFA that again needs O(n) operations to match against an n byte sequence. Few modifications
are essential to expand the interface of Bro’s previously existing regular expression matcher to unambiguously
allow grouping of expressions.

In spite the eloquence and effectiveness of regular expressions, we have a ground why a NIDS might avoid
using them: the underlying DFA can grow very large. Depending on the particulars of the patterns on fully
compiling a regular expression into a DFA leads potentially to an exponential number of DFA states. On viewing
the complex regular expression built by compiling all individual patterns, this straight-forward move could easily
be inflexible. In our understanding while constructing DFAs for regular expressions matching many hundreds of
signatures shows that this is indeed the case. One can avoid the state/time explosion in practice, as follows.

As an alternative of pre-computing the DFA, we build the DFA “on-the-fly” during the actual matching.
Every time the DFA needs to transfer into a state which is not already constructed, we calculate the new state and
document it for future reuse and so restore only those DFA states which are actually needed. A significant
observation is that for n new input characters, we will build at most n new states. Moreover, we find in practice
that for normal traffic the growth is much less than linear.

Dr. Sameer Shrivastava et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 03 March 2012 350

Still a point of concern is that given unfavorable traffic—can actually be artificially crafted by an attacker—
leading to consumption of more memory by the state construction than available .Hence a memory-bounded DFA
state cache was implemented. Configured with a maximum number of DFA states, it expires old states on a least-
recently-used basis. In the follow-up, when we say “Bro with a limited state cache,” we are addressing to such a
bounded set of states (which is a configuration option for our version of Bro), using the default bound of 10,000
states.

Also one of the significant point that should be kept in mind is to combine all patterns contained in the
signature set into a single regular expression. Further view suggests that most signatures contain supplementary
constraints like IP address ranges or port numbers that confine their applicability to a subset of the whole traffic.
On viewing these constraints, we can conclude in groups of signatures that match the same kind of traffic by
collecting only those patterns into a common regular expression for matching the group, thereby able to reduce
the size of the resulting DFA significantly. Further, to cope with high-volume traffic a very powerful pattern
matcher can still be efficient enough.

IV. IMPROVEMENT OF ALERT QUALITY BY USING CONTEXT

Despite the fact that pattern matching is a central part of any signature-based NIDSs, there is potentially great
effectiveness in incorporating more viewpoint in the system’s analysis prior to generating an alert, to ensure that
there is indeed something alert-worthy occurring. One can greatly increase the quality of alerts, while at the same
time reducing their quantity, by using the information about the current state of the network .Hence we can say
that Bro is an excellent tool for it keeps an ease of accessibility.

On the other hand the new signature engine is intended to fit nicely into Bro’s layered architecture as an
appendage to the protocol analysis event engine (see Figure 1). Also a custom language for defining signatures
has been implemented. A new component placed within Bro’s middle layer matches these signatures against the
packet stream. A new event can only be inserted into the event stream when there is a match and the policy layer
can then choose how to react. Furthermore, one can add information from the policy layer back into the signature
engine to control its operation. A signature can denote a script function to call each time a particular signature
matches further it consults additional context and indicates the subsequent event should be generated.

Usually, Bro’s analyzers extort protocol-specific information by following the communication between two
endpoints. For example, the HTTP analyzer extorts URIs requested by Web clients (which includes performing
general preprocessing such as expanding hex escapes) and the status code and items sent back by servers in reply,
while the FTP analyzer follows the application dialog, matching FTP commands and arguments (such as the
names of accessed files) with their corresponding replies. Obviously, this protocol-specific analysis provides
considerably more context than a simple view of the total payload as an undifferentiated byte stream.

