
A GA Approach to Static Task Scheduling
in Grid based Systems

Arun Baruah
133/4, 4th Crs, Munekolala

Marathalli, Bangalore
India

arunbaruah@gmail.com

http://www.systemprogrammers.net/
Abstract

Static task scheduling in computational grids is very important because of the optimal usage of computing time
for scheduling algorithms. Given a set of resources, a static scheduler computes the execution schedule before
runtime. In static task scheduling resource information and performance parameters are assumed to be known
depending on how a job can be divided, relevant research can be categorized into two different areas: divisible
workload, scheduling where they can divided workload into arbitraty-sizes. Solving this problem dynamically
needs more time. Therefore an attempt is made to solve it by meta-heuristic techniques. A new GA scheduler,
GASAScheduler is presented whose run-time depends on the number of tasks in scheduling problem. The
computation time to find sub-optimal function improved. The result shows the computation time of the proposed
algorithms is better.
Keywords: Meta-heuristic, Static Task Scheduling, Computational Grids, SA, GA

I. Introduction

Grids consists of thousands of inter-connecting nodes which are connected to each other using the networks
(LAN, WAN) using Grid interfaces like Globus, Alchemi, BONIC to name a few. The task scheduling problem
in Grid based systems is known to be NP-hard since, for allocating T task to M machines, the number of
allocations will be │M││T│ and the number of states for running will be │T│! One of job of scheduling is to
determine assignments of tasks to computing nodes in order to optimize the completion time for the final task in
the system. If the number of task is very high, finding the optimal solution or sub-optimal task scheduling would
be time-consuming. So we must use meta-heuristic algorithms based on the problem instead of using common
method such as dynamic programming. Meta-heuristic algorithms prevent common errors in their own operation
while trying to find the optimal solution. Therefore, they appear to be appropriate for solving problems [1].
There are many heuristic methods available for solving the static task scheduling, some of which are as follows:

Opportunistic Load Balancing (OLB) is very simple heuristic and assigns the jobs to resources, in an
arbitrary manner as soon as the resources are available. Main aim of OLB is to keep all machines as busy as
possible. OLB generally results in very poor make spans[2].

Minimum Execution Time (MET) works in contrast to OLB and assigns each job in an arbitrary manner to
the resource with the best expected execution time for that job, regardless of the availability of the resource.
MET focus on assigning each job on the best resource for it. MET tries to find good resource pairings but
because it does not consider the current load on a resource, it will often cause load imbalance between the
processors [2].

Minimum Completion Time (MCT) combines the benefit of both OLB and MET by assigning each job to
the resource with minimum expected completion time for that job. MCT tries to avoid the circumstances in
which OLB and MET perform poorly [2].

Genetic Algorithms (GA) are evolutionary techniques that are used to search for optimal solution in a very
large search space. GA’s are inspired by human genetics and generally works by encoding the problem in the
form of chromosomes. GA operators like crossover and mutations are applied and new generations are evolved.
Fitness is computed after every generations and further exploration is stopped as soon as acceptable fitness
value is achieved [3-6]. Simulated Annealing (SA) is an iterative technique that considers only one possible
solution (mapping) for each job at a time. This solution uses the same representation as the chromosomes for the
GA. SA use a procedure that probabilistically allow poorer solutions to be accepted to attempt to obtain a better
search for the solution space. The probability is based on a system temperature that decreases for each iteration.
As the system temperatures “cools” it is more difficult for proper solutions to be accepted [7].

One of the best meta-heuristics methods is the Genetic Algorithm. There are many researches under the
topic of solving the static task scheduling using GA’s in the Grid based systems and also in distributed systems
[1,3,4,9,11,12]. In this paper, a GA is presented which has a good ability to solve the above problem using the
simulated annealing.

Arun Baruah / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 01 January 2012 54

In section 2, modeling of task scheduling problem is presented. In section 3, the genetic algorithm and basic
GA are introduced. In section 4, the proposed GA algorithm is introduced. In section 5, the simulation result and
comparison between algorithms are presented and in section 6, Conclusion is written which concludes the
findings.

II. MODELING THE PROBLEM

A set of tasks can be modeled as Weighted Directed Acyclic Graph (WDAG) as mentioned below:
WDAG = (T, <, E, D) [11] where T = {ti ; I = 1, … n} is a set of tasks, < is a partial order defined on T

which specifies operational procedure constraints. That is, ti < tj means that ti must complete its task before tj can
start execution. E is a set of directed edges. A directed edges (i,j), between two tasks ti and tj specifies a partial
order. D is an n * n matrix of communication data, where Di,j is the amount of data required to be transmitted
from task ti to task tj. If grid consists of a set of m nodes which are connected to each other, then Estimated
Completition Time (ECT) would be a n * n matrix, where ECTi,j shows the estimated completition time of the
task ti on the nodes mj. A WDAG is shown in the figure (1) and the grid nodes consisting three nodes shown in
figure (2)

R is m * n matrix which shows the data transfer rate between different nodes. If two tasks schedules on the

sane node, the communication cost (ComCost) of transferring data will be zero; otherwise it is obtained based
on equation (1)

ComCost (ti , tj) = (1) ..…… [(݆)ܰ,(݅)ܰ]ܴ݆,݅ܦ

Di,j is the amount of data required to be transmitted from task ti to task tj and R[N(i), N(j)] is the data transfer

rate of two different nodes.
As per our mentioned concepts, the static task scheduling problem in the grid based system becomes a π :

T→N mapping. This mapping allocates a set of tasks T to a set of nodes N, where the procedure constraints on
the tasks is satisfied and the completion time of tasks on nodes is minimized. The problem’s answer or
scheduling length (SL) will be given in equation (2)

Min (SL = max{cj | j=0, . . ., m -1}) …………..(2)

Cj is the completion time of final scheduled task on nodes Nj including completion time, communication

time and waiting time because of procedure constraints.

