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Abstract—Two-dimensional (2-D) thresholding can give a better segmentation than one-dimensional 
thresholding by taking the spatial correlation of the image. Unfortunately, the computational cost is an 
obstacle for the implementation of real-time image processing. In this paper, a fast method for 2-D Renyi’s 
entropy-based thresholding, which is the generalized method of Shannon entropic method and the correlation 
entropic method, is proposed. In order to diminish the processing time required for calculating 2-D histogram, 
a fast scheme is introduced and the computational complexity is reduced from O(W 2MN) to O(MN). More 
importantly, based on the proposed method, the computational complexity for selecting the optimal threshold 
value is reduced from O(L4) to O(L2). The effectiveness of this method is illustrated by experimental results.  

Keywords– image segmentation;2-D histogram; Renyi’s entropy; thresholding 

I.  INTRODUCTION 

Image segmentation is a challenging and important task in many image processing and analysis systems such as 
automatic target recognition, document image analysis, medical image analysis, etc. One of the most simple and 
efficient techniques for segmentation is thresholding. The thresholding can be seen as an operation for converting a 
gray-level image to a bi-level or multi-level image. For the simplest case, the thresholding can be seen as an operation 
of converting a gray-level image into a binary image by selecting an appropriate threshold value. If the values of 
pixels are below the threshold, then the pixels belong to the object, and if above the threshold, then to the background, 
or vice versa [1].  

Up to now, many thresholding techniques have been devoted to the threshold selection, and all of these methods 
can be primarily divided into two groups. One is global thresholding, where a single threshold value is computed from 
the gray-level histogram of the image for bi-level thresholding, and it is easy to extend this thresholding to multilevel 
thresholding. The other is local thresholding, where the input image is thresholded by using the local threshold values 
which are calculated from a certain size of sub-images within the whole image. In comparison with the later, the 
former approach is easy to implement and widely used in various image processing applications. Entropic 
thresholding approach, which is based on optimizing an entropic measure from information theory, is one of the most 
common approaches in global thresholding techniques [2]. Most entropic methods are derived from the method 
proposed by Pun [3]. In Pun’s method, the entropic concept was introduced in threshold selection to obtain the 
optimal threshold value by maximizing the upper bound of the a posteriori entropy. In Ref. [4], Kapur et al. corrected 
and improved Pun’s method by maximizing the sum of the two class entropies of the object and background. Later, 
Albuquerque et al. [5] generalized the method of Kapur et al. to Tsallis’s entropy. Then, on the basis of the idea 
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suggested in Ref. [4], Yen et al. [6] optimally segmented the image by maximizing the entropic correlation. And then, 
both of methods [4, 6] were extended to Renyi’s entropy by Sahoo el al. [7]. Here, all these methods mentioned above 
are regarded as one-dimensional (1-D) entropic approaches due to the fact that their methods are based on the 1-D 
histogram. According to the references [4,7], the 1-D approaches have a drawback, which is that the same threshold 
value would be obtained for the different images with the same histogram. This is because the spatial correlation 
between the pixels is not taken into consideration.  

In order to deal with the drawback of the 1-D entropic approaches and achieve a better thresholding result, many 
algorithms have been proposed by taking the spatial correlation into account. In Ref. [8], Abutaleb found an optimal 
threshold pair by maximizing the sum of the 2-D entropies. The 2-D entropies were computed from the 2-D histogram 
which was determined by using the gray value of the pixels and the local average gray value of the pixels. Later, 
Brink [9] improved Abutaleb’s method by maximizing the smaller of two entropies of the background and object. 
And then, Sahoo et al. [10,11] proposed two thresholding methods using 2-D Renyi’s entropy and 2-D Tsallis-
Havrda-Charvat entropy one after another.  In all these methods, entropies were computed from 2-D histogram. These 
methods are regarded as 2-D approaches. It is evident that compared with the 1-D approaches, the 2-D approaches can 
give a better thresholding result. However, the computational cost, which gives a rise of exponential increment with 
the image size and the total number of gray-levels, is an obstacle for the implementation of real-time image 
processing. For this reason, many fast methods were proposed for the different 2-D approaches. Wu et al. [12] 
presented a recursive method for Abutaleb’s method [8] to reduce the computational complexity from O(L4) to O(L2), 
Gong et al. [13]  proposed a fast method for Brink’s method [9]. Recently, a fast algorithm was proposed by Tang et 
al. [14] for the 2-D Tsallis entropy thresholding method [11]. It also reduced the computational complexity to O(L2) 
from O(L4). According to our experiments and analysis, however, some of these methods could not give the same 
thresholding results as the original methods.  

In this paper, we present a fast method for 2-D Renyi’s entropy-based thresholding method of Sahoo et al. [10] by 
rewriting the criterion function for optimal threshold selection. In order to reduce the processing time for computing 
the 2-D histogram, a fast scheme is also presented. This paper is organized as follows: in section 2, the 2-D Renyi’s 
entropy algorithm is briefly reviewed. Section 3 describes the proposed method. Section 4 reports the experimental 
results on some real-world images and discussions. We give some conclusions in Section 5. 

