
A PATTERN RECOGNITION LEXI
SEARCH APPROACH TO

TRAVELLING SALESMAN
PROBLEM WITH ADDITIONAL

CONSTRAINTS

Dr. K. CHENDRA SEKHAR

Lecturer, Sarvodaya Degree College, Nellore, AP, INDIA,
Email:deekshitha_balu@rediffmail.com

Dr.U.BALAKRISHNA

Professor, Sreenivasa Institute of Technology & Management studies, Chittor
Email:prasanti_balu@rediffmail.com

Dr. E. PURUSHOTHAM

Lecturer, SV Degree College, Tirupati, AP, INDIA

C.SURESH BABU
Research Schlor, SV University, Tirupati, AP, INDIA

Dr. M. SUNDARA MURTHY
Professor, SV University, Tirupati

Abstract - There are n cities and N = {1, 2,… n}. Let {1} be the headquarter city and the sub-
headquarter cities i.e.,H = {a1, a2… ah} be the subset of N. The cost array C (i, j) indicates the cost
of the travelling salesman by visiting the jth city from ith city. Suppose the salesman wants to visiting
the m (m<n) (| M | = m & M ⊂ N, M = {1} U N1 U {h} U N2) cities with the condition that the person
starts his trip schedule from a headquarter city (say1) visiting N1 cities before reaching any one of
the sub-headquarter city (say h, h Є H) and he will come back to the home city by visiting N2 cities
m=N1+N2+2. The objective of the problem is that the total cost of the trip schedule of the salesman
under the considerations should be least/minimum. The model can be expressed as a zero-one
programming problem.

 For this problem a computer program is developed for the algorithm and is tested. It is observed that it
takes less time for solving higher dimension problems also.

Keywords: TSPAC, Lexi search algorithm, Pattern recognition technique, Trip schedule, pattern, Alphabet-
table, word

I INTRODUCTION

 The travelling salesman problem (TSP) is one of the most widely studied combinatorial programming
problems in the literature of Operations Research. Many researchers have been developed different algorithms
for the solution of TSP so far. Here, we shall present an integrated overview of some of the exact and
approximate algorithms developed for the solution.

Dr. K. Chendra Sekhar et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 02 February 2012 307

 The methods considered usually can be divided into three basic parts: a starting point, a solution
generation scheme, and a termination rule. When the termination rule is such that the iteration stops if and only
if a tour is optimal, the method is exact, and when the rule is such that the iteration stops, if but not only if a tour
is optimal, the method is approximate.

 Unfortunately, there is no such analytical method which can be used satisfactorily. However, a good
number of algorithms have been proposed for the travelling salesman problem either optimally or sub-optimally
by many research workers in different times. The methods and algorithms mainly include: Integer
programming, Dynamic programming, Longest path problem approach, Job sequencing, partitioning and
decomposition, Branch and Bound algorithm, Assignment technique etc.

 One of the earliest formulations is suggested by Dantzig, Fulkerson and Johnson [3]. The difficulties
in finding an optimal tour in solving the integer program are due to the appearance of enormous number of loop
constraints. However they overcame the large number of loop constraints by beginning with only a few, and
then adding new ones only as they were needed to block sub-tours. Combinatorial arguments were used to
eliminate fractional solutions and to find an optimal tour. Finally it was demonstrated that for the problem at
hand, an ordinary linear programming could be devised whose solution gave integer valued xij's representing the
optimal tour. The constraints that rule out some fractional solutions but no integer solutions were forerunners to
Gomory's [4] "Cutting plane” constraint for solving any integer linear program. Dynamic programming
algorithms have been developed by Bellman [2], Gonzales (1962) and Held and Karp [5].

Several researchers [1, 6, 7 and 8] have implemented Lexi Search approach for the standard TSP, with mixed
results. The Lexi Search approach is found new best solutions for some well-studied benchmark problems.

