

A Bit Level Session Based Encryption
Technique to Enhance Information

Security

Manas Paul
Asst. Prof., Dept. of Computer Application, JIS College of Engineering, Kalyani, West Bengal, India,

e-mail:manaspaul@rediffmail.com

Jyotsna Kumar Mandal
Prof., Dept. of C.S.E., Kalyani University, Kalyani, West Bengal, India,

e-mail: jkmandal@rediffmail.com

Abstract— In this paper, a session based symmetric key cryptographic system has been proposed and it is termed as
Bit Shuffle Technique (BST). This proposed technique is very fast, suitable and secure for encryption of large files.
BST consider the plain text (i.e. the input file) as binary string with finite no. of bits. The input binary string is
broken down into manageable-sized blocks to fit row-wise from left to right into a square matrix of suitable order.
Bits are taken diagonally upward from the square matrix to form the encrypted binary string and from this string
cipher text is formed. Combination of values of block length and no. of blocks of a session generates the session key
for BST. For decryption the cipher text is considered as binary string. Using the session key information, this binary
string is broken down into manageable-sized blocks to fit diagonally upward from left to right into a square matrix of
suitable order. Bits are taken row-wise from left to right from the square matrix to form the decrypted binary string
and from this string plain text is formed. A comparison of BST with existing and industrially accepted TDES and
AES has been done.

Keywords- Bit Shuffle Technique (BST), Cryptography, Symmetric Key, Plain text, Cipher text, Session
Based Key, TDES, AES.

I. INTRODUCTION
Number of users who are using the internet in their daily life is increasing day by day. Communication through
Internet becomes very popular because it is faster and easier. But it is important to secure our information from
unauthorized users. Hence network security is the most focused domain for researchers and continuous research
works are going on for the development of network security [1, 2, 3]. Various encryption techniques are
available and all of them have their own merits and demerits.

In this paper a new cryptographic technique based on symmetric key cryptography has been proposed
where the plain text is considered as a stream of binary bits. After shuffling the bit positions the cipher text is
generated. A session key is generated during the encryption process. The plain text can be regenerated from the
cipher text using the session key.

Section 2 of this paper contains the proposed scheme with block diagrams. Section 3 deals with the
algorithms for encryption, decryption and key generation. Section 4 explains the proposed technique with an
example. Section 5 shows the results and analysis on different files and the comparison of the proposed
technique with TDES [4], AES [5]. Conclusions are drawn in section 6.

II. THE SCHEME

The BST algorithm consists of three major portions:

• Key Generation
• Encryption Mechanism
• Decryption Mechanism

• Key Generation:

Plain
Text

Key
Generator

Key (K)

Manas Paul et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 02 February 2012 321

• Encryption Mechanism:

• Decryption Mechanism:

III. PROPOSED ALGORITHMS

Encryption Algorithm:

Step 1. The input file i.e. the plain text is considered as a stream of finite no. of binary bits.

Step 2. This binary string breaks into manageable-sized blocks with different lengths like 4 / 16 / 64 / 144 / 256
/ 400 / ……….. [(4n)2 for n = 1/2, 1, 2, 3, 4, 5, …….] as follows:
 First n1 no. of bits is considered as x1 no. of blocks with block length y1 where n1 = x1 * y1. Next n2 no.
of bits is considered as x2 no. of blocks with block length y2 where n2 = x2 * y2 and so on. Finally nm no. of bits
is considered as xm no. of blocks with block length ym where nm = xm * ym with ym = 4. So no padding is
required.

Step 3. Square matrix of order √y is generated for each block of length y. The binary bits of the block from
MSB to LSB fit row-wise from left to right into this square matrix.

Step 4. The encrypted binary string is generated after taking the bits diagonally upwards from left to right from
that square matrix.

Step 5. The cipher text is formed after converting the encrypted binary string into characters.

Decryption Algorithm:

Step 1. The encrypted file i.e. the cipher text is considered as a binary stream.