II. 2-D RENYI’S ENTROPY-BASED THRESHOLDING 

Similarly to the 2-D maximum entropy sum method of Abutaleb [8], Sahoo et al. [10] proposed a 2-D entropic 
thresholding technique using Renyi’s entropy, and showed that Abutaleb’s method is a special case of their method 
when order-α tends to 1. Here, we will give a review of this method. 

Suppose that a digital image of size M×N has L grey levels denoted by G = {0, 1,..., L – 1}. Let f(x, y) be the grey 
level of the pixel located at the spatial location (x, y). Then the image can be represented by F = { f (x, y) | x = 
0,1,2,...,M – 1, y = 0,1,2,...,N – 1}. At each point (x, y) of F, the average gray value of local neighborhood with the 
size W×W centered at the pixel (x,y) can be calculated by 
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where Round(μ) denotes the integer part of μ. Then, using the pixel’s gray value f(x, y) and the average gray value 
g(x,y) as a pair vector (t, s), we can obtain a normalized 2-D histogram from the frequency of occurrence of the pair 
vectors as follows: 
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Figure 1.  2-D histogram 

As shown in Fig.1, the 2-D histogram can be defined as a matrix with horizontal axes for the gray value and 
vertical axes for the local average gray value. When we assume the pair (t, s) as a threshold vector, the domain of the 
histogram is divided into four quadrants. Furthermore, these four can be classified into diagonal quadrants II and IV, 
and off-diagonal quadrants I and III. Based on the difference between the gray-levels and the local average gray-
levels, the diagonal quadrants, which have small gray-level variations, are regarded as containing object and 
background, and the off-diagonal quadrants, which have large variations, are regarded as edges and noises ignored in 
calculation. According to the above assumptions, the a posteriori probability PIV(t,s) can be approximated as PIV(t,s) 
 1 - PII(t,s). Here, PII(t,s) and PIV(t,s)  are computed by 
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 Then, two normalized a posteriori probabilities distributions of the object and background classes are obtained by 
using PII(t,s) and PIV(t,s). Using these two-probability distributions Sahoo et al. [10] defined the Renyi’s entropies 
associated with the object and background classes as follows: 
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where order-α is a positive real number and not equal to 1. 

Then, following the idea suggested in Ref. [10], we can define the criterion function as 
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Finally, the optimal threshold pair (t*(α), s*(α)) can be obtained by solving the following maximization problem: 
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According to the interpretation of the above method, the computation of HO(t, s) and HB(t, s) is the major part of 
this method, and takes the computational complexity of O(L2) for each pair of (t, s). Consequently, for the L2 pairs of 
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(t, s), the computational complexity of the entire calculation is O(L4). It is conceivable that the process for finding the 
optimal threshold pair (t*, s*) from (9) is time-consuming, when compared to the 1-D entropic method. 

III. PROPOSED METHOD 

As mentioned in introduction, many recursive methods have been proposed for the different types of entropic 
thresholding methods. All these methods have the same goal, which is to get rid of the repeating calculations in the 
process of threshold selection, and the proposed method is no exception. However, the computation of a 2-D 
histogram is also a time-consuming process, especially for the large size of neighborhood as in consideration. To 
fasten the computational time, we first calculate the 2-D histogram by introducing the idea proposed in the adaptive 
thresholding method by Shafait et al. [15]. 

A. Fast scheme for calculation of 2-D histogram 

For an input image F, first we define an integral image I, in which the gray value at a location (x, y) is equal to the 
cumulative sum of the gray values of all the pixels from (0,0) to (x, y) in the original image F. Therefore, we can write 
the gray value at location (x, y) as 
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Obviously, we can easily compute the integral image of any grey scale image in a single pass [15,16]. Once the 
integral image is computed, the local average g(x, y) for any local window with the size of W×W can be simply 
calculated by using two addition and two subtraction operations instead of summing up all the pixel values within that 
local window as follows: 
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where a = W / 2. 

By using the local average g(x, y) computed from the integral image, the 2-D histogram can be computed very 
efficiently, independent of the local window size. When this formula used in (2), the computational complexity for the 
calculation of the 2-D histogram can be reduced from O(W2MN) to O(MN). 

B. Fast method for threshold selection 

In order to eliminate the unnecessary repetitions in the process of the computation for each threshold pair, the two 
entropies of HO (t, s) and HB (t, s) need to be rewritten to make a recursive formula. Equations (6) and (7) can be 
easily written as follows: 
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Then, the criterion function ),( st  can be obtained by summing up (12) and (13) as follows: 
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where  
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It is obvious that in order to obtain the total sum of 2-D Renyi’s entropies from (14) three variables GA(t, s), 
GB(t,s) and PII(t, s) are required to be computed. Here, it is easy to find that PII(t+1, s) can be expressed in terms of 
PII(t, s) and new variable Ps(t+1). 
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The new variable Ps(t+1) is also recursive as follows: 
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where additional term p(t+1, s) is already known. 