II MATHEMATICAL FORMULATION

Mji
m

i

m

j
jiXjiDZMin ∈

=

=

= ,,
1 1

),(),(

………………... (3.2.1)

 Subject to the constraints:

1
}1{

),(1

1 1

+=
∪∈


∪∈

n
n

Ni

n

HNj
jiX

………………... (3.2.2)

1
}{ }1{

),(2

2 2

+=
∪∈


∪∈

n
n

Nhi

n

Nj
jiX

………………... (3.2.3)

m
Mi Mj

jiX =
∈


∈

),(

………………... (3.2.4)

10 or
ij

X =

………………... (3.2.5)

The constraint (3.2.1) represents that the total distance is to be minimum while the travelling salesman
touring the m (<n) cities under the consideration.

Constraint (3.2.2) and (3.2.3) indicates that the salesman starts his touring from the home city, visiting
n1-cities before reaching to any one of the sub-headquarter city and then visiting the n2-cities before reaching to
headquarter city. Constraint (3.2.4) indicates that the salesman should visit only m- distinct cities in his tour.
Finally the binary variable constraint (3.2.5) Xij=1 represents that the salesman is visited the jth city from ith city,
otherwise Xij=0. X also represents a tour for the salesman with m cities. i.e in this tour the salesman visits each
of the cities only once.

Dr. K. Chendra Sekhar et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 02 February 2012 308

Here we considered a variant of well-known Travelling Salesman Problem in which a subset with m
(<n) cities of n cities has to be traveled by the salesman, i.e. the number of cities to be travelled by a salesman is
m. The problem is to find a minimum cost tour by visiting m cities, with given number of cities with the
conditions. More specifically, the set of n cities are divided into r sets or clusters such
that HNNN ∪∪∪= 21}1{ , here all the subsets are mutually disjoint.

For availing the simplicity in the combinatorial structure of the travelling salesman problem with
additional constraints (TSPAC) problem, we developed a Lexi – Search algorithm using Pattern Recognition
Technique, which gives an exact optimal solution. The TSPAC problem is illustrated with a suitable numerical
example. In particular for combinatorial problems where one has to make the selection of various things, the
Lexi – Search approach is more efficient.

A Numerical illustration:

For illustrating the concepts and definitions involved in the problem we have considered N={1,2 ,
….,8}, H={4,6}, |N|=n=8, |N1|=n1=2, |N2|=n2=3 and |M|=m=7. The cost matrix),(jiC of TSPAC is given as
follows.

Table-1

C(i, j) =

 1 2 3 4 5 6 7 8

1 ∞ 10 15 ∞ 1 20 9 ∞

2 52 ∞ 0 18 22 ∞ 19 11

3 8 31 ∞ 14 ∞ 17 49 21

4 16 ∞ 4 ∞ 23 ∞ 6 ∞

5 2 42 19 ∞ ∞ 26 ∞ 5

6 ∞ 29 34 ∞ 57 ∞ 6 43

7 38 3 33 15 ∞ 13 ∞ 10

8 ∞ 31 ∞ 12 16 7 37 ∞

In the above table the value infinity ‘∞’ indicates the non-connectivity of the cities directly. In this
numerical example we are given eight cities and the salesman wants to visiting 7 cities only with the condition
that the trip schedule starts from city 1 (headquarter city), visiting 2 before reaching the sub-headquarter city
(either 4 or 6) and he will written to home city by visiting 3 cities.

The entire),(jiC 's are taken as non–negative integers but it can be easily seen that this is not a
necessary condition and the cost can as well as real quantities. For example)6,3(C = 17, represents the bulk
cost of the travelling salesman by visiting the sixth city from third city and ∞=)4,5(C indicates that the
salesman may not visit the city 4 from 5 directly.

An indicator matrix X = [X (i, j) / X (i, j)= 0 or 1] in which X (i, j)=1 indicates that the jth city is
visited from ith city, otherwise X (i, j)=0. X is called a solution. The indicator matrix X with 0 or 1 is given in
the following table.