Step 2. After processing the session key information, this binary string breaks into manageable-sized blocks.

Step 3. Square matrix of order √y is generated for each block of length y. The binary bits of the block from
MSB to LSB fit diagonally upwards from left to right into this square matrix.
Step 4. The decrypted binary string is generated after taking the bits row-wise from left to right from the square
matrix.

Step 5. The plain text is reformed after converting the decrypted binary string into characters.

Generation of Session Key:

During the encryption process a session key is generated for one time use in a session of transmission to ensure
much more security to BST. This technique divides the input binary bit stream dynamically into 16 portions
(say), each portion is divided again into x no. of blocks with block length y bits. The final (i.e. 16th) portion is

Cipher
Text

Key (K)

Plain
Text

Plain
Text

Key (K)

Cipher
Text

Manas Paul et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 02 February 2012 322

divided into x16 no. of block with block length 4 bits (i.e. y16 = 4). So no padding is required. Total length of the
input binary string (in bits) is

x1 * y1 + x2 * y2 + …….. + x16 * y16.

The values of x and y are generated dynamically. The session key contains the sixteen set of values of x and y
respectively. The length of the session key is remains same if the no. of portions is fixed and the length will vary
if the no. of portions varies session to session.

IV. EXAMPLE

To illustrate the BST, let us consider a two letter’s word “Go”. The ASCII values of “G” and “o” are 71
(01000111) and 111 (01101111) respectively. Corresponding binary bit representation of that word is
“0100011101101111”. Consider a block with length 16 bits as

0 1 0 0 0 1 1 1 0 1 1 0 1 1 1 1

Now these bits from MSB to LSB fit row-wise from left to right into this square matrix of order 4 as follows:

0 1 0 0

0 1 1 1

0 1 1 0

1 1 1 1

The encrypted binary string is formed after taking the bits diagonally upwards from left to right from above the
square matrix as follows:

0 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1

The equivalent decimal no. of two 8 bit binary numbers 00101011 and 10111101 are 43 and 189 respectively.
43 and 189 are ASCII values of the characters “+” and “µ” respectively. So the word “Go” is encrypted as ”+µ”.
For decryption, exactly reverse steps of the above are followed.

V. RESULTS AND ANALYSIS

In this section the comparative study between Triple-DES(168bits), AES(128bits) and BST has been done on 20
files of 8 different file types with different file sizes varying from 330 bytes to 62657918 bytes (59.7 MB).
Analysis includes comparison of encryption time, decryption time, Character frequencies, Chi-square values,
Avalanche and Strict Avalanche effects, Bit Independence. All implementation has been done using the
computer language JAVA.

A. Analysis of Encryption and Decryption Time

Table I & Table II shows the encryption time and decryption time for Triple-DES (168bits), AES (128bits) and
proposed BST against the different files. Proposed BST takes quite less time to encrypt/decrypt than Triple-DES
and little bit more time than AES.
Fig. 1(a) and Fig. 1(b) show the graphical representation of encryption time and decryption time against file size
in logarithmic scale for the above three algorithms.

Manas Paul et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 02 February 2012 323

Table I
File size v/s encryption time (for Triple-DES, AES and BST algorithms)

Sl.
No.

Source File Size
(in bytes)

File type
Encryption Time (in seconds)

TDES AES BST

1 330 dll 0.001 0.001 0.004
2 528 txt 0.001 0.001 0.007
3 96317 txt 0.034 0.004 0.018
4 233071 rar 0.082 0.011 0.059
5 354304 exe 0.123 0.017 0.077
6 536387 zip 0.186 0.023 0.126
7 657408 doc 0.220 0.031 0.226
8 682496 dll 0.248 0.031 0.063
9 860713 pdf 0.289 0.038 0.108
10 988216 exe 0.331 0.042 0.147
11 1395473 txt 0.476 0.059 0.164
12 4472320 doc 1.663 0.192 0.362
13 7820026 avi 2.626 0.334 0.638
14 9227808 zip 3.096 0.397 0.478
15 11580416 dll 4.393 0.544 0.782
16 17486968 exe 5.906 0.743 1.790
17 20951837 rar 7.334 0.937 1.499
18 32683952 pdf 10.971 1.350 1.973
19 44814336 exe 15.091 1.914 2.825
20 62657918 avi 21.133 2.689 5.577