The signature engine takes benefit of the additional information by incorporating semantic-level signature
matching. For example, the signatures can include the concept of matching against HTTP URIs; the URIs to be
matched are provided by Bro’s HTTP analyzer. After developing the mechanism for interfacing the signature
engine with the HTTP analyzer, it is now straight forward to extend it to other analyzers and semantic elements
(indeed, we timed how long it took to add and debug interfaces for FTP and Finger, and the two totaled only 20
minutes). Central to Bro’s architecture is its connection management. Each network packet is linked with exactly
one connection. This concept of connections permits several powerful extensions to traditional signatures.
Primarily, Bro reassembles the payload stream of TCP connections. Hence all pattern matching can be done on
the actual stream (in contrast to individual packets). Whilst Snort has a preprocessor for TCP session
reassembling, which can be accomplished by compiling several packets into a larger “virtual” packet and further
passed on to the pattern matcher. Since the consequential analysis is packet-based, it suffers from discretization
problems introduced by focusing on packets, such as missing byte sequences that cross packet boundaries. (See a
related discussion in of the problem of matching strings in TCP traffic in the face of possible intruder evasion.)

In Bro, it is not essential for a signature match to correspond to an alert; as with other events, this decision is
left to the policy script. Therefore one should memorize which signatures have matched for a particular
connection. Given this information, it is then possible to specify dependencies between signatures like “signature
A only matches if signature B has already matched,” or “if a host matches more than N signatures of type C, then
generate an alert.” In a similar manner, we can for example describe multiple steps of an attack. In addition, Bro
observes in which direction of a connection a particular signature has matched, which gives us the idea of
request/reply signatures: we can associate a client demand with the corresponding server reply. A typical use is to
differentiate between successful and unsuccessful attacks.

Usually, the policy script layer can correlate arbitrary kinds of data with an association with one of its
endpoints. This implies that any information we can assume from any of Bro’s other components can be used to
improve the quality of alerts

Dr. Sameer Shrivastava et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 03 March 2012 351

Figure 1: Integrating the Signature Engine

On observing per-connection state for signature matching one question that arises is of state management: at

some instance we have to retrieve state from older connections to thwart the system from draining the available
memory. But again we can leverage the work already being done by Bro .Autonomously of our signatures, Bro
can performs a difficult connection-tracking using various timeouts to expire connections. The signature engine
works economically even with large numbers of connections when the matching state to the already-existing per-
connection state.

V. SIGNATURE LANGUAGE

A language is needed for defining signatures in any signature-based NIDS. In case of Bro, we need to select
between the use of an already existing language and the implementation of a new one. A need for a new
language was required because of two reasons. Firstly, it gives us more flexibility and we can incorporate the new
concepts. Secondly, if we wish to utilize the existing signature sets, then it becomes simpler to write a converter
in some high-level scripting language than to apply it within Bro itself.

Snort’s signatures are converted into our signature language since they are wide-ranging, free and often
updated.

It is rather difficult to implement a complete parser for Snort’s language. We conclude that, its syntax and
semantics are not fully documented, and rather often only defined by the source code. Additionally, since
internals of Bro and Snort are different, it is just not possible to keep the exact semantics of the signatures.

Identifier and a set of attributes are required for definition of our signatures. Two main types of attributes are
there: (i) conditions and (ii) actions. The conditions say when the signature matches, while the actions state what
to do in the case of a match. Conditions are further classified into four types: header, content, dependency, and
context.

Header that contains matching packet headers limits the applicability of the signature to a subset of traffic. In
case of TCP, the first packet of a connection is matched. While in other protocols, this takes place for each
individual packet. Generally, header conditions are defined by using a tcpdump - like syntax (for example,

Dr. Sameer Shrivastava et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 03 March 2012 352

tcp[2:2] == 80 matches TCP traffic with destination port 80), which is very flexible, though some shortcuts (e.g.,
dst-port == 80) also exists.

Regular expressions are used to define the content conditions. Again, there are two types of conditions: first,
the payload statement can be used for the declaration of the expression, in which case it is matched against the
raw packet payload. On the other hand, a prefix of an analyzer-specific label can be used, that extracts data and
the expression is matched against it. For example, the HTTP analyzer decodes requested URIs. So, http
(etc/(passwd |shadow) matches any request containing either etc/passwd or etc/shadow.

The dependencies between signatures are defined by signature conditions. Requires-signature has been
implemented, which specifically says another signature has to match on the same connection first, and requires-
reverse-signature, which requires the match to happen for the other direction of the connection. Both conditions
are subject to negation to match only if another signature does not match.