Dr. K. Chendra Sekhar et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 02 February 2012 309

Table – 2

X (i, j) =

0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

The indicator matrix X is represented in Table – 2 is feasible. The corresponding ordered pairs of X are
indicated as (1, 3), (2, 1), (3, 5), (4, 8), (5, 4),(7,2),(8, 7). The representation of the solution X (3, 5) =1 to the
problem is that the salesman has visited 5th city from 3rd city. For the above example of the feasible allocation
set is represented below.

Fig. 2 Feasible Trip schedule of TSPAC

III CONCEPTS AND DEFINITIONS

A Definition of a Pattern:

 An indicator two dimensional array X which is associated with the selection of items from different
clusters is called a “pattern”. A pattern is said to be feasible if X has a feasible solution. The pattern represented
in the above Table-2 is a feasible solution.

 Now the value of the pattern X is defined as follows.


=


=

=
n

i

n

j
ij

X
ij

CXV
1 1

)(

 The value V(X) gives the total cost of the TSPAC of the solution represented by X. Thus the value of
the feasible pattern gives the total cost. In the algorithm, which is developed in the sequel, a search is made for a
feasible pattern with the least value. Each pattern of the solution X is represented by the set of ordered pairs.

B Definition of an Alphabet – Table and a word:

There is M= n x n ordered pairs in the two dimensional array X. These are arranged in ascending order of their
corresponding costs and are indexed from 1 to M (Sundara Murthy – (1979)). Let SN= {1, 2… M} be the set of
M indices. D, CD is the corresponding costs and cumulative sums of the elements of D. The arrays SN, D, CD,

1

3 5

2

7 4

6
8

Dr. K. Chendra Sekhar et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 02 February 2012 310

R, and C are indicate the serial number, cost of the TSPAC, cumulative cost, row and column indices
respectively. For the numerical example given in Table – 3, if r ε SN then [R(r), C(r)] be the cost in their
position, D(r)= d[R(r), C(r)] and CD(r)=ΣD(i), i= 1, 2, ...…, r.

Table -- 3: ALPPHABET TABLE (AT)

SN D CD R C

1 0 0 2 3

2 1 1 1 5

3 2 3 5 1

4 3 6 7 2

5 4 10 4 3

6 5 15 5 8

7 6 21 4 7

8 6 27 6 7

9 7 34 8 6

10 8 42 3 1

11 9 51 1 7

12 10 61 1 2

13 10 71 7 8

14 11 82 2 8

15 12 94 8 4

16 13 107 7 6

17 14 121 3 4

18 15 136 1 3

19 15 151 7 4

20 16 167 4 1

Dr. K. Chendra Sekhar et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 02 February 2012 311

21 16 183 8 5

22 17 200 3 6

23 18 218 2 4

24 19 237 2 7

25 19 256 5 3

26 20 276 1 6

27 21 297 3 8

28 22 319 2 5

29 23 342 4 5

30 26 368 5 6

31 29 397 6 2

32 31 428 3 2

33 31 459 8 2

34 33 492 7 3

35 34 526 6 3

36 37 563 8 7

37 38 601 7 1

38 42 643 5 2

39 43 686 6 8

40 49 735 3 7

41 52 787 2 1

42 57 844 6 5

43 ∞ ∞ 1 1

- - - - -

Dr. K. Chendra Sekhar et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 02 February 2012 312

64 ∞ ∞ 8 8

Let Lk = {α1, α2 ……,αk}, αi ε SN be an ordered sequence of k indices from SN. The pattern represented by the
ordered pairs whose indices are given by Lk is independent of the order of αi in the sequence, the indices are
arranged in the increasing order such that αi ≤ αi+1, i =1, 2, …., n–1. The ordered sequence Lk is called a
‘sensible word’ if αi < αi +1 for i=1, 2, …., k–1 otherwise we call it as ‘Non–sensible word’. A word Lk (k <
m) is said to be partial feasible word if the pattern X represented by Lk is feasible, if k = m the word represents
a solution. A leader Lk is said to be feasible if the block of words defined by it contains atleast one feasible
word.

Now the value of the word Lk is defined as follows.

 V (Lk) = V (Lk–1) + D (αk) with V (L0) = 0

 A lower bound LB (Lk) for the values of the block of words represented by Lk can be defined as
follows.