Table II
File size v/s decryption time(for Triple-DES, AES and BST algorithms)

Sl. No.
Source File Size

(in bytes)
File type

Decryption Time (in seconds)

TDES AES BST

1 330 Dll 0.001 0.001 0.002
2 528 Txt 0.001 0.001 0.007
3 96317 Txt 0.035 0.008 0.030
4 233071 Rar 0.087 0.017 0.062
5 354304 Exe 0.128 0.025 0.075
6 536387 Zip 0.202 0.038 0.063
7 657408 Doc 0.235 0.045 0.216
8 682496 Dll 0.266 0.046 0.143
9 860713 Pdf 0.307 0.060 0.097
10 988216 Exe 0.356 0.070 0.143
11 1395473 Txt 0.530 0.098 0.328
12 4472320 Doc 1.663 0.349 0.530
13 7820026 Avi 2.832 0.557 0.653
14 9227808 Zip 3.377 0.656 0.493
15 11580416 Dll 4.652 0.868 0.958
16 17486968 Exe 6.289 1.220 1.738
17 20951837 Rar 8.052 1.431 1.983
18 32683952 Pdf 11.811 2.274 3.643
19 44814336 Exe 16.253 3.108 3.213
20 62657918 Avi 22.882 4.927 5.830

Manas Paul et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 02 February 2012 324

Fig. 1(a). Encryption Time (sec) vs. File Size (bytes) in logarithmic scale

Fig. 1(b). Decryption Time (sec) vs. File Size (bytes) in logarithmic scale

B. Analysis of Character Frequencies

Analysis of Character frequencies for text file has been performed for T-DES, AES and proposed BST. Fig.2(a)
shows the distribution of characters in the plain text. Fig.2(b), 2(c), 2(d) show the characters distribution in
cipher text for T-DES, AES and proposed BST. All three algorithms show a distributed spectrum of characters.
From the above observation it may be conclude that the proposed BST obtain very good security.

Fig. 2(a): Distribution of characters in source file

Manas Paul et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 02 February 2012 325

Fig. 2(b): Distribution of characters in TDES

Fig. 2(c): Distribution of characters in AES

Fig. 2(d): Distribution of characters in BST

C. Tests for Non-homogeneity

The test for goodness of fit (Pearson χ2) has been performed between the source files and the encrypted files to
measure the degree no heterogeneity. The large Chi-Square values (compared with tabulated values) may
confirm the high degree of non-homogeneity between the source files and the encrypted files. Table III shows
the Chi-Square values for Triple-DES(168bits), AES(128bits) and proposed BST against the different files.

From Table III it may conclude that the Chi-Square values of BST are at par with T-DES and AES. Fig. 3 shows
the graphical representation of Chi-Square values on logarithmic scale for T-DES, AES & BST.

Manas Paul et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 02 February 2012 326

Table III
Chi-Square values for Triple-DES, AES and BST algorithms

Sl.
No.