Arun Baruah / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 01 January 2012 55

Two other parameters are defined for each nodes (tasks) in the graph known as botton-level and top-level.
The bottom-level of a node is the length of the longest path from the node to a leaf node. If a node has no
children, its bottom-level is equal to the average execution time of the task on the different computing machines.
The top-level of a node is the length of the longest path from the node to a root node in the WDAG without
considering the execution time of that task. In effect, the top-level determines the earliest beginning time of a
task. Therefore, if a task has no parent its top-level will be zero.

III. THE GENETIC ALGORITHM

Genetic algorithms are search algorithms based on the mechanics of natural selection and natural genetics.
They combine survival of the fittest among string structures with a structured yet randomized information
exchange to form a search algorithm with some innovative flair of human search. The algorithm is as follows:

These algorithms are started with a set of random solution called initial population. Each member of this

population is called a chromosome. Each chromosome of this problem which consists of the string genes. The
number of genes and their values in each chromosome depends on the population specification. In the algorithm
of this paper, the number of genes of each chromosome is equal to the number of the nodes in the DGA and the
gene values demonstrate the scheduling priority of the related task to the node, where the higher priority means
that task must executed early.

Set of chromosomes in each iteration of GA is called a generation, which are evaluated by their fitness
functions. The new generation i.e., the offspring’s are created by applying some operators on the current
generation. These are called crossover which selects two chromosomes of the current population, combines
them and generates a new child (offspring), and mutation which changes randomly some gene values of
chromosomes and creates a new offspring. Then, the best offspring’s are selected by evolutionary select
operator according to their fitness values.

The GA presented by Dhodhi et.al[11] named here Dhodhi GA (DGA) has four steps as shown below

algorithms:

Step 1: Read WDAG, ECT (estimated completion time) and R values from file and get Np, Ng, Xr and Mr from
the user where
Np → (initial population size),
Ng →(the number of generations),
Xr →(crossover probability),
Mr→(mutation probability)

Step 2: Calculate the botton-level and the top-level of each task in the WDAG;
Generate initial population (pi);
Pcurrent ← Pi ;

Arun Baruah / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 01 January 2012 56

Schedules ← Decodingheuristic(Pcurrent);
BestSchedule ← evaluate(schedules);
Step 3: while stop criterion not satisfied, do begin
Pnew ← {}; /*empty new population*/
3 – 1: repeat for (Np/2) times
Father ← select (Pcurrent , sum_of_fitness);
Mother ← select (Pcurrent , sum_of_fitness);

Pnew ← Pnew Ǘ crossover (father, mother, child1, child2, Xr);

End repeat;

3 -2: for each chromosomes € Pnew do begin

 Mutate(chromosomes, Mr);

Endfor

 3-3:

 Pnew ← Pnew Ǘ{four best chromosomes of Pcurrent}

 Pcurrent ← Pnew;

 Schedules ← decodingheuristic (Pcurrent);

 Best_schedule ← evaluate (schedules);

Endwhile

Step 4: Repeat the best schedule

IV. GASASCHEDULER – the proposed algorithm

The discussed algorithm (DGA) by Dhodhi et. Al [11] has used a fixed number of generations (Ng) for each
WDAG with any number of tasks. This is a problem in the above algorithm because if the number of tasks is
small, there is no need to tolerate high computation time of the algorithm, and if the number of tasks in WDAG
is too large, it is possible that the number of generations and the number of iterations are not enough to find an
optimal or sub-optimal solution. For tackling this problem, we can use a new algorithm which its running time
depend on the number of tasks.

In this new idea, two main parameters of this algorithm i.e., Np and Ng are defined as factors of task
numbers. These two factors are called NP factor and Ng factor. It is known that if the number of tasks in a
WDAG is small, the computation time will be decreased because of lessening two above parameters. However,
if the number of tasks is large the computation time of the algorithm will be increased. For decreasing the
computing time, the simulated annealing (SA)[13] is used here. The SA algorithm is shown below:

Simulated annealing is a probabilistic search algorithm. The term simulates annealing derives from the

process of heating and cooling a substance slowly to finally arrive at the solved state[13]. When the temperature
is high, atoms can occasionally move to states with higher energy, but then, as temperature drops the probability

Arun Baruah / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 01 January 2012 57

of such moves is reduced. In the task scheduling algorithm, the energy of the state corresponds to its completion
time, and the temperature becomes a control parameter which is reduced during the execution of the algorithm.

For decreasing the temperature and applying the geometric cooling schedule in a proper time, a new method
is used. Therefore a new algorithm GASAScheduler is introduced.

In GASAScheduler, if the convergence of results is recognized after some iteration then, some parameters of
the algorithm will be changes intentionally. This happens by decreasing the number of current population size
(Np) and Xr by multiplying them to a value which is less than one and also increasing Mr by multiplying its
value to a number more than one. The completion time of the new algorithm is decreased by lessening current
population and crossover probability and there is an attempt to prevent to trap with local minima by increasing
the mutation probability. The new algorithm is as follows:

BEGIN

 Step 1: Read WDAG, ECT and R from the file and get Crossover-factor, mutation-factor, Np , Ng , Np-factor
Ng-factor, slidingