

Task Scheduling Algorithm to Reduce the
Number of Processors using Merge

Conditions

Tae-Young Choe
Dept. of Computer Engineering

Kumoh National Institute of Technology
Gumi, South Korea

choety@kumoh.ac.kr

Abstract—Some task scheduling algorithms generate the shortest schedule, when its input DAG satisfies a
specified condition. Among those scheduling algorithms, TDS algorithm proposed a DAG condition
where allocation of two parent tasks of a join task in the same processor cause longer schedule length
than allocation in different processors, and it generates the shortest schedule if any input DAG satisfies
the condition. In the paper, we propose a post-processing scheduling algorithm that reduces the number
of processors while preserving its schedule length. Especially, we propose conditions where two processes
can be merged without increasing schedule length. Experimental results show that the number of
processor is reduced to 92.3% ~ 98.0% if schedule length is reserved and required computing power is
reduced to 84.3% ~ 91.2% if schedule length can be increased.

Keywords-task scheduling; processor reduction; merge condition; DAG; TDS algorithm; post-processing

I. INTRODUCTION

Recently, trend of computer architecture is moving from high performance single core CPU system to
multicore CPU systems. This tendency includes PC having Dual-core or Quad-core CPU and server computers
moving from mainframe to Grid Computing or Cloud Computing. However, since performance of parallel
processor is highly affected by methods of dividing application and allocating them to processors, the assignment
methods are important components in multi-processor systems.

Until now, various parallel algorithms are developed and ported to parallel computer systems. Unfortunately,
the parallel algorithms should be designed directly by programmer, which makes it hard for general programmer
to manipulate various parallel system structures. In order to divide an application and to allocate them to multiple
processors, compiler and loader have been developed. They divide the applications to tasks, define messages
between tasks, and allocate the tasks to processors. Especially, task scheduling algorithms decide processors
where tasks are allocated. Thus they take a major part that determines execution time of given application.

Task scheduling algorithm is known as an NP-hard problem [1]. However, because of its importance, lots of
heuristic task scheduling algorithms are proposed [2, 3, 4, 5]. Among them, Darbha et al. proposed a task
scheduling algorithm that generates the shortest schedule when a given directed acyclic graph (DAG) satisfies a
specific condition [6] when task duplication is allowed. The task duplication is a policy where any task can be
duplicated to multiple processors. The specific condition is a property of DAG where allocating two parent tasks
of a join task in the same processor do not reduces schedule length.

In general, task duplication reduces schedule length because it eliminates some communication overheads.
Although task duplication affects reduction of schedule length, duplicated tasks which exist in multiple
processors erode available CPU times [7]. Thus it reduces efficiency of multi-processor system which runs
multiple applications. TDS algorithm, typical task duplication scheduling algorithm, assumes that there are
sufficient number of available processors. Thus schedules generated by such scheduling algorithm require lots of
processors which are not suitable to real parallel systems.

Some task scheduling algorithms have tried to reduce the number of required processors [8, 9]. Doruk et al.
proposed a task scheduling algorithm that reduces the number of processors using genetic algorithm [9]. Since the
time complexity of the algorithm is O(N3) when the number of task is N, it is not suitable to huge size DAG. Shan
and Choe tried to reduce the schedule length using a post processing algorithm that merges two parent processors
of a join task in heterogeneous computing systems [8]. The post processing algorithm assumes heterogeneous
computing system where it is very hard to obtain optimal schedule. So it tries to merge two processors where a
communication exists between them without maintaining schedule length.

Tae-Young Choe / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 02 February 2012 255

However, processors which have no communication between them can be merged, which reduces the number
of required processors. In this paper, we propose a condition that checks properness of merge between two
processors. And we propose an algorithm that finds merge pairs based on the condition. After it finds a set of
merge pairs, it merges them. The algorithm includes a function that finds maximum pair in order to reduce the
number of merge.

The rest of the paper is organized as follows. Section 2 defines terms and objectives. Section 3 introduces
related previous works and discusses their problems. Section 4 presents conditions where merge operation does
not increase schedule length. Section 5 explains details of the proposed algorithm. Section 6 shows experimental
results of the algorithm. Finally, the paper concludes in Section 6.

II. SYSTEM MODEL

We define a task as a continuous list of codes that should be executed sequentially. In the case, a program is
composed of multiple tasks and data transfers between tasks if the task needs results from its previously executed
tasks. If we assume a task as a node and a data transfer as a directed edge, we can express an application as a
directed graph, which is composed of a set of nodes ni and a set of directed edge ei,,j which starts from node ni and
arrives to node nj.