Source File
Size (bytes)

File type

Chi-Square Values

TDES AES BST

1 330 dll 922 959 897
2 528 txt 1889 1897 1944
3 96317 txt 23492528 23865067 20234952
4 233071 rar 997 915 978
5 354304 exe 353169 228027 177261
6 536387 zip 3279 3510 3369
7 657408 doc 90750 88706 88250
8 682496 dll 29296 28440 26726
9 860713 pdf 59797 60661 56302
10 988216 exe 240186 245090 257941
11 1395473 txt 5833237390 5545862604 6791970526
12 4472320 doc 102678 102581 100173
13 7820026 avi 1869638 1326136 810169
14 9227808 zip 37593 37424 36829
15 11580416 dll 28811486 17081530 13800582
16 17486968 exe 8689664 8463203 8019008
17 20951837 rar 25615 24785 26570
18 32683952 pdf 13896909 13893011 15344561
19 44814336 exe 97756312 81405043 501345414
20 62657918 avi 3570872 3571648 4907916

Fig.3 Chi-Square values for TDES, AES & BST in logarithmic scale.

D. Studies on Avalanche, Strict Avalanche Effects and Bit Independence Criterion:

Avalanche & Strict Avalanche effects and Bit Independence criterion has been measured using the statistical
analysis of data. The bit changes among encrypted bytes for a single bit change in the original message sequence
for the entire or a relative large number of bytes. The Standard Deviation from the expected values is calculated.
The ratio of the calculated standard deviation with the expected value has been subtracted from 1.0 to get the
Avalanche and Strict Avalanche effect in a 0.0 – 1.0 scale. The value closer to 1.0 indicates the better Avalanche
& Strict Avalanche effect and the better Bit Independence criterion. Table IV, Table V & Table VI show the
Avalanche effects, the Strict Avalanche effects & the Bit Independence criterion respectively. Fig.4(a), Fig.4(b)
& Fig4(c) show the above graphically. In Fig.4(a) & Fig.4(b), the y-axis which represent the Avalanche effects
& the Strict Avalanche effects respectively has been scaled from 0.9 – 1.0 for better visual interpretation.

Manas Paul et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 02 February 2012 327

Table IV
Avalanche effects for T-DES, AES and BST algorithms

Sl.
No.

Source
File Size
(in bytes)

File
type

Avalanche achieved

TDES AES BST

1 330 dll 0.99591 0.98904 0.96730

2 528 txt 0.99773 0.99852 0.97957

3 96317 txt 0.99996 0.99997 0.99281

4 233071 rar 0.99994 0.99997 0.99757

5 354304 exe 0.99996 0.99999 0.99399

6 536387 zip 0.99996 0.99994 0.99870

7 657408 doc 0.99996 0.99999 0.99637

8 682496 dll 0.99998 1.00000 0.99484

9 860713 pdf 0.99996 0.99997 0.99684

10 988216 exe 1.00000 0.99998 0.98983

11 1395473 txt 1.00000 1.00000 0.99651

12 4472320 doc 0.99999 0.99997 0.99298

13 7820026 avi 1.00000 0.99999 0.99754

14 9227808 zip 1.00000 1.00000 1.00000
15 11580416 dll 1.00000 0.99999 0.99859

16 17486968 exe 1.00000 0.99999 0.99812

17 20951837 rar 1.00000 1.00000 0.99862

18 32683952 pdf 0.99999 1.00000 0.99951

19 44814336 exe 0.99997 0.99997 0.99815

20 62657918 avi 0.99999 0.99999 0.99926

Table V
Strict Avalanche effect for T-DES, AES & BST algorithms

Sl.
No.

Source
File Size
(in bytes)

File
type

Strict Avalanche achieved

TDES AES BST

1 330 dll 0.98645 0.98505 0.89817
2 528 txt 0.99419 0.99311 0.97023
3 96317 txt 0.99992 0.99987 0.97918
4 233071 rar 0.99986 0.99985 0.99434
5 354304 exe 0.99991 0.99981 0.99070
6 536387 zip 0.99988 0.99985 0.99751
7 657408 doc 0.99989 0.99990 0.99319
8 682496 dll 0.99990 0.99985 0.98803
9 860713 pdf 0.99990 0.99993 0.98998

