

APPLYING DYNAMIC DEPENDENCY
INJECTION TOWARDS TEST CASE

REDUCTION ON DISTRUBUTED
SPATIAL DATA MANAGEMENT

Dr.Vivekanandan1 and Keerthilakshmi Gopal2

 1 Reader, School of Management, Bharathiar University

Coimbatore, TamilNadu, India
vivekbsmed@gmail.com

2 Research Scholar, Department of Computer Science, Bharathiar University

Coimbatore, TamilNadu, India
keerthi.gopal@gmail.com

Abstract

The transfer and retrieval of spatial data is often looked as a laborious and time consuming one,
especially if the participating entities are geographically separated. With the advent of modern cutting edge
technologies like cloud computing being offered in almost all hosting platforms by various vendors, managing
the geospatial data is inevitable. Testing a complete system that involves synchronization among the actors is
versatile due to the complex interactions it got.

Deciding to choose a nearest end point of service merely by location may not be successful at all times

as in most cases the delay in execution is caused by peak loads hitting up the server.

Thanks to dependency injection, dynamically routing the requests and setting up the optimal route on

the fly has proven non-futile. We have attempted to simulate a cloud based service, accessible over endpoints
which are published at various geo-locations and use dependency injection in accessing the complete functional
test coverage.

A complete mock is also attempted on situations where all the participating actors were down, using

the historic response before proclaiming a failure, thus improving the system coverage within minimal span of
time.
Keywords: Cloud Computing, Dependency Injection, Software Testing.

1. Introduction

Dealing with spatial data is nowadays increasing due to the advent of more people connected on the Go. With
the advent of smart phones that produce real time statistics like maps and weather that involves transmitting to
the near broadcasting point to avoid delay in response, the applications that work beneath these phones are to be
intelligent and cloud enabled that provide the services involving distributed spatial data.

In cloud environments, during multi stage transactional processes the calling actor has to contact the
advertised service points that are near in vicinity or that are free to take up the loads.

Most end point services use the load balancer which decides on the appropriate cloud point to be called on

these situations.

Dr.Vivekanandan et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 02 February 2012 209

Fig 1 A Typical Cloud Hosting Architectural Environment

On Most cases, the service end point listens on the advertised point through the publicized protocol, which
usually vary based on the domain cross functional requirements. There is also a possibility of multiple bindings
running at a specified service end point to cater to various type of clients.

Though the bindings are many, the request is finally tunneled to a single stream of processing thread where

the service is responded with the appropriate spatial information.

1.1 Testing in the Distributed Environment

Testing the cloud service that carries a spatial data involves testing the individual end points by contacting

the load balancers through seeding the cloud at every point of service end point and then awaiting for the
response and validating the actual results against the expected results.

The advantage of cloud environment over the conventional distributed environment is that during testing a

business case, if an endpoint fails out the test strategy can be changed by referring to the next available service
end point without sacrificing the intermediate test results arrived so far at.

However, in real world situations the test service cannot take on the complete production bandwidth for

testing, and also testing the production environment needs to be quick and resource conscious. The test
environment need to take the alternate course of action upon detecting the tip of failure and need not wait for
the complete failure to happen before declaring the test case as failure. The test environment must also be
continuously learning from its mistakes and able to apply the learning towards the reduction of the testing time.

2. Dependency Injection to the Rescue

Quoted in Wikipedia, “Dependency injection (DI) is a design pattern in object-oriented computer programming
whose purpose is to improve testability of, and simplify deployment of components in large software systems.”

It further states - The primary purpose of the dependency injection pattern is to allow selection among multiple
implementations of a given dependency interface at runtime, or via configuration files, instead of at compile
time. The pattern is particularly useful for providing "mock" test implementations of complex components when
testing; but is often used for locating plug-in components, or locating and initializing software services.
Unit testing of components in large software systems is difficult, because components under test often require
the presence of a substantial amount of infrastructure and set up in order to operate at all. Dependency injection
simplifies the process of bringing up a working instance of an isolated component for testing. Because
components declare their dependencies, a test can automatically bring up only those dependent components
required to perform testing.

More importantly, injectors can be configured to swap in simplified "mock" implementations of dependent
components when testing -- the idea being that the component under test can be tested in isolation as long as the

Dr.Vivekanandan et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 02 February 2012 210

substituted dependent components implement the contract of the dependent interface sufficiently to perform the
unit test in question.