For a certain image, the variables GA(t, s) and GB(t, s) can be calculated before the searching process of the 
optimal threshold pair is carried out. To store their values, let us define an integral matrix G(t,s), like the integral 
image in the calculation of the 2-D histogram. The value of the matrix at threshold pair (t, s) can be computed by 
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In the searching process, two variables GA(t, s) and GB(t, s) can be directly obtained by 
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When the searching process of the optimal threshold value started from t = 0 and s = 0, PII(t+1,s) can be computed 
by adding p(t+1, s) to PII(t, s), while GA(t, s) and GB(t, s) can be obtained by the integral matrix G(t,s). Here, PII(t, s) is 
got from the last time computation. By this way, only one iteration is needed to get the sum total entropies at each pair 
(t,s) instead of the repeated calculations. Therefore, the computational complexity of the proposed method reduces 
from O(L4) to O(L2). When compared with the original method, evidently, the computational time is remarkably 
reduced. The algorithm of the proposed method is described in the following: 

Input:     A gray level image with L = 256 

Step.1 Get the probability function ),( jip  by computing the normalized 2-D histogram 

Step.2 Calculate the integral matrix from (19) and initialize PII(0,0) as 0 

Step.3 Begin the iteration for the gray value t from 0 

Step.4 Initialize Ps as 0 

Step.5 Begin the iteration for the local average s from 0 

Step.6 Compute GA(t, s) and GB(t, s) from (20) and (21), respectively,  and the following: 

),( stpPsPs   and PsstPstP IIII  ),(),1(  

Step.7 Compute the total sum Renyi’s entropy from (14), and save it and  the corresponding threshold pair (t, s) 
if its value is larger than the last maximum value of it 

Step.8 Go to Step.6 if s < L 
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Step.9 Go to Step.4 if t < L 

Step.10 Threshold the image using the obtained optimal threshold value 

Output:  Binary image 

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS 

In order to evaluate the performance of the proposed method, we tested a set of various real-world images and 
synthetic images. All the concerned experiments were implemented on Intel® Core™ i3 3.07 GHz with 2 GB RAM 
in Microsoft Visual Studio 2005. Four images, with gray-level L=256, were used here. They were “Kid.bmp”, 
“Flower.bmp”, “Pentagon.bmp” and “Mandrill.bmp” with the sizes of 600×610, 480×480, 1024×1025, and 512×512, 
respectively, shown in Figs.2 (a)-5(a). The first two were newly introduced and the last two were downloaded from 
[17]. All the original images have different types of gray-level histogram depicted in Figs.2 (b)-5(b). 

The experimental results by the proposed method are shown in Figs.2(c)-5(c) and their corresponding optimal 
threshold values are tabulated in TABLE I. The computational times of the 2-D Renyi’s entropy-based method and 
the proposed method for each image are listed in TABEL II. In these experiments, the size of local neighborhood is 
set as 3×3 and the order-α is chosen as 0.7 as described in Ref. [10]. It can be easily known from TABLE II that the 
proposed method is much faster than the original method. 

TABLE I.  THRESHOLD VALUES OBTAINED BY PROPOSED METHOD 

Image Kid Flower Mandrill Pentagon 

Threshold value 103 121 97 117 

 

TABLE II.  COMPARISON OF COMPUTATIONAL TIME OF TWO METHODS (SECS) 

Image Kid Flower Mandrill Pentagon 

Proposed method 0.055 0.054 0.053 0.137 

Sahoo’s method [12] 148.572 149.164 150.043 182.514 

 

 

Figure 2.  (a)Kid image, (b) histogram, (c) thresholded image. 

       
(a)    (b)    (c) 
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Figure 3.  (a) Flower image, (b) histogram, (c) thresholded image.  

 

 

Figure 4.  (a) Pentagon image, (b) histogram, (c) thresholded image.  

 

 

Figure 5.  (a) Mandrill image, (b) histogram, (c) thresholded image.  

V. CONCLUSIONS 

A fast method for 2-D Renyi’s entropy-based thresholding was presented. The experimental results showed that 
the proposed method can remarkably reduce the computational time and can yield the same threshold value as the 
original one. Compared with the original method, the fast method is much feasible for the implementation of a real-
time processing system. It is notable that the presented modifications can be applied not only to the method by Sahoo 

       
(a)    (b)    (c) 

       
(a)    (b)    (c) 

       
(a)   (b) (c) 
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[10] to give the same threshold value but also to other 2-D thresholding methods, such as Abutaleb’s [8], Brink’s [9], 
Sahoo’s [11], etc.  
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