 LB (Lk) = V (Lk) + CD (αk + m – k) – CD (αk)

 Consider the partial word L4 = (1, 4, 8, 12)

 V (L4) = 00 + 03 + 06 + 10 = 19

 LB (L4) = V (L4) + CD (α4 + 7 –4) – CD (α4), here α4 =12.

 = V (L4) + CD (15) – CD (12)

 = 19 + 94 – 61 = 52

C Feasibility criterion of a partial word:

 A recursive algorithm is developed for checking the feasibility of a partial word. Lk+1 = (α1, α2
……,αk, αk+1) given that Lk is a feasible partial word. We will introduce some more notations which will be
useful in the sequel.

 IR be an array where IR (i) =1, i ε n represents that the salesman is visiting the ith city from some
other city; otherwise zero.

IC be an array where IC (j) = 1, jε n indicates that the salesman is visiting the jth city from some
city; otherwise zero.

 L be an array where L (i) is the letter in the ith position of a partial word

SW be an array where SW (i)=j represents that the salesman is visiting the jth city from city i,
Sw(i)= 0 indicates that the salesman is not visiting any city from city i.

SWI be an array where SWI (i) be the inverse of SW

Then for a given partial word Lk = (α1, α2 ……,αk), the values of the arrays IR, IC, SW, SWI and L are as
follows.

 IR(R (αi)) =1, i=1, 2... k, otherwise IR (j)=0

 IC(C (αi)) =1, i = 1, 2 …k, otherwise IC (j) =0

 SW(R (αi)) = C (αi)

 SWI(C (αi) = R (αi)

 L (i) = αi, i=1, 2… k, otherwise L(j) =0.

 The recursive algorithm for checking the feasibility of a partial word Lk is given as follows: In the
algorithm first we equate IX=0. At the end If IX=1 then the partial word is feasible, otherwise it is infeasible.
For this algorithm we have RA=R (αk), CA=C (αk).

Algorithm 1: (Checking the Feasibility)

Dr. K. Chendra Sekhar et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 02 February 2012 313

 Step 0: IX = 0 goto 1

 Step 1: IS (IR (RA)) = 1) If Yes goto 10

 If No goto2

 Step 2: IS (IC (CA)) = 1) If Yes goto 10

 If No goto 2a

 Step2a: IS (ISH=1) If yes goto 10, If no goto 3

 Step 3: W=IR(RA) goto 3a

 Step3a: Is W=IC(CA) If yes goto 9a, If no goto3b

 Step 3b: Is SW (W) =0 If Yes goto 4, Else goto 3c

 Step 3c: W=SW(W) goto 3a

 Step 4: U=IC(CA) goto 4a

 Step 4a: Is U=IR(RA) If Yes goto 9a, Else goto 4b

 Step 4b: Is SWI(U)=0 If Yes goto 5 ,Else goto 4c

 Step 4c: U=SWI(U) goto 4b

 Step 5: Is W=1 If Yes goto 5a, Else goto 5b

 Step 5a: IDX(SW(W))=1 goto 7

 Step5b: Is U=h If Yes goto 5c, Else goto 6

 Step 5c: IDX[SWI(U)]=1 goto 7

 Step 6: Is W=h If Yes goto 6a, Else goto 6b

 Step 6a: IDX(SW(W))=2 goto 8

 Step 6b: Is U=1 If Yes goto 6c, Else goto 6d

 Step 6c: IDX(SWI(U))=2 goto 8

 Step 6d: IDX(W)=3, IDX(SW(W))=3 goto 8b

 Step 7: CNT1=CNT1+1 goto 7a

 Step 7a: Is(CNT1<=n1) If Yes goto , Else goto 10

 Step 8: CNT2=CNT2+1 goto 7a

 Step 8a: Is(CNT2<=n2) If Yes goto , Else goto 10

Dr. K. Chendra Sekhar et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 02 February 2012 314

 Step 8b: CNT=CNT1+CNT2+1 goto 8c

 Step 8c: Is (CNT<=m) If Yes goto 9, Else goto 10

 Step 9: IX = 1

 Step9a: Is k=m If yes goto 9, Else goto 10

 Step 10: END.