Finally, context conditions allow passing the match decision on to various components of Bro. If all other
conditions match then they are evaluated. For example, we state a tcp-state condition that poses restrictions on the
current state of the TCP connection, and eval, which calls an arbitrary script policy function.

Upon meeting of all conditions, the actions related with a signature are executed: a signature is inserted by the
event match into the event stream, which includes the value of the event and the signature identifier,
corresponding connection, and other context. The signature match is then analyzed by policy layer.

VI. THE POWER OF SIGNATURE

This section discusses, about several examples that convey the power provided by our signatures. First, we
exhibit how regular expressions can be used to define more “tight” signatures. Then, we show how to identify
failed attack attempts by taking into account the set of software a particular server is running as well as the
response of the server. We next demonstrate how to model an attack in multiple steps to avoid false positives, and
finally how alert counting is used for identifying exploit scans. We conclude that the examples presented are not
supported by Snort without extending its core significantly.

A. Using Regular Expressions

Regular expressions allow far more flexibility than fixed strings. Snort signature generates a large number of
false positives. While a corresponding Bro signature using a regular expression for identification of the exploit is
more reliable. If an attacker constructs a string of the form “...; <shell-cmds>”, and passes it on as argument of the
recipient CGI parameter, vulnerable form mails will execute the included shell commands. Arbitrary order can be
used to give CGI parameters, the Snort signature has to rely on identifying the form mail access by its own. But
by using a regular expression, we can explicitly specify inclusion of a particular character in the recipient
parameter.

B. Vulnerability Profiles

Only some versions of the software are actually vulnerable while most exploits are aimed at particular
software. If overwhelming number of alerts is given a signature matching NIDS can be generated, we hence
consider the view that the only attacks of interest are those that actually have a chance of succeeding. One doesn’t
care if, for example, an IIS exploit is tried on a Web server running Apache, one may not even care. Hence to
prioritize alerts based on this kind of vulnerability information is done. Bro’s concept says that call the set of
software versions that a host is running its vulnerability profile. The profiles of hosts on the network are collected
after protocol analysis, using version/implementation information that the analyzer observes. Signatures can then
be restricted to certain versions of particular software.

As a proof of principle, vulnerability profiles are there implemented for HTTP servers, and for SSH clients
and servers. We intend to extend the software identification to other protocols.

Future work is to extend the notion of developing a profile beyond just using protocol analysis. We can
passively fingerprint hosts to determine their operating system version information by observing specific
idiosyncrasies of the header fields in the traffic they generate, or in addition employ active techniques to
explicitly map the properties of the site’s hosts and servers. Finally, an add-on to automated techniques, we can
implement a configuration mechanism for manually entering vulnerability profiles.

C. Request/Reply Signatures

In addition of pursuing the idea to avoid alerts for failed attack attempts, signatures can be defined that take
into account both directions of a connection. In operational use, we see a lot of attempts to exploit CVE-2001-
0333 to execute the Windows command interpreter cmd.exe. For a failed attempt, the server typically answers
with a 4xx HTTP reply code, indicating an error. These failed attempts can be ignored by, first defining one

Dr. Sameer Shrivastava et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 03 March 2012 353

signature, http-error, which recognizes such replies. Then a second signature can be defined, cmdexe success,
which matches only if cmd.exe is contained in the requested URI and the server, does not reply with an error. In
Snort it’s not possible to define this kind of signature, as it lacks the notion of associating both directions of a
connection.

D. Attacks with Multiple Steps

An example of an attack executed in two steps is the infection by the Apache/mod ssl worm (also known as
Slapper), released in September 2002. The worm first probes a target for its potential openness by sending a
simple HTTP request and inspecting the response. It turns out that the request it sends is in fact in violation of the
HTTP 1.1 standard, and this peculiarity provides a somewhat “tight” signature for detecting a Slapper probe.

If the server spots itself as Apache, the worm then tries to exploit OpenSSL susceptibility on TCP port 443.
Two signatures are required that reports an alert only if these steps are carried out for a destination that runs a
vulnerable OpenSSL version. Slapper-probe, the first signature, checks the payload for the illegal request. The
script function is vulnerable to slapper is called, if found. Using the susceptibility profile described above, the
function evaluates to true if the destination is known to run Apache as well as a weak OpenSSL version. If so, the
signature matches. Slapper-exploit, the header conditions of the second signature, matches for any SSL
connection into the specified network, and the signature calls the script function has slapper probed. The function
generates a signature match if slapper-probe has already matched for the same source/destination pair. Thus, Bro
generates alert if the combination of probing for a susceptible server, plus a potential follow-on exploit of the
vulnerability, has been seen.