10 988216 exe 0.99995 0.99995 0.97454
11 1395473 txt 0.99990 0.99996 0.99321
12 4472320 doc 0.99998 0.99995 0.98517
13 7820026 avi 0.99996 0.99996 0.99365
14 9227808 zip 0.99997 0.99998 0.99980
15 11580416 dll 0.99992 0.99998 0.99887
16 17486968 exe 0.99996 0.99997 0.99924
17 20951837 rar 0.99998 0.99996 0.99861
18 32683952 pdf 0.99997 0.99998 0.99966
19 44814336 exe 0.99991 0.99990 0.99924
20 62657918 avi 0.99997 0.99998 0.99982

Manas Paul et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 02 February 2012 328

Table VI
Bit Independence criterion for T-DES, AES & BST algorithms

Sl.
No.

Source
File Size
(in bytes)

File
type

Bit Independence achieved

TDES AES BST

1 330 dll 0.49180 0.47804 0.39264
2 528 txt 0.22966 0.23056 0.21005
3 96317 txt 0.41022 0.41167 0.42947
4 233071 rar 0.99899 0.99887 0.98561
5 354304 exe 0.92538 0.92414 0.93652
6 536387 zip 0.99824 0.99753 0.99464
7 657408 doc 0.98111 0.98030 0.97474
8 682496 dll 0.99603 0.99560 0.96779
9 860713 pdf 0.97073 0.96298 0.96919

10 988216 exe 0.91480 0.91255 0.93115
11 1395473 txt 0.25735 0.25464 0.24670
12 4472320 doc 0.98881 0.98787 0.95581
13 7820026 avi 0.98857 0.98595 0.97007
14 9227808 zip 0.99807 0.99817 0.98021
15 11580416 dll 0.86087 0.86303 0.86221
16 17486968 exe 0.83078 0.85209 0.85677
17 20951837 rar 0.99940 0.99937 0.97225
18 32683952 pdf 0.95803 0.95850 0.95977
19 44814336 exe 0.70104 0.70688 0.82787
20 62657918 avi 0.99494 0.99451 0.99863

Fig.4(a) Comparison of Avalanche effect between T-DES, AES and BST

Fig4(b) Comparison of Strict Avalanche effect between TDES, AES and BST

Manas Paul et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 02 February 2012 329

Fig.4(c) Comparison of Bit Independence criterion between TDES, AES and BST

VI. CONCLUSION

The proposed technique BST, presented in this paper is very simple to understand and easy to implement. The
key length varies session to session for any particular file which certainly enhances the security features. Results
and Analysis section indicates that the BST is definitely comparable with T-DES and AES. The performance of
BST is significantly better than T-DES algorithm. For large files, BST is at par with AES algorithm. The
proposed technique is applicable to ensure high security in transmission of any file of any size.

REFERENCES

[1] J.K. Mandal, S. Dutta, A Universal Bit-level Encryption Technique, Seventh Vigyan Congress,Jadavpur University, India, 28Feb to Ist
March, 2000.

[2] J.K. Mandal, P.K. Jha, Encryption through Cascaded Arithmetic Operation on Pair of Bits and Key Rotation (CAOPBKR), National
Conference of Recent Trends in Intelligent Computing (RTIC-06), Kalyani Government Engineering College, Kalyani, Nadia, 17-19
Nov. 2006, India, pp212-220.

[3] J.K. Mandal, P.K. Jha, Encryption Through Cascaded Recursive Key Rotation and Arithmetic Operation (CRKRAO) of a Session
Key, 14th International Conference on Advanced Computing and Communication, NITK, Surathkal, Mangalore, 20-23 Dec., India,
2006.

[4] “Triple Data Encryption Standard” FIPS PUB 46-3 Federal Information Processing Standards Publication, Reaffirmed, 1999 October
25 U.S. DEPARTMENT OF COMMERCE/National Institute of Standards and Technology.

[5] “Advanced Encryption Standard”, Federal Information Processing Standards Publication 197, November 26, 2001.

Manas Paul et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 02 February 2012 330