Since an edge in a DAG is directed, a node has two types of adjacent edges: one is an incoming edge and the
other is an outgoing edge. Incoming degree of a node is the number of incoming edges and outgoing degree of a
node is the number of outgoing edges of the node. Degree of a node is the sum of above two degrees. Join task is
a task of which incoming degree is larger than 1 and fork task is a task of which outgoing degree is larger than 1.
Entry task is a task of which incoming degree is zero and exit task is a task of which outgoing degree is zero. In
order to simplify the problem, we assume that DAG has a single entry task and a single exit task. For example, if
there are multiple exit tasks, all the exit tasks are connected to a dummy task, which becomes a new single exit
task. Figure 1 shows an example of DAG that one entry task and one exit task, where node n1 is the entry task and
node n8 is the exit task. Weight of a node represents the execution time of the task and weight of an edge means
amount of information from a parent task to its child task. Execution time of task ni is notated as τi and
communication time of edge ei,,j is notated as ci,,j. In Fig. 1, weight of all nodes except n6 is 1 and weight of all
edges is 0.9 if its weight is not specified. Weight of task n6 is 1.1. Weights of edges e3,6, e5,7, and e7,8 are 0.8, 0.9,
and 0.9, respectively.

In order to run an application in multi-processor system, tasks of the application should be allocated to
available processors. After an allocation, each processor contains a list of tasks, because the tasks should be
executed in an order. In the paper, a processor is expressed as C(ni) if the last task in the processor is ni. Task
scheduling is to allocate tasks of an application to processors in order to minimize completion time. A task in a
processor has a start time and a completion time. For a task ni in a processor Ci, start time and completion time
are notated as stCi(ni) and ctCi(ni), respectively. In general, static task scheduling does not consider preemption in
order to eliminate overhead by preemption. Thus completion time of a task is sum of its start time and weight of
the task. That is,

.)()(iicic nstnct
ii



Figure 1. An example of DAG. Weight of
node or edge where the value is not

specified is assumed to be 1.

Tae-Young Choe / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 02 February 2012 256

Before a task starts, its entire parent tasks should finish and their results should arrive. The time that result of a
parent task arrives is sum of a completion time of the parent task and a transfer time of the result. The sum is
called ready time. If a task and a parent task are allocated in the same processor, the transfer time is assumed to be
zero because the communication can be implemented as very fast operations like memory copy. For a task ni in
processor Ci, if its child task nj is in processor Cj and edge ei,j connects from ni to nj, ready time rdyCiCj(ni,nj) is
defined as follows:

.
otherwise,)(

 if),(
),(

,
, 









jiiC

jiiC
jiCC cnct

CCnct
nnrdy

i

i

ji

If a task in processor Ci needs to wait a message from other processor, there could be an interval in Ci where
no task runs. The interval is called empty slot. In Fig. 2 (a), there is an empty slot of size 0.8 between task n2 and
n6. If task duplication is allowed, there could be multiple messages from duplicated parent tasks. Among them,
the parent task that has the earliest finish time sends the message to the child task. That is, what we want is the
minimum ready time among duplications of the parent task. Thus, for task na in processor Ca and its parent task ni,
ready time rdyCa(ni,na) is computed as follows:

).,(minmin),(, aiCC
nCC

aiC nnrdynnrdy
ai

iia
a 



Task na starts after all the ready time of all its parent tasks. For a task na in processor Ca, start time stCa(na) is
defined as follows:

),,(max)(
)(

aiC
npredn

aC nnrdynst
a

ai
a 



where pred(na) is a set of parent tasks of na.

After setting the start time of the entry task as 0, the completion time of the exit task is called schedule length
or makespan. Schedule that has the shortest schedule length given a DAG is called optimal schedule. Algorithm
that finds a task schedule is called task scheduling algorithm and the objective of the algorithm is to generate the
shortest schedule given DAG.

If a task can be duplicated in multiple processors, schedule length can be reduced. For example, a schedule of
DAG in Fig. 1 with task duplication is shown in Fig. 3 (a). In the Figure, by being duplicated task n1 to C(n3) and
C(n7), tasks n3 and n4 start earlier. Otherwise, start time of n3 would be 2 not 1.

III. PREVIOUS WORKS

Darbha et al. proposed a condition which is required for optimal schedule and task scheduling algorithm that
generates an optimal schedule given the condition. The algorithm is called Task Duplication based Scheduling
(TDS) algorithm and it assumes that sufficient number of processors are provided and task duplication is allowed
[6]. The condition means that given any join task, its parent tasks should be allocated to different processors in
order to make the shortest schedule. For example, consider a sub-DAG consist of nodes n1, n2, n3, and n4 in Fig. 1.
By comparing a task allocation to two processors as in Fig. 2 (a) and a task allocation to a single processor as in
Fig. 2 (b), we know that the first case has shorter schedule length. If weight of e3,6 is 1.1 instead of 0.8, the
completion time of n6 becomes 4.2. On the other hand, after all tasks being allocated to the same processor as
shown in Fig. 2 (b), completion time of n6 becomes 4.1, which is shorter than the previous allocation. Notice that
transposition between n2 and n3 in Fig. 2 (b) does not modify schedule length.