Using dependency injection, the components that provide access to the online service and back-end databases
could be replaced altogether with a test implementation of the dependency interface contracts that provide just
enough behavior to perform tests on the component under test.

An attempt is made in this paper to apply the concept of Partial Dependency Injection over the testing of the
distributed cloud environment involving the spatial data.
A simple cloud based Ecommerce solution that sells out digitized media recording on the fly to the customers is
considered for testing. The application is resident over various cloud endpoints as against a server farm
technology the most of the ecommerce web solutions offer currently.

The results are compared with the testing of cloud by using the load balancer method that is in operation
currently.

The results clearly indicate the dependency injection having a clear edge over the conventional testing method,
with the advantages of mocking out an endpoint operation with the existing results of the service provided the
service is stagnant in maneuverability.

3. The Existing System

 The current system is an ecommerce portal which sells all sorts of digitized portfolio – like
providing real time map service, streaming out a live –in concert over the web upon fulfillment of payment to
selected users, selling other ecommerce products like normal websites offer including books, CD’s etc..,

We studied the existing system by laying out the complete architecture of the system – The current

system is cloud enabled by providing various service endpoints at geo-locations. All requests to the service
reach the load balancer, which actually decides the service point which is capable of servicing the load based on
the location of the request. The subsequent requests are directly carried out directly by the participating
endpoint.

The endpoint intimates the load balancer about success or failure of the operation on the following

occasions:

a. When the process is successfully completed, releasing the DMA token it shared with the client,

granted by the load balancer.
b. When the process could not be completed, encountering a catastrophic failure. The load balancer

senses the failure and takes the alternate course of action by determining the next service end
point and contacting it from the last point of failure. In this occasion, the client is totally unaware
of this switch made by the load balancer and that is the advantage of hosting over a cloud.

c. Over periodic intervals, the end point intimates the load balancer about the progressing point as a
heart beat signal.

We simulated the behavior of the existing system after concluding the architecture and documented the various
artifices that are needed to test the system. We choose the streaming model to virtualizes, as it was unusually
different from the normal ecommerce business, which would pay way for effective test case generation and
corner case identifications.

The Ecommerce cloud had 6 sources of generation across the geographic locations, one hosted in North
America, one in Brazil, next 2 in France and Ireland. In APAC, it was hosted in India and japan, featuring a
complete geo-clustered cloud. Each of these sources was supplied with fail-over support, 24/7 uninterrupted
access and checking of vital information over the dashboard which is accessible in various channels like over
web, smart phone light weight application and over the access of remote desktop.

The load balancer was registered with the DNS (Domain name server) over an IP address which would be
known to the callers

3.1 The Testing Approach

Dr.Vivekanandan et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 02 February 2012 211

Upon careful analysis of the system and analyzing the entire serviceable endpoint and the environment, the
testing objectives were not to be myriad that the normal web testing methods which could have been
implemented using a load tester software or the selenium.

 The intention of the testing is below:

a. To cover the maximum coverage criteria
b. To attain (a) within the best available time
c. To use the limited set of resources as the testing directly affects the enduser bandwidth since we

are testing on the production environment.

We used I-Can Cloud Manager simulator to study the behavior and capture the necessary data of the specified
architecture. For the sake of simplicity and convenience, the cloud was viewed in 3 continents – Asia Pacific
with combined hostage of India & Japan, Europe with combined hosting of France and Ireland and America
combining north America and brazil. The I-Can cloud simulator can be downloaded under the Open source
licence public agreement under the website: http://sourceforge.net/projects/icancloudsim/

Fig 2 – Setting up the Environment in Cloud

The following metrics were of important ones for us to configure in the cloud simulator:

Dr.Vivekanandan et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 02 February 2012 212

Fig 3 – Specifying Configuration Parameters

The story board technique was used in arriving at the test cases and a complete suite contained of the following
test case:

a. A customer logs in to the system
b. Customer checks the various live-in concerts/ live feed copyrighted movies available for the day
c. Customer chooses a concert and a sample of the clipping is streamed to the customer from the site for a

stipulated duration.
d. Customer decides to go for the concert and completes the payment processing formalities.
e. Customer is given a direct link to view the concert / copyrighted movie for a particular duration for the

generated IP address.

The normal testing approach is not to test the QoS parameters, but to effectively test this live scenario
in the production environment without stealing the devoted bandwidth allocated to the real customers.