 This recursive algorithm is used in Lexi Search algorithm to check the feasibility of a partial
word. We start the algorithm with a large value say ‘∞’ as a trial value VT. If the value of a feasible word is
known, we can as well start with that value as VT. During the search the value of VT is improved. At the end of
the search the current value of VT gives the optimal feasible word. We start the partial word L1 = (a1) = (1). A
partial word Lk is constructed as Lk =Lk–1 * (ak) where * indicates concatenation i.e. chain formation. We will
calculate the values of V (Lk) and LB (Lk) simultaneously. Then two cases arise one for branching and the other
for continuing the search.

1. LB (Lk) < VT. Then we check whether Lk is feasible or not. If it is feasible we proceed to consider a
partial word of order (k+1), which represents a sub block of the block of words represented by Lk. If Lk
is not feasible then consider the next partial word of order by taking another letter which succeeds ak in
the kth position. If all the words of order ‘k’ are exhausted then we consider the next partial word of
order (k–1).

2. LB (Lk) ≥ VT. In this case we reject the partial word Lk. We reject the block of word with Lk as leader
as not having optimum feasible solution and also reject all partial words of order ‘k’ that succeeds Lk.

 Now we are in a position to develop a Lexi–Search algorithm to find an optimal feasible word.

IV ALGORITHM -2(LEXI SEARCH ALGORITHM)

 Step 0: (Initialization)

The arrays SN, D, CD, R, C and the values N, n1, n2, m, are made available. IR, IC,
L, SW, SWI, V and LB are initialized to zero. The values I=1, J=0, VT= ∞, H= N * N
– m+k.

 Step 1: J=J+1

 IS (J>H) If Yes goto 12

 If No goto 2

 Step 2: L (I) =J

 IS (I=1) If Yes V (I) =D (J) goto 4

 If No goto 3

 Step 3: V (I) =V (I –1) + D (J) goto 4

 Step 4: LB (I) =V (I) +CD (J+M–I)–CD (J) goto 5

 Step 5: IS (LB (I) ≥VT) If Yes goto 12
 If No goto 6

Dr. K. Chendra Sekhar et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 02 February 2012 315

 Step 6: RA = R (J) goto 7

 CA = C (J)

 SW(W)=0, SWI(U)=0,CNT=0, CNT1=0,CNT2=0

 Step 7: Check the feasibility of L (using algorithm 1)

 IS (IX=0) If Yes goto 8

 If No goto 9

 Step 8: IS (J=H x H) If Yes goto 13

 If No goto 1

 Step 9: IS (I=M) If Yes goto 10

 If No goto 11

 Step 10: L (I) =J

 L (I) is full length word and is feasible

 VT=V (I), record L (I), VT. goto 14

 Step 11: IR (RA)=1

 IC(CA)=1

 SW(W)=U

 SWI(U)=W

 I=I+1 goto 1

 Step 12: IS (I=1) If Yes goto 16
 If No goto 13

 Step 13: I=I –1 goto 14
 Step 14: J=L(I)

 RA=R(J), CA=C(J)

 IR(RA)=0, IC(CA)=0

 SW(W)=0, SWI(U)=0 goto 1

 Step 16: stop and end (the current value of VT, when the search terminates it gives the value of
an optimal solution).

 The current value of VT at the end of the search is the value of the optimal word. At the end if
VT= ∞, it indicates that there is no feasible assignment.

Dr. K. Chendra Sekhar et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 02 February 2012 316

Search Table:

 The working details of getting an optimal word using the above algorithm for the illustrative
numerical example is given in the following Table-4. The columns named (1), (2), (3), (4), (5), (6) and (7) gives
the letters in the first, second, third, fourth, fifth, sixth and seventh places of a word respectively, the
corresponding V(I) and LB(I) are indicated in the next two columns. The column R, C gives the row and column
indices of the letter. The last column gives the remarks regarding the acceptability/rejectance of the partial
words. In the following table A, R indicates Acceptance and Rejectance of a partial word.