After all, if parent tasks of a join task are allocated to different processors, start time of the join task is fixed as
the minimum value. Since the condition assumes that all processors has the same computing power, the start time

Figure 2. Four types of task allocation in a join task : (a) parent tasks of
join task n6 are allocated

Tae-Young Choe / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 02 February 2012 257

of a task ni is the same and it is notated as est(ni). Likewise, the completion time is notated as ect(ni). Following
terminologies given join task na use the same notations in [6]:

pred(na) : a set of parent tasks of task na,

rdy(ni,na) : (ready time) completion time of message transfer from ni to na,

fpred(na) : the task that has the largest ready time among parent tasks of na,

spred(na) : the task that has the second largest ready time among parent tasks of na

For example, pred(n6) = {n2, n3}, rdy(n3,n6) = 2.8, pred(n6) = {n2, n3}, rdy(n3,n6) = 2.8, fpred(n6) = n2, and
spred(n6) = n3 are shown in Fig. 1. Start time est(na) and completion time ect(na) of task na is defined as follows:

)),),(()),((max()(

,)()(

aaaa

aaa

nnspredrdynfpredectnest

nestnect



 

where rdy(ni,na) = ect(ni)+ci,a. TDS algorithm generates an optimal schedule if given DAG satisfies the following
Darbha's Condition.

Condition 1 (Darbha's Condition). Given join task na, let n1 and n2 be parent tasks of na, where n1 = fpred(na) and
n2 = spred(na).

.
))()((otherwise

,),()(if

12,21

,2121

nestnestc

cnestnest

a

a







TDS algorithm allocates parent tasks of the join task to different processors and let the task be executed at its est()
time.

Park and Choe proposed a task scheduling algorithm that generates shorter schedule by merging than TDS
algorithm does if given DAG satisfies more restricted condition [10]. The condition means that completion time
of the last task in the merged processor is smaller than sum of successor task weights and communication time,
after merging all tasks in a processor to another processor. The condition has little relation with Darbha's
Condition and the range of the value of the condition is narrower than that of Darbha's Condition.

Shen and Choe proposed HPSA algorithm that merges scheduled processors in order to map a schedule to
restricted number of processors [8]. HPSA algorithm considers heterogeneous computing system. Instead of
generating optimal schedule, the algorithm tries to reduce schedule length where the restricted number of
processors is provided. Since the algorithm focuses on pairs of processors connected by edges, the number of
considered cases is relatively small.

Bozdağ et al. proposed Schedule Compaction (SC) algorithm that merges scheduled processors in order to
reduce the number of processor to the number of required size [9]. SC algorithm composes of following 3 phases:
in the first phase, the algorithm computes characteristics of each task; in the second phase, it eliminates
unnecessarily duplicated tasks based on the characteristics computed in the previous phase; in the third phase,
merge between two processors are repeated. The repetition stops if there is no processor pair (Ci, Cj) which
satisfies following merge condition:

))(),(max(ji
CCn
k

Cn
j

Cn
i CctCct

jikjjii

 
 



where ct(Ci) means completion time of the last task in processor Ci. SC algorithm decides a pair of processors as
mergeable if execution time of tasks in the merged processor is earlier than the unmerged case. SC algorithm
gives higher priority to processor pairs which share more tasks. Unfortunately, SC algorithm does not consider
empty slot created by delayed tasks, which can increase completion time in merged processor. On the other
hands, the idea that considers all possible processor pairs gives good result of merging in task scheduling. We
apply the idea more rigorously in order to reduce possibility of schedule length increase.

IV. CONDITIONS FOR REDUCING THE NUMBER OF PROCESSORS

TDS algorithm generates the shortest schedule by allocating parent tasks to different processors while
overusing processors. In the paper, we propose a method that reduces the number of required processors while
maintaining its schedule length. Fig. 3 (b) shows tasks information of DAG in Fig. 1 used by TDS algorithm.
Ready time from task n2 to join task n6, rdy(n2,n6), is 3 and rdy(n3,n6) is 2.9. Join task n6 is allocated to processor
C(n6) where n2 is assigned because n2 has the largest ready time. On the other side, task n3 is allocated to other
processor C(n3) because it has the second largest ready time and satisfies Darbha's Condition. Likewise, task n7 is
allocated to C(n4). Task n8 is allocated to processor C(n8) where its parent task n6 is allocated because n8 has the
largest ready time from n6. As the result, result schedule becomes as shown in Fig. 3 (a).

Tae-Young Choe / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 02 February 2012 258

In Fig. 3 (a), schedule length 5.8 is optimal and the schedule uses 4 processors. In the Figure, each processor
is notated as C(ni) where ni is the last task allocated to the processor.