 A total of 6 test cases was framed covering the above mentioned scenario and was executed over 4
users who were from India. The offset of the other users wasn’t taken into account as we were measuring
the test execution times for Indian users only.

 The user 2 was introduced to the system 10 seconds after the other users have logged in to deal with
dead-lock starvation handling and the results to execute the test cases are tabulated below:

Table: 1 Output Metrics of the Current System
(In Seconds)

 Tc
1

Tc
2

Tc3 Tc4 Tc
5

Tc
6

Total
(mm:ss)

keerthi 11 34 14 443 3 8 08:55
Vivek
*

12 21 23 1027** 3 9 20:04

User3 17 22 8 385 2 9 07:38
User 4 14 28 44** 457 3 9 09:25
Total time: 20:04

* Started at 00:10
** Retip of the service end point to the LB

Dr.Vivekanandan et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 02 February 2012 213

 Table 2: Code/ Statement Coverage

 Tc
1

Tc
2

Tc3 Tc4 Tc
5

Tc
6

keerthi 100 90 - 100 - 100
Vivek 100 75 - 100 - 100
User3 100 90 - 100 - 100
User 4 100 75 - 100 - 100

 Tc3 and Tc5 were not put in for code coverage as they had streaming and a direct link respectively,
where there was no code to cover.

While we ran the entire scenario 3 times, the results above are for the iteration 2. The system retipped to the
load balancer twice – first time at 00:52, when all the four users were active at executing Tc3 that the APAC
cloud gave up when the user4 accessed the system, causing the delayed execution of Tc3 for user 4, which is
greater than average of 23+14+8 /3 = 15. The retipping happened at 10th second after User4 had pipelined to the
machine at test case Tc3, causing another 30 seconds to fetch from the next APAC server at Japan.

 The second retipping happened at around 01:54 when the Tc4 was executing, which was to provide a
sample clip of the streaming, which collapsed the entire end point from recovery and brought in the fail-over
protection node end point to action. Meanwhile , the load balancer detected the heart beat was missing from the
end point and it routed the request to the next serviceable endpoint. When the service end point was restored
back by the failover node cluster, the heart beat had resumed and the load balancer again started streaming from
the same end point which caused the failure. The end user experience was the streaming was continuous with
good QoS, but with 3 times resuming the same clips as a result of which the total execution time creped up
above 20 minutes, featuring the segment highest.
4. Problems in the Existing Approach

Though the current approach is versatile in terms of completeness of the system, it would be skeptical to deal
with the current approach in terms of execution times when it comes to deal with scalability. A few of the
drawbacks are as listed below:

A. The test case execution engine always relies on load balancer to post the request and get the response.
Those this may sound fairly simple, on occasions when the retipping happens, the execution engine
gets no clue and had to wait on the load balancer to complete the response.

B. On the systems where the test execution is limited to time, it is not possible to tune the system to

attribute to the complete coverage. For Example, the tests cannot be flexed if a definite time interval is
given for execution.

C. There is no option to bye-pass the scenario and continue the testing. For e..g.: if implementation for

Tc4 is kaput, the load balancer has no alternative course of action than to return a failure to the caller,
thus not proceeding with the testing. Tc4 is a sample renderer and most users may opt to bye-pass it and
continue their purchase for the live-in concert.

5. The Proposed Solution
The following metrics are derived and are used for computations.

The idea is to analyze the records of the existing test runs and compute the decision of introducing a
dependency injection container called “Mock”, if the scenario reaches any of the below conditions:

Dr.Vivekanandan et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 02 February 2012 214

a. The Bug Contribution Ratio is less than the Average Contribution Ratio
b. The time for execution of the test-case is greater than the average time of execution.
c. The provided net test execution time is less than the sum of individual test case execution times.

The idea of Dependency Injection, originally coined by Martin Fowler in 2004, states that: “Do not
instantiate the dependencies explicitly in your class. Instead, declaratively express dependencies in your
class definition. Use the test engine to obtain valid instances of your object's dependencies and pass them to
your object during the object's creation and/or initialization”.

Fig 4 –Dependency Injection Architecture on Test Bed

In our case of distributed cloud, the test engine is the actual Builder which creates the Class-A, which

involves a real object, i.e., testing the load balancer. The test engine then creates a service-A which has the
similar properties of class-A but whose implementation is mocked up as it has injected the dependency into
it upon reading the public interface of Class-A. The subsequent requests to the test engine are decided
based on the available time whether to use the direct implementation or proceed with the mock
implementation.

