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Abstract 

Static task scheduling in computational grids is very important because of the optimal usage of computing time 
for scheduling algorithms. Given a set of resources, a static scheduler computes the execution schedule before 
runtime. In static task scheduling resource information and performance parameters are assumed to be known 
depending on how a job can be divided, relevant research can be categorized into two different areas: divisible 
workload, scheduling where they can divided workload into arbitraty-sizes. Solving this problem dynamically 
needs more time. Therefore an attempt is made to solve it by meta-heuristic techniques. A new GA scheduler, 
GASAScheduler is presented whose run-time depends on the number of tasks in scheduling problem. The 
computation time to find sub-optimal function improved. The result shows the computation time of the proposed 
algorithms is better. 
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I.  Introduction  

Grids consists of thousands of inter-connecting nodes which are connected to each other using the networks 
(LAN, WAN) using Grid interfaces like Globus, Alchemi, BONIC to name a few. The task scheduling problem 
in Grid based systems is known to be NP-hard since, for allocating T task to M machines, the number of 
allocations will be │M││T│ and the number of states for running will be │T│! One of job of scheduling is to 
determine assignments of tasks to computing nodes in order to optimize the completion time for the final task in 
the system. If the number of task is very high, finding the optimal solution or sub-optimal task scheduling would 
be time-consuming. So we must use meta-heuristic algorithms based on the problem instead of using common 
method such as dynamic programming. Meta-heuristic algorithms prevent common errors in their own operation 
while trying to find the optimal solution. Therefore, they appear to be appropriate for solving problems [1]. 
There are many heuristic methods available for solving the static task scheduling, some of which are as follows:  

Opportunistic Load Balancing (OLB) is very simple heuristic and assigns the jobs to resources, in an 
arbitrary manner as soon as the resources are available. Main aim of OLB is to keep all machines as busy as 
possible. OLB generally results in very poor make spans[2]. 

Minimum Execution Time (MET) works in contrast to OLB and assigns each job in an arbitrary manner to 
the resource with the best expected execution time for that job, regardless of the availability of the resource. 
MET focus on assigning each job on the best resource for it. MET tries to find good resource pairings but 
because it does not consider the current load on a resource, it will often cause load imbalance between the 
processors [2]. 

Minimum Completion Time (MCT) combines the benefit of both OLB and MET by assigning each job to 
the resource with minimum expected completion time for that job. MCT tries to avoid the circumstances in 
which OLB and MET perform poorly [2]. 

Genetic Algorithms (GA) are evolutionary techniques that are used to search for optimal solution in a very 
large search space. GA’s are inspired by human genetics and generally works by encoding the problem in the 
form of chromosomes. GA operators like crossover and mutations are applied and new generations are evolved. 
Fitness is computed after every generations and further exploration is stopped as soon as acceptable fitness 
value is achieved [3-6]. Simulated Annealing (SA) is an iterative technique that considers only one possible 
solution (mapping) for each job at a time. This solution uses the same representation as the chromosomes for the 
GA. SA use a procedure that probabilistically allow poorer solutions to be accepted to attempt to obtain a better 
search for the solution space. The probability is based on a system temperature that decreases for each iteration. 
As the system temperatures “cools” it is more difficult for proper solutions to be accepted [7]. 

One of the best meta-heuristics methods is the Genetic Algorithm. There are many researches under the 
topic of solving the static task scheduling using GA’s in the Grid based systems and also in distributed systems 
[1,3,4,9,11,12]. In this paper, a GA is presented which has a good ability to solve the above problem using the 
simulated annealing.  
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In section 2, modeling of task scheduling problem is presented. In section 3, the genetic algorithm and basic 
GA are introduced. In section 4, the proposed GA algorithm is introduced. In section 5, the simulation result and 
comparison between algorithms are presented and in section 6, Conclusion is written which concludes the 
findings. 