Let us check whether the DAG in Fig. 3 (a) satisfies Darbha's Condition. Table. I shows a check process
whether each join task in DAG shown in Fig. 1 (a) satisfies the inequality: first, look at the first row that
compares the inequality for n2 and n3 in join task n6. Since est() of task n2 and n3 are the same, Darbha's Condition

τ2≥c2,6 is checked. Because execution time of task n2, which is 1, is larger than the communication time from n2
to n6, the inequality is satisfied. Likewise, task n2 satisfies Darbha's Condition as shown in the second row of table
1. In case of join task n2, since start time of the largest ready time parent task n6 is smaller than that of n7, the
second condition of Darbha's Condition is checked. The condition is satisfied as shown in the third row of Table
I.

TABLE I. CHECK FOR DARBHA’S CONDITON

Join task If condition condition value result
n6 est(n2) ≥ est(n3) τ5 ≥ c2,6 1 ≥ 0.9 satisfy

n7 est(n4) ≥ est(n5) τ4 ≥ c5,7 1 ≥ 0.9 satisfy

n8 est(n6) ≥ est(n7) τ6 ≥ c7,8 + est(n7) – est(n6) 1.1 ≥ 0.9 + 2.9 – 2.8 satisfy

Although TDS algorithm generates a shortest schedule given a DAG that satisfies Darbha's condition, it does
not mean that merge of any processors increases its schedule length. For example, DAG in Fig. 1 satisfies
Darbha's condition. Schedule in Fig. 1 (a) is generated by TDS algorithm. Merging of task n3 to C(n8) in the
schedule increases completion time of n6 from 3.9 to 4.1. However, Fig. 4 shows that the merge does not affect
completion time of task n8. From the example, we know that schedule length can be maintained even if the
number of processors is reduced in case that the schedule is generated by TDS algorithm.

Fig. 5 (a) shows an example of a DAG where most join tasks satisfy the second condition of Darbha's
Condition. For join tasks n8, n9, and n10 in the DAG, start times of their fpred tasks are smaller than those of spred
tasks. TDS algorithm generates a schedule shown in Fig. 5 (b). The number of required processors in schedule in
Fig. 5 (b) can be reduced to a schedule that uses 2 processors and has the same schedule length. By merging C(n5)
to C(n10) and merging C(n7) to C(n9) as shown in Fig. 5 (b). The schedule is modified to a schedule that uses two
processors as shown in Fig. 5 (c).

In a DAG that does not satisfy Darbha's Condition, average communication cost is larger than average

Figure 3. Allocation of tasks by Darbha's algorithm: (a) task schedule by Darbha's algorithm, (b)
properties of nodes used by Darbha's algorithm

Figure 4. Merging task n3 to cluster C(n8)

Tae-Young Choe / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 02 February 2012 259

computation cost in general, and allocating two or more parent tasks of a join task in the same processor can
reduce the schedule length. This paper excludes the conditions where Darbha's Condition does not satisfy. We
concentrate on DAGs where Darbha's Condition is satisfied and derive conditions where merge between two
processors are allowed while the schedule length is maintained.

If DAG in Fig. 1 (a) is modified such that weight of task n6 is larger than 1.8, merging like Fig. 4 increases its
completion time and the merging is not acceptable. Also, merging C(n5) to C(n7) in Fig. 3 increases its schedule
length. State of Fig. 5 (b) is highly acceptable, because any merging of a parent task to a processor where its child
join task is allocated does not increase the schedule length. However, if the DAG modified to a DAG in Figure 6
by reducing the weights of edges e4,7 and e5,7 to 2 and 1, respectively, any merging increases the schedule length.
Note that modified weights of the two edges make the second of Darbha's Condition unsatisfied.

In order to prevent its schedule length from increasing when two processors are merged, there should be an
empty slot in at least one processor. Let express it more formally: given two processor C(ni) and C(nj), for task nk
∈ C(nj) - C(ni), if size of empty slot after stC(nj)(nj) is equal to or greater than τk, there is possibility that merging
does not increase the schedule length.

When processor C(nj) is merged to C(ni), if sum of empty slot in C(ni) is equal to or greater than weight sum
of tasks that is in C(nj) but is not in C(ni), then it is possible that merging does not increase the schedule length.

Since weight sum of tasks in C(nj) - C(ni) is ∑nk ∈ C(nj) - C(ni)τk and sum of empty slot in C(ni) is ctC(ni) - ∑nk ∈

C(nj)τk, a merge condition that has a possibility of fixed schedule length is as follows:

Figure 5. (a) DAG where join task satisfies Darbha’s condition and (b) schedule by Darbha's algorithm. (c) Reduced
schedule by merging C(n5) to C(n10) and C(n7) to C(n9)

Figure 6. (a) Modified DAG of Fig. 5, (b) schedule by Darbha's algorithm

Tae-Young Choe / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 02 February 2012 260

.)(
)(

)(
)()(





il

i

ijk nCn
linC

nCnCn
k nct  (1)

By the way, although equation 1 is satisfied, merging could increase its schedule length, because there could
be a part of the empty slot which does not filled with tasks in C(nj). In the Fig. 7, when C(n6) is merged to C(n5),
size of empty slot in C(n5) is 3. The empty slot is sufficiently large to include task n6 and it satisfies equation 1.
Unfortunately, since stC(n6)(n6) = 5, upper empty slot with size 2 cannot be used and merge will increase the
schedule length.