Table –4: SEARCH TABLE (ST)

SN 1 2 3 4 5 6 7 V LB(I) R C REMARKS

1 01 0 21 2 3 A

2 02 1 21 1 5 A

3 03 3 21 5 1 R(semi cycle)

4 04 4 25 7 2 A

5 05 8 25 4 3* R

6 06 9 28 5 8 A

7 07 15 28 4 7 A

8 08 21 28 6 7* R

9 09 22 30 8 6* R

10 10 23 32 3 1 A

11 11 32 32 1* 7 R

12 12 33 33 1* 2 R

13 13 33 33 7* 8 R

14 14 34 34 2* 8 R

15 15 35 35=VT 8 4 A(complete)

16 11 24 34 1* 7 R

17 12 25 35=VT 1* 2 R

18 08 15 30 6 7 A

19 09 22 30 8 6 A

20 10 30 30=VT* 3 1 A(Complete)

21 10 23 32>VT R

22 09 16 33>VT R

23 07 10 31>VT R

24 05 05 29 4 3* R

25 06 06 33>VT R

26 03 02 26 5 1 A

27 04 05 26 7 2 R(>m)

28 05 06 30=VT R

29 04 03 31>VT R

30 02 01 27 1 5 A

Dr. K. Chendra Sekhar et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 02 February 2012 317

31 03 03 27 5 1 R(SC)

32 04 04 32>VT R

33 03 02 33>VT R

At the end of the search the current value of VT is 30 and it is the value of the optimal feasible word L7
= (1, 2, 4, 6, 8, 9, 10). It is given in the 20th row of the search table. The array IR, IC, SW, SWI, L and JN takes
the values represented in the Table-5 given below. The Pattern represented by the above optimal feasible word
is represented in the following table-6.

TABLE – 5

 1 2 3 4 5 6 7 8

IR 1 1 1 - 1 1 1 1

IC 1 1 1 - 1 1 1 1

SW 5 3 1 - 8 7 2 6

SWI 3 7 2 - 1 8 6 5

L 1 2 4 6 8 9 10

IDX - 2 2 - 1 - 2 1

TABLE-6

X (i, j) =

0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0

The tour represented by the above pattern is [(2, 3), (1, 5), (7, 2), (5, 8), (6, 7), (8, 6), (3, 1)], where the
salesman starts the tour from the headquarter city {1}, visits the n1 -{5, 8}-cities before reaching one of the sub-
headquarter city {6} and then returns the home city by visiting the n2-{7, 2, 3}-cities. In his tour the optimal
solution for the considerable numerical example is 30. It also can be represented by 1 → 5 → 8 → 6 → 7
→ 2 → 3 → 1. The diagrammatic representation of this arrangement can also see in the following figure.

Fig. 2 Optimal Trip schedule of TSPAC

1

5 8

3

2 6

4
7

Dr. K. Chendra Sekhar et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 02 February 2012 318

Experimental Results:

 A Computer program for the proposed Lexi – Search Algorithm is written in C language and
is tested. The experiments are carried out on a COMPAQ (dx2280 MT) system by generating the distance
values (Dij) uniformly between [1, 1000]. We tried a set of problems for different sizes. Random numbers
are used to construct the Time matrix. The results are tabulated in Table-7. For each instance, five data sets are
tested. It is seen that the time required for the search of the optimal solution is fairly less. The following table
shows that the CPU runs time taken by the proposed LSA to find the optimal solution of various hard instances.