II.  MODELING THE PROBLEM 

A set of tasks can be modeled as Weighted Directed Acyclic Graph (WDAG) as mentioned below: 
WDAG = (T, <, E, D) [11] where T = {ti ; I = 1, … n} is a set of tasks, < is a partial order defined on T 

which specifies operational procedure constraints. That is, ti < tj means that ti must complete its task before tj can 
start execution. E is a set of directed edges. A directed edges (i,j), between two tasks ti and tj specifies a partial 
order. D is an n * n matrix of communication data, where Di,j is the amount of data required to be transmitted 
from task ti  to task tj. If grid consists of a set of m nodes which are connected to each other, then Estimated 
Completition Time (ECT) would be a n * n matrix, where ECTi,j shows the estimated completition time of the 
task ti on the nodes mj. A WDAG is shown in the figure (1) and the grid nodes consisting three nodes shown in 
figure (2) 

 

 
 
R is  m * n matrix which shows the data transfer rate between different nodes. If two tasks schedules on the 

sane node, the communication cost (ComCost) of transferring data will be zero; otherwise it is obtained based 
on equation (1) 

 
ComCost (ti  , tj) = (1) ..……             [(݆)ܰ,(݅)ܰ]ܴ݆,݅ܦ 
 
 
Di,j is the amount of data required to be transmitted from task ti to task tj and R[N(i), N(j)] is the data transfer 

rate of two different nodes. 
As per our mentioned concepts, the static task scheduling problem in the grid based system becomes a π : 

T→N mapping. This mapping allocates a set of tasks T to a set of nodes N, where the procedure constraints on 
the tasks is satisfied and the completion time of tasks on nodes is minimized. The problem’s answer or 
scheduling length (SL) will be given in equation (2) 

 
Min (SL = max{cj | j=0, . . ., m -1}) …………..(2) 
 
Cj is the completion time of final scheduled task on nodes Nj including completion time, communication 

time and waiting time because of procedure constraints. 
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Two other parameters are defined for each nodes (tasks) in the graph known as botton-level and top-level. 
The bottom-level of a node is the length of the longest path from the node to a leaf node. If a node has no 
children, its bottom-level is equal to the average execution time of the task on the different computing machines. 
The top-level of a node is the length of the longest path from the node to a root node in the WDAG without 
considering the execution time of that task. In effect, the top-level determines the earliest beginning time of a 
task.  Therefore, if a task has no parent its top-level will be zero. 

III. THE GENETIC ALGORITHM 

Genetic algorithms are search algorithms based on the mechanics of natural selection and natural genetics. 
They combine survival of the fittest among string structures with a structured yet randomized information 
exchange to form a search algorithm with some innovative flair of human search. The algorithm is as follows: 

 

 
These algorithms are started with a set of random solution called initial population. Each member of this 

population is called a chromosome. Each chromosome of this problem which consists of the string genes. The 
number of genes and their values in each chromosome depends on the population specification. In the algorithm 
of this paper, the number of genes of each chromosome is equal to the number of the nodes in the DGA and the 
gene values demonstrate the scheduling priority of the related task to the node, where the higher priority means 
that task must executed early. 

Set of chromosomes in each iteration of GA is called a generation, which are evaluated by their fitness 
functions. The new generation i.e., the offspring’s are created by applying some operators on the current 
generation. These are called crossover which selects two chromosomes of the current population, combines 
them and generates a new child (offspring), and mutation which changes randomly some gene values of 
chromosomes and creates a new offspring. Then, the best offspring’s are selected by evolutionary select 
operator according to their fitness values. 

 
The GA presented by Dhodhi et.al[11] named here Dhodhi GA (DGA) has four steps as shown below 

algorithms: 
 

Step 1: Read WDAG, ECT (estimated completion time) and R values from file and get Np, Ng, Xr and Mr from 
the user where 
Np → (initial population size), 
Ng →(the number of generations), 
Xr →(crossover probability), 
Mr→(mutation probability) 
 
Step 2: Calculate the botton-level and the top-level of each task in the WDAG; 
Generate initial population (pi); 
Pcurrent ← Pi ; 
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Schedules ← Decodingheuristic(Pcurrent); 
BestSchedule ← evaluate(schedules); 
Step 3: while stop criterion not satisfied, do begin 
Pnew ← {}; /*empty new population*/ 
3 – 1: repeat for (Np/2) times 
Father ← select (Pcurrent , sum_of_fitness); 
Mother ← select (Pcurrent , sum_of_fitness); 

Pnew ← Pnew Ǘ crossover (father, mother, child1, child2, Xr); 

End repeat; 

3 -2: for each chromosomes  € Pnew do begin 

    Mutate(chromosomes, Mr); 

Endfor 

 3-3: 

    Pnew ← Pnew Ǘ{four best chromosomes of Pcurrent} 

    Pcurrent ← Pnew; 

    Schedules ← decodingheuristic (Pcurrent); 

    Best_schedule ← evaluate (schedules); 

Endwhile 

Step 4: Repeat the best schedule 
 

IV.  GASASCHEDULER – the proposed algorithm 

The discussed algorithm (DGA) by Dhodhi et. Al [11] has used a fixed number of generations (Ng) for each 
WDAG with any number of tasks. This is a problem in the above algorithm because if the number of tasks is 
small, there is no need to tolerate high computation time of the algorithm, and if the number of tasks in WDAG 
is too large, it is possible that the number of generations and the number of iterations are not enough to find an 
optimal or sub-optimal solution. For tackling this problem, we can use a new algorithm which its running time 
depend on the number of tasks. 

In this new idea, two main parameters of this algorithm i.e., Np and Ng are defined as factors of task 
numbers. These two factors are called NP factor and Ng factor. It is known that if the number of tasks in a 
WDAG is small, the computation time will be decreased because of lessening two above parameters. However, 
if the number of tasks is large the computation time of the algorithm will be increased. For decreasing the 
computing time, the simulated annealing (SA)[13] is used here. The SA algorithm is shown below: 

 
Simulated annealing is a probabilistic search algorithm. The term simulates annealing derives from the 

process of heating and cooling a substance slowly to finally arrive at the solved state[13]. When the temperature 
is high, atoms can occasionally move to states with higher energy, but then, as temperature drops the probability 
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of such moves is reduced. In the task scheduling algorithm, the energy of the state corresponds to its completion 
time, and the temperature becomes a control parameter which is reduced during the execution of the algorithm. 

For decreasing the temperature and applying the geometric cooling schedule in a proper time, a new method 
is used. Therefore a new algorithm GASAScheduler is introduced. 

In GASAScheduler, if the convergence of results is recognized after some iteration then, some parameters of 
the algorithm will be changes intentionally. This happens by decreasing the number of current population size 
(Np) and Xr by multiplying them to a value which is less than one and also increasing Mr by multiplying its 
value to a number more than one. The completion time of the new algorithm is decreased by lessening current 
population and crossover probability and there is an attempt to prevent to trap with local minima by increasing 
the mutation probability. The new algorithm is as follows: 

BEGIN 

    Step 1: Read WDAG, ECT and R from the file and get Crossover-factor, mutation-factor, Np , Ng , Np-factor 
Ng-factor, slidingwindow, Xr , Mr , population-factor and Comparison-factor from the user; 

Np ← Number of task * Np-factor; 

Ng ← Number of task * Ng-factor; 
        (Fig- 3a – the modification in first step of algorithm shown in fig 2) 

3-4: calculate value of CD 

If(CD >= Comparision_base) 

/*so, annealing happens */ 

Np ← Np * population-factor; 

Xr ← Xr * crossover-factor; 

Mr ← Mr * mutation-factor; 

Reset slidingwindow to zero; 

Endif 

(Fig 3b – the fourth sub-step of the step three is added to the algorithm shown in fig 2) 

  GASAScheduler algorithm is similar to DGA however, the first step is modified as shown in fig(3a) and the 
fourth sub-step of the step three is added to the algorithm as shown in fig(3b). 

In step one the data i.e., WDAG, ECT and R from the file and other parameters are taken as input from the user. 
Population- factor, crossover-factor and mutation-factor are the cooling schedules of the algorithm. The 
crossover and mutation operators are applied on the current generation to produce a new generation and for 
copying the four best chromosomes of the current generation without any changes to the new one. All the 
chromosomes of the new one, all of the chromosomes of new generation are decoded and the best optimal 
solution is stored in the Best-optimalsolution array. Therefore the stored fitness value of each element is better 
than the previous ones, so the Best-optimalsolution is a descending array. 

  For applying SA method, in the fourth sub-step, the convergence of the Best-optimalsolution element is tested 
by a new idea. This idea uses a sliding window which its length depends on the number of tasks in WDAG. The 
sliding window length (SWL) is given by the equation (3) as shown below: 

SWL = number_of_task * sliding_window ………(3) 

Sliding_window is a coefficient of the sliding window which its suitable value is determined latter. If the 
beginning of the sliding window is the index i  of the Best-optimalsolution, then the convergence degree (CD) is 
calculated by the equation (4): 
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ܦܥ = ∑ ݅=1݇−1+݈ݓݏ݊݋݅ݐݑ݈݋ݏ݈ܽ݉݅ݐ݌ܱ_ݐݏ݁ܤ ……...…(4) 

swl  *Best_optimalsolution 

 