In order to prevent such increase, we consider a tighter condition that considers cases like Fig. 7. Right side of
equation 1 is the total amount of empty slot in processor C(ni). More exact amount of right side is the amount of
empty slots that can be filled by merged tasks. When processor C(ni) and C(nj) merge, the earliest start time of
tasks to be merged is expressed as)(min)(

)()(
knC

nCnCn
nst

j
ijk 

. Merging C(ni) and C(nj) could increase its schedule

length if the sum of empty slot after the start time is smaller than the weight sum of tasks in C(nj) - C(ni). Thus the
condition can be written as follows:

Condition 2. If processor C(ni) and C(nj) are merged, following condition is required in order to keep the
schedule length.

)),(min()(
)()(

)(
)()(

knC
nCnCn

nC
nCnCn

k nste
j

ij
i

ijk




 (2)

where eC(ni)(t) means the size of empty slots in processor C(ni) after time t.

Size of empty slots in a processor can be calculated by substituting weight sum of tasks from completion time
of the last task in the processor. Thus the size of empty slot eC(ni) in processor C(ni) is as follows:

.)(
)(

)(



ij

i
nCn

jinCC ncte  (3)

In some cases, we need to calculate size of empty slots after a time t, in order to check whether the schedule
length increases after merging two processors. The size of empty slots in processor C(ni) after time t is expressed
as follows:

.))(,min()()(
)(),(

)()(

)(





tnstnCn

kCkinCnC

kinCij

ii
tncttnctte  (4)

In Figure 3, merging cluster C(n5) or C(n3) to C(n8) satisfies Condition 2, while merging C(n7) to C(n8) not
satisfying the Condition.

Computing the total size of empty slots after a specific time is calculated by summing up intervals after
completion time of a task and stat time of the next task in the processor. Thus if C is the number of tasks in a
processor, time complexity for Condition 2 is O(C) steps. Possibility of merge can be computed more exactly
using an algorithmic method with the same time complexity. The method checks whether the completion time of
the last task increases by simulating merge of two processors based on start time of their tasks. It is similar to
merge process of merge sort which compares sameness and start time of each task in two processors in top-down
direction. If two tasks are the same, they are considered as one task. Otherwise, task with smaller start time is
allocated prior to the other. If two tasks have the same start time, there are two options: one option is to give
higher priority to task that has the greater completion time; the other option is to give higher priority to task that
has higher outgoing degree. Figure 8 shows the flow of the steps.

Unfortunately, maintaining the completion time of the last task in a cluster does not guarantee its schedule
length. For example, when processor Ci and Cj are merged, let start time of nj in Cj be tj and start time of nj after

Figure 5. An example where Condition 2 is
not suitable

Tae-Young Choe / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 02 February 2012 261

merging to Ci be changed to ti’ which is greater than tj. If nj sends a message to task in the other processor, the
arrival time of the message is delayed by the merge and the entire schedule length could increase. Thus Condition
2 or algorithm Merge_Check() in Figure 8 is recommended to be used for guide rather than deciding schedule
length.

V. PROPOSED ALGORITHM

In the paper, we propose a post-processing algorithm that reduces required number of processors through
processor merges, which does not increases schedule length. Algorithm Schedule(G) in Figure 9 shows
structure of the proposed algorithm, where G is an input DAG. The result of the algorithm is schedule P2 a set of
processors, where each processor is a set of tasks with start time. Basic criteria for a result schedule P2 is the
number of processors, where smaller number means better performance of the algorithm. In algorithm
Schedule(), Darbha's_schedule(G) receives DAG G as an input and produces a schedule P1 as output
[6]. If DAG G satisfies Darbha's Condition, result schedule P1 has the smallest length.

A. Reducing the Number of Processors

Algorithm Cluster_merge(G, P) in Figure 10 reduces the number of required processors in schedule P
generated by the previous scheduling algorithm. A schedule generated by TDA algorithm can be an input. Since
all processor pairs can be merged, there are p(p-1)/2 possible merge cases, where p is the number of processors.

Rather than merging a processor pair as soon as it is found, Cluster_merge() starts merge after finding all
possible merge pairs in order to prevent being trapped in local optima and to reduce time complexity. Possible

Merge_Check(Ci, Cj)
// Ci is larger cluster than Cj.
// ni and nj : the start tasks in Ci and Cj, respectively.
ct = 0;

while(∃ni∈Ci and (∃nj∈Cj)
if (ni = nj)

ct ← max(ct, st(ni)) + τi;

ni and nj ← the next tasks in each processors;

 else if (stCi(ni) ≤ stCj(nj))

 ct ← max(ct, stCi(ni)) + τi;
 Select following task as ni in Ci;

else

ct ← max(ct, stCj(nj)) + τj;
Select following task as nj in Cj;

 endif
endwhile

while (∃nj∈Cj)

 ct ← max(ct, stCj(nj)) + τj;
Select following task as nj in Cj;

endwhile

return ct ≤ ct(Ci)
End

Figure 6. An algorithm that checks whether merge of two clusters is allowed

Schedule(G)
 // input DAG G
 P1 = Darbha's_schedule(G);
 P2 = Cluster_Merge(G, P1);
 return(P2);

Figure 7. Main flow of scheduling algorithm that uses the proposed merge after an optimistic scheduling algorithm

Tae-Young Choe / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 02 February 2012 262

merge is decided by Condition 2. If two processors Ci and Cj are possible to merge, a processor pair (Ci,Cj) can be
expressed as an edge in a graph H = (P, EH), where P is a set of processors and EH is a set of undirected edges
between processors. Cluster_merge() selects a subset M of EH which is an edge cover and they are not
adjacent each other. After selecting M, Cluster_merge(R) does merge for all elements in M. That is, two
processors Ci and Cj are merged for each element (Ci,Cj) in M. The merging reduces a set of processors in
schedule P to a new one that has smaller number of processors. Such selecting processor pairs and merging them
are repeated until the schedule length is maintained. Cluster_merge(R) returns the previous schedule P rather
than the last schedule P. The reason is that the last schedule P has the increased schedule length while the
previous schedule P has the minimum schedule length. Function Select_Pairs_in_Graph(H) returns a set
of pairs M.

While maintaining schedule length, Cluster_Merge() in Figure 10 does not dramatically reduce the
number of processors so much. If we change the objective to minimizing the computing power (schedule length

ⅹ the number of processor) as used in Cloud computing systems, slightly changed algorithm can reduce the
computing power more by decreasing the number of processors highly with a little cost of schedule length
increase. The modification is to change break condition of do-while iteration from maintaining schedule length to
checking existence of mergeable processor pair. Cluster_Merge_MP(P) in Fig. 11 is the modified algorithm
by changing the iteration condition and reduces computing power than Cluster_Merge() does.

B. Selecting Merge Pair

In the paper, we express merging two processor Ci and Cj as a 2-tuple (Ci,Cj). Since a result of merge is not
affected by order of processors, (Ci,Cj) is considered as same as (Cj,Ci). Condition 2 is used to decide whether any
processor pair can be merged. Order of merge in the pairs decides the number of processors in result schedule.
For example, the number of possible merge in Figure 5 (b) is 4(4-1)/2 = 6. Among them, pairs that satisfy
Condition 2 are (C(n5),C(n7)), (C(n5),C(n9)), (C(n5),C(n10)), and (C(n7),C(n9)). Schedule length does not increase
after any merge of above 4 pairs. However, merging (C(n5),C(n7)) or (C(n5),C(n9)) prevent following additional
merge and result in schedule with 3 processors. On the other hand, merging which start with (C(n5),C(n10)) can

Cluster_Merge(G, P)
 // G : input DAG

// P : a schedule consists of a set of processors
 While(length(P) does not increase)

 EH ← ф;
 H = (P, EH);
 For(any processor pair (Ci,Cj) in H)
 If((Ci,Cj) satisfies condition 2)
 add edge (Ci,Cj) to EH;
 endif
 endfor
 M = Select_Pairs_in_Graph(H);
 P = modified schedule by merging all pairs in M;
 endwhile
 return(previous P);

Figure 8. An algorithm that merges processors. The algorithm maintains schedule length and the number of processors are reduced.

Cluster_Merge_MP(P)
 // P : a schedule consists of a set of processors
 While(M ≠ ф)
 EH ← ф;
 For(any processor pair (Ci,Cj) in H)
 If((Ci,Cj) satisfies condition 2)
 add edge (Ci,Cj) to EH;
 endif
 endfor
 Select_Pairs_in_Graph(H, M);
 Reduce H by merging processor pairs in M;
 endwhile

Figure 9. An algorithm that merges processors while there is any processor pair that satisfies merge condition

Tae-Young Choe / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 02 February 2012 263

generate a schedule that uses the smallest number of processors.

TABLE II. CHARACTERISTICS OF DAGS AND INITIAL ALLOCATIONS USING DARBHA’S SCHEDULING ALGORITHM

The number of
tasks

The number of
edges

Schedule length
The number of

processors

101 211.37 117.23 34.25
201 423.89 129.52 68.15
501 1060.35 144.82 170.73

1001 2121.53 156.05 341.83
2001 4246.64 165.81 682.29
5001 10608.79 180.76 1701.65

10001 21222.58 189.54 3412.58

The processor pairing problem can be simplified as a graph problem. Fig. 12 (a) is an example of representing
processor pairing in the form of edge covering, where a processor is represented as a node and a mergeable pair is
represented as an edge. In the graph, desirable merges are (C(n5),C(n10)) and (C(n7),C(n9)). The merges generate a
schedule with two processors as shown in Fig. 5 (c).