Table: 7

SN

N

N1

N2

SH

NPT

CPU Run Time in seconds

with the proposed LSA

Total time

Avg. (AT+ ST)
Avg. AT Avg. ST

1 6 2 2 1 6 0.0000 0.0000 0.0000

2 8 2 3 2 6 0.0000 0.0000 0.0000

3 10 3 4 2 6 0.0549 0.0000 0.0549

4 12 4 5 2 6 0.1098 0.0000 0.1098

5 15 5 6 3 6 0.2197 0.2747 0.4944

6 18 10 5 2 6 0.2747 0.2197 0.4944

7 20 6 10 3 6 0.3846 0.1648 0.5494

8 22 8 10 3 6 0.4945 0.3296 0.8241

9 25 12 10 2 6 0.6043 3.6264 4.2307

10 30 10 10 9 6 0.8241 5.1648 5.9889

** The time is represented in seconds. In the table-7 SN = serial number, N = number of cities, N1 =
number of cities to be visited before sub headquarter, N2= number of cities to be visited after sub headquarter,
SH= number of cities to in sub headquarter set, NPT= number of problems tried, AT = CPU run time for
printing the alphabet table, ST=CPU run time for obtaining the optimal solution of the search table.

Conclusion:

In this chapter, we have developed a Lexi-search algorithm based on pattern recognition technique to
solve the TSPAC. The model is then formulated as a zero-one programming problem. A Lexi-Search Algorithm
based on Pattern Recognition Technique is developed for getting an optimal solution. A suitable numerical
example is quoted for better understood the concepts and the steps involved in the algorithm. We programmed
the proposed algorithm using C-language. The computational details are reported. As an observation the CPU
run time is fairly less for higher dimensional problem, it gives an optimal solution. Moreover, Lexi-search
algorithms are proved to be more efficient in many combinatorial problems. Many researchers have used
different types of alphabet tables and have shown that their Lexi-search algorithms are efficient and are faster.
Srinivas -1989 proved that lexi-search with pre-processing is very effective in solving ASP (assignment
problem) and Traveling salesman problem. Based on this experience we strongly feel that this algorithm can
perform larger size problems and more over it is very efficient.

Dr. K. Chendra Sekhar et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 02 February 2012 319

V ACKNOWLEDGEMENTS

 The first author expresses my deep sense of reverence and gratitude to the research supervisor Prof. M.
Sundara Murthy, Department of Mathematics, S.V.U. College of Engineering, Tirupati for suggesting this
problem for investigation. It is solely due to his immense interest, competence and exceptional guidance, critical
analysis, transcendent and concrete suggestions enlightened discussions, which cumulatively are responsible for
the successful execution of this work.

VI REFERENCES

[1] Bhavani, V. and Sundara Murthy, M.(2005):Time-Dependent Traveling Salesman Problem OPSEARCH 42, PP. 199-227.
[2] Bellman, R and Dreyfus, S (1962) : Applied Dynamic programming - Princeton University press, Princeton, New jersey
[3] Dantzig GB. (1951) : Application of the simplex method to a transportation problem. Activity analysis of production and allocation.

Cowles Commission Monograph 13.1951.
[4] Gomory, R.E (1963) : "An algorithm for Integer Solution to Linear Programs"Recent Advances in Mathematics rogramming269-

302Mc.GrawHill,New York
[5] Held, M. and R.H. Karp (1962) : The TSP and Minimal Spanning Tree" Opns.Res., Vol. 18, No. 6, p 1138
[6] Pandit, S.N.N. and Srinivas, K(1962): A Lexisearch algorithm for traveling Salesman problem, IEEE, 2521-2527.
[7] Pandit, S.N.N . and Rajbhougshi(1976):Restricted TSP through n sets of nodes. Paper presented at the 9th Annual Convention of ORSI,

Calcutta
[8] Sundara Murthy, M(1979):Combinatorial Programming - A Pattern Recognition Approach. PhD, Thesis REC, Warangal, India

Dr. K. Chendra Sekhar et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 02 February 2012 320

	A PATTERN RECOGNITION LEXISEARCH APPROACH TOTRAVELLING SALESMANPROBLEM WITH ADDITIONALCONSTRAINTS
	Abstract
	Keywords
	I INTRODUCTION
	II MATHEMATICAL FORMULATION
	III CONCEPTS AND DEFINITIONS
	IV ALGORITHM -2(LEXI SEARCH ALGORITHM)
	V ACKNOWLEDGEMENTS
	VI REFERENCES