 The test engine also partially switches from real object to mock object if it realizes the current

run time of a particular test case has gone above the average run time and its BCR is less than ACR.

Dr.Vivekanandan et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 02 February 2012 215

Table:3 Proposed Algorithm Psedo-Code

DynamicMock dataAccess = new
DynamicMock(typeof(ICloudDataAccess));

Ecom mockecom = new Ecom
((ICloudDataAccess)dataAccess.MockInstance);

Ecom realecom= new Ecom ();

While(test suite complete or execution time elapsed== false)

{ if(bug found==true) { report and return to next case; }

If(BCR < ACR && test is insignificant)

{

Realecom=Mockecom.createInstance();

Exit();

}

realEcom.doOperations();

The proposed implementation is made on the simulated results of the existing system and the actual results are
tabulated as below:

Table: 3 Output Metrics of the Current System
(In Seconds)

 Tc

1
Tc
2

Tc3 Tc4 Tc
5

Tc
6

Total
(mm:ss)

keerthi 11 34 14 443 3 8 08:55
Vivek 12 21 23 45 3 9 01:53
User3 17 22 8 45 2 9 01:41
User 4 14 28 2* 45 3 9 01:41
Total time: 10:48

The second user is not similarly started 00:10 seconds as in the existing system testing, but instead is

started at 09:05 minutes as the first user has finished testing, which constitutes the “Dry-Run” phase of the
system. When Tc4 is evaluated, it constitutes above the average time and hence the mock object is evaluated
instead of the real object thereby concurring only 45 seconds for the direct playback time to elapse, improving
the system.

For the second and subsequent iterations, all the other users pragramatically start at the same time.

When the TC4 is evaluated, due to the load, the server had a retip causing the heart beat signal to fail, the test
engine senses this immedieately and provides a mock response, which yields http status code 200, and response
same as the previous iteration testing, which informs the client application to proceed further with the tests.If
the test engine is configured for 100% coverage, then it behaves like the existing system and no mock is
switched over in case of tipping.

6. Conclusion

The concept of Dynamic injection is so powerful that when combined with conventional testing strategies with
an option to include Decision Sub system, it performs excellently to reduce the test execution time and not
compromising on test run quality.
The implementation is also subjective to catch the bugs till the point mock instance takes over so that early bugs
in the system can be easily detected in the production environment without consuming enough of bandwidth.

References
[1] Armando Roggio Ecommerce Know-How: Cloud Computing in the Ecommerce Forecast in Practical-Ecommerce, April 2009
[2] Atul Jain Impact of Cloud Service Models on eCommerce, HCL Blogs, 2010
[3] D.Chays,Y.Deng,P.Frankl,S.Dan,F.Vokolos,and E.Weyuker. An agenda for testing relational database

applications.SoftwareTesting,Verification and Reliability,1 4:17-44, Mar 2004.
[4] Y.Deng,P.Frankl,andJ.Wang. Testing of web database applications.In Workshop on Testing, Analysis and Verification of

WebServices, July2004.

Dr.Vivekanandan et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 02 February 2012 216

[5] S.Elbaum, G.Rothermel, S.Karre, and M.Fisher.Leveraging user session data to support web-application testing. IEEE Transactions on
Software Engineering, May 2005.

[6] J.A.JonesandM.J.Harrold. Test suite reduction and prioritization for modified condition/decision coverage. IEEE
TransactionsonSoftwareEngineering,29(3),March2003.

[7] E.Kirda,M.Jazayeri,C.Kerer,and M.Schranz. Experiences in engineering flexible webservice. IEEE MultiMedia, 8(1):58–65,2001
[8] http://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle
[9] Edwards, W. and Barron, F.H. "SMARTS and SMARTER: Improved Simple Methods for Multiattribute Utility Measurement",

Organizational Behavior and Human Decision Processes, 60, (1994), pp. 306–25.
[10] http://www.martinfowler.com/articles/injection.html

Dr.Vivekanandan et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 02 February 2012 217

	APPLYING DYNAMIC DEPENDENCYINJECTION TOWARDS TEST CASEREDUCTION ON DISTRUBUTEDSPATIAL DATA MANAGEMENT
	Abstract
	Keywords
	1. Introduction
	2. Dependency Injection to the Rescue
	3. The Existing System
	4. Problems in the Existing Approach
	5. The Proposed Solution
	6. Conclusion
	References