There could be a doubt that target merge pair is not adjacent processors but any two processors. The reason is
that mergeability has no relation with existence of communication between two processors. For example, an
optimal merge from Fig. 5 (b) is shown in Fig. 5 (c), where there is no communication between merged
processors C(n10) and C(n5). In fact, consideration factors for merge are the size of empty slot and effect on other
tasks.

In order to minimize the number of processors, the algorithm should select non-adjacent edges as many as
possible. For example, it is better to select solid edges rather than dotted edges in Fig. 12 (a). In other words, we
should find a set of edges that covers vertices in the graph as much as possible. Such problem is known as edge
cover [1]. In order to find the maximum edge cover given graph H, the proposed algorithm adapts maximum
matching algorithm proposed by Edmonds [11]. Time complexity of Edmonds’ algorithm is known as O(VE),
where V is the number of vertex and E is the number of edges.

C. Time complexity

Major part of the proposed algorithm Cluster_Merge() is repetition of finding merge pairs and doing
merge. Since the algorithm finds edge cover, the number of processors reduced to half. Thus the number of
repetition is at most logP, where P is the number of processors. Constructing a graph of processors H takes
O(P2C) steps, where C is the number of tasks in a processor. Thus it can be rewritten as O(PV). Finding edge
cover takes O(VE) steps. Merging each pair takes O(C) steps and the merging runs O(P) times. Thus merging
takes O(V) steps. After all, time complexity of the algorithm is O((PV+VE+V)logP) or O(VElogP) in short.

VI. EXPERIMENTS AND ANALYSIS

A. Experiment overview and environments

In order to compare performance of algorithms, we generated random graphs that satisfy Darbha's Condition
as shown in Table II. Table II shows specifications of schedule after applying TDS algorithm from randomly
generated DAGs, which contains 101, 201, 501, 1001, 2001, 5001, and 10001 tasks respectively. 100 DAGs are
generated for each size. Randomly generated DAG can have multiple exit tasks with high probability. In order
to make a single exit task for each DAG, a dummy node is generated and new edges from the exit tasks to the
dummy task are generated to connect them. As the result, most DAG has one more task. The number of edges is

Figure 10. Graphs that represent processor merges : (a) merge graph from Fig
5 (b), and (b) another merge graph

Tae-Young Choe / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 02 February 2012 264

determined such that degree of a node is randomly distributed between 3 and 5. Thus the number of edges is
about double of the number of nodes. Node weights are uniformly distributed integer values between 6 and 10,
and edge weights are uniformly distributed integer values between 4 and 8. Reason that node weights are greater
than edge weights is to easily generate DAGs that satisfy Darbha's condition.

TABLE III. FOUR CASES OF DECISIONS ACCORDING TO TASK PRIORITY AND MERGEABILITY CHECK

Merge-ability check
Priority of tasks

Condition 2 Function Merge_Check()

Randomly Case R.2 Case R.M

Higher out-degree Case O.2 Case O.M

For each DAG, TDS algorithm generates a schedule, and Schedule(G, P) runs the merge algorithm for the

schedule. The experiment considers two parameters and each parameter has two cases. Thus 4 cases are
considered as shown in Table. III.

Table IV shows results of Schedule() in Fig. 9 by applying above 4 cases for DAGs in Table II. Since
schedule length for all cases are the same, Table IV shows the number of reduced processors. Merge_Check()
function generates a little better results than Condition 2 does. Priority to higher out-degree task contributes
more than random selection when merging two processors.

TABLE IV. CHARACTERISTICS OF DAGS AND INITIAL ALLOCATIONS USING DARBHA’S SCHEDULING ALGORITHM

The number
of tasks

Case
R.2

Case
R.M

Case
O.2

Case
O.M

101 94.2% 93.8% 92.8% 92.3%
201 96.0% 95.4% 95.8% 95.1%
501 95.2% 95.3% 95.0% 95.7%

1001 96.3% 96.3% 95.9% 96.5%
2001 96.8% 96.0% 96.7% 96.1%
5001 97.4% 97.0% 98.0% 96.8%

10001 97.5% 97.6% 96.7% 97.0%
average 96.2% 95.9% 95.8% 95.7%

The result in Table. 4 is affected by an iteration condition in Cluster_Merge() of Fig. 10 that stops the

iteration if the next merge increases schedule length. Thus the reduction amount in the number of processors is
not so remarkable. Let us change the iteration stop condition such that until there is no processor pair to be
merged. That is, results by allocating task with higher out-degree prior and by using function
Merge_Check()has better schedule length at the cost of smaller reduction in the number of processors. Table.
V shows that applying function Cluster_Merge_MP() increases schedule length a little but reduces the
combined cost much compared to function Cluster_Merge(). The number of processors is reduced to
11.95% ~ 21.06% while schedule length is increased to 3.05% ~ 6.89%. Let us define computation cost is a
product of schedule length and the number of processors. The proposed merge algorithm generates schedules of
which computation cost is 84.3% ~ 91.2% compared to the schedule by Cluster_Merge().