VII. CONCLUSIONS

In this work, we tried developing the general notion of contextual signatures as an enhancement on the
traditional form of string-based signature-matching used by NIDS. Instead of matching fixed strings in seclusion,
contextual signatures enhance the matching process with both low-level context, by using regular expressions for
matching rather than simply fixed strings, and high-level context, by taking advantage of the semantic context
made available by Bro’s protocol analysis and scripting language.

We achieved some major improvements over other signature-based NIDSs such as Snort, by tightly
integrating the new signature engine into Bro’s event based architecture, which often suffered from generating a
huge number of alerts. To leverage Bro’s context and state-management mechanisms and to improve the quality
of alerts a signature-match only as an event was interpreted, rather than as an alert by itself. Multiple examples
have been specified to show the power of this approach: matching requests with replies, recognizing exploit
scans, making use of open profiles, and defining dependencies between signatures to model attacks that span
multiple connections. Additionally, the freely available signature set of Snort has been converted into Bro’s
language, to build upon existing community efforts.

As a baseline, we tried evaluating our signature engine using Snort as a reference, that compared the two
systems in terms of both run-time performance and generated alerts using the signature set archived at. But in this
process, we came across several general problems when matching NIDSs: conflicting internal semantics,
incompatible tuning options, the difficulty to devise “representative” input, and extreme sensitivity to hardware
particulars. The last two are mainly challenging, because there are no prior signs when comparing performance on
one particular trace and hardware platform that we might obtain diverse results using a special trace or hardware
platform. Thus, great caution is necessary in interpreting comparisons between NIDSs.

Based on our work, now we are in the course of deploying Bro’s contextual signatures operationally in
numerous educational, research and commercial environments.

REFERENCES

[1]. Farooq Anjum Dhanant Subhadrabandhu and Saswati Sarkar,"Signature based Intrusion Detection for Wireless Ad-Hoc
Networks: A comparative study of various routing protocols", Seas, 2008.

[2]. Hongmei Deng; Xu, R.; Li, J.; Zhang, F.; Levy, R.; Wenke Lee, " Agent-based cooperative anomaly detection for wireless ad hoc
networks", Parallel and Distributed Systems, Volume 1, Issue , 0-0 0 Page(s):8, 2008.

[3]. Haiguang Chen, Peng Han, Xi Zhou, Chuanshan Gao, "Lightweight Anomaly Intrusion Detection in Wireless Sensor Networks",
Intelligence and Security Informatics, Springerlink, 2007.

[4]. WANG Ding-cheng, JIANG Bin. Review of SVM-based Control and Online Training Algorithms [J]. Chinese Journal of System
Simulation, 2007

[5]. CHEN You, SHEN Hua-Wei, LI Yang, CHENG Xue-Qi.An Efficient Feature Selection Algorithm Toward Building Lightweight
Intrusion Detection System [J]. Chinese Journal of Computers, 2007

[6]. Desai N. Intrusion Prevention Systems: the Next Step in the Evolution of IDS. Feburary 2003.
http://www.securityfocus.com/infocus/1670. Accessed 30 November, 2008.

Dr. Sameer Shrivastava et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 03 March 2012 354

AUTHORS PROFILE

Dr. Sameer Shrivastava is an Associate professor in the Department of Computer Science
and Engineering, in Global Nature Care Sangathan group of institutions, Jabalpur, M.P.
India. He received his Ph.D.(Computer Science and Engineering) from Bhagwant
University, Ajmer, Rajasthan in 2011. He has 14+ years of experience in teaching and
research. His areas of specialization include Network Security. He is a Cisco Certified
Network Associate, SUN certified and Microsoft Certified Professional. He has published
papers in many International and national level Journals on Network Security and
Computer Networks.

Dr. Sameer Shrivastava et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 03 March 2012 355