Considering the decending array Best_optimalsolution, the CD is always equal or less than one. If the value of 
the CD is near to one, the values of the elements are more convergent, then applying the cooling schedules will 
be more appropriate. The value of the CD is compared to a comparison-base; if the CD is equal or more than 
that, the SA will happen and the sliding window counter will be set to zero; otherwise the next iteration of the 
algorithm will be done. This minimum distance between two SA events is equal to the SWL. Determining the 
optimal parameters of the GASAScheduler: The algorithm is written in java. A set of 30 graph was taken. All 
elements of the matrix R is set to one. To find out the proper value of each parameter i.e., crossover-factor, 
mutation-factor, population-factor, comparison-base, sliding_window, the different values are assigned to each 
parameters, while the values of the other parameters remain fixed. Then the computation time and the overall 
completion time for each WDAG are calculated and accordingly, the best value for each parameter is 
determined as follows: 

Crossover-factor =0.6, population-factor=0.8, mutation-factor = 1.1, comparison-base =0.95, sliding-window 
=0.25 

V.   Simulation and results 

A set of simulation is done using the Gridsim (grid simulator) to compare GASAScheduler with the WDAG 
scheduling algorithm. A set of 15 random WDAG graph consists of about 100 to 200 tasks are generated 
randomly as shown in table (3). The matrix ECT is generated by random and all elements of the matrix R are set 
to one. Xr =0.6, Mr =0.05 are set for two algorithms and Np =500, Ng = 1000 are defined for DGA. 

To run the simulations of two algorithms in the nearly same condition, the initial values for Np-factor and Ng-
factor are set to 3 to 6 respectively, so that by multiplying their values to the number of tasks (between 100 and 
200), the Np and Ng are attained at DGA range value. The other GASAScheduler parameters are equal to the 
same values which are obtained in section 4. 

 
Graph number Number of tasks Number of nodes Number of dependencies 
1 102 5 546 
2 115 10 56 
3 117 7 1559 
4 140 9 3785 
5 142 8 9300 
6 151 6 7786 
7 157 5 6966 
8 155 8 5846 
9 158 7 3383 
10 160 6 5475 
11 179 6 675 
12 180 6 4800 
13 189 6 6517 
14 199 5 5646 
15 199 3 14202 

Table –I WDAG used for comparison of two algorithms. 

The above two algorithm executed for each graph thrice. After scheduling, the computation time and the total 
completion time (in seconds) of each algorithm is shown table (2) below. Also the average computation time of 
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GASAScheduler selected as a base and the ratio between the average computation time of DGA and the average 
computation time of GASAScheduler is calculated from each graph. Then by adding the obtained ratios and 
dividing the results by the number of graph, the average ratio is achieved. The above mentioned ratios are 
calculated for average and overall completion time as shown in the table (2) below: 

 

Graph 
number 

DGA GASAScheduler 

Average 
computation time 
(sec) 

Overall 
completion time 
(sec) 

Average 
computation time 
(sec) 

Overall completion 
time (sec) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 
 

222 

1096 

302 

748 

963 

1296 

550 

897 

821 

998 

1242 

1039 

1234 

1279 

1799 
 

22514 

1899 

33732 

58334 

230869 

256129 

219969 

196919 

40890 

125393 

13589 

84444 

123199 

159318 

69789 
 

66 

536 

320 

372 

477 

493 

477 

460 

508 

499 

606 

683 

891 

1081 

1756 

22516 

1888 

34266 

61197 

330876 

156129 

210148 

197809 

51040 

99050 

13808 

94132 

111508 

151198 

103637 

Sum of 
ratios 

26.89311465 

 

15.10411209 

 

15 15 

Average 
ratios 

1.79287431 

 

1.006940806 

 

1 1 

As the results shows, the computation time of GASAScheduler is decreased by about 80% compared to DGA. 
However, the average total completion time is decreased. 

VI.  Conclusions 

The task scheduling problem in the grid based system is NP-hard. Therefore the meta-heuristic algorithms 
which obtain near optimal solution in an acceptable interval time as preferred to the dynamic programming. The 
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genetic algorithm is one of the meta-heuristic algorithms which have high capacity to solve the complicated 
problems like the task scheduling. 

    In this paper, a new GA named GASAScheduler is presented which its population size and the number of 
generations depends on the number of tasks. The computation time of this algorithm is decreased by using SA. 
There is a tradeoff between the computation time and the total completion time. But with proper utilizing of SA, 
the computation time of the algorithm decreases more, although the overall completion time is not increased. 
The GASAScheduler proved highly influential in task scheduling problem. 
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