VII. CONCLUSIONS

The paper proposes a post-process scheduling algorithm that reduces the number of processors of given
schedule that is generated from TDS algorithm where input DAG satisfies its optimality condition. The proposed
algorithm expresses mergeable processor pairs as graph and applies edge cover in order to maximize the merge
effect. If schedule length should be maintained, the proposed algorithm reduces the number of processors to
92.3% ~ 98.0%. If schedule length could be increased, the proposed algorithm reduces the number of processors
to 79.3% ~ 85.9% while reducing the computation cost to 84.3% ~ 91.2% compared to the previous schedule.

TABLE V. CHARACTERISTICS OF DAGS AND INITIAL ALLOCATIONS USING DARBHA’S SCHEDULING ALGORITHM

The number
of tasks

Case R.2 Case R.M Case O.2 Case O.M
sl nop sl nop sl nop sl nop

101 105.3% 80.9% 105.6% 80.2% 105.2% 80.8% 104.9% 80.4%
201 107.0% 79.3% 106.3% 79.6% 106.8% 79.8% 105.8% 79.9%
501 105.7% 80.8% 105.7% 80.9% 105.2% 80.9% 105.3% 81.0%

1001 107.3% 81.8% 107.0% 81.4% 107.0% 81.9% 106.9% 81.7%
2001 106.7% 82.7% 106.3% 82.8% 106.7% 82.8% 105.9% 82.9%
5001 106.1% 83.7% 105.8% 84.7% 105.9% 83.8% 105.7% 84.9%

10001 106.4% 84.4% 106.1% 85.9% 106.2% 84.4% 106.0% 85.8%

Tae-Young Choe / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 02 February 2012 265

The number
of tasks

Case R.2 Case R.M Case O.2 Case O.M
sl nop sl nop sl nop sl nop

average 106.4% 81.9% 106.1% 82.2% 106.1% 82.1% 105.8% 82.3%
sl means schedule length and nop means the number of processors

ACKNOWLEDGEMENTS

This paper was supported by Research Fund, Kumoh National Institute of Technology.

REFERENCES

[1] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, ch. A5.2, pp. 238-241.

W.H. Freeman and Company, 1979.
[2] C. H. Papadimitriou and M. Yannakakis, “Towards an architecture-independent analysis of parallel algorithms," SIAM Journal on

Computing, vol. 19, pp. 322-328, April 1990.
[3] A. Gerasoulis and T. Yang, “A comparison of clustering heuristics for scheduling directed acyclic graphs on multiprocessors," Journal

of Parallel and Distributed Computing, vol. 16, pp. 276-291, Dec. 1992.
[4] X. Tang and S. T. Chanson, “Optimizing static job scheduling in a network of heteroge-neous computers," in Proceedings of 2000

International Conference on Parallel Processing (29th ICPP'00), (Toronto, Canada), pp. 373-382, Ohio State Univ., August 2000.
[5] K. He and Y. Zhao, “A new task duplication based multitask scheduling method," in Proceedings of the Fifth International Conference

on Grid and Cooperative Computing (GCC'06), (Changsha, Hunan, China), pp. 221-227, IEEE Computer Society, 21-23 October 2006.
[6] S. Darbha and D. P. Agrawal, “Optimal scheduling algorithm for distributed-memory machines," IEEE Transactions on Parallel and

Distributed Systems, vol. 9, pp. 87-95, January 1998.
[7] Y.-K. Kwok and I. Ahmad, “Exploiting duplication to minimize the execution times of parallel programs on message-passing

systems," in Proceedings of Sixth IEEE symposium on Parallel and Distributed Processing, pp. 426-433, October 1994.
[8] L. Shen and T.-Y. Choe, “Posterior task scheduling algorithms for heterogeneous computing systems," in VECPAR'06 (high

performance computing for computational science, (Rio de Janeiro, Brazil), 10-13, July 2006.
[9] D. Bozdag, F. Ozguner, and U. V. Catalyurek, “Compaction of schedules and a two-stage approach for duplication-based dag

scheduling," IEEE Transactions on Parallel and Distributed Systems, vol. 20, pp. 857-871, 2009.
[10] C.-I. Park and T.-Y. Choe, “An optimal scheduling algorithm based on task duplication," IEEE Transactions of Computers, vol. 51, pp.

444-448, April 2002.
[11] Edmonds, J. “Paths, Trees, and Flowers,” Canadian J. Math., vol. 17, pp. 449-467, 1965.

AUTHORS PROFILE
Tae-Young Choe, is working as Associate Professor in the Department of Computer Engineering, Kumoh
National Institute of Techonology, Gumi City, South Korea. Currently, his research interests are load balancing
in Cloud Computing and parallel algorithms using graphic devices.

Tae-Young Choe / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 02 February 2012 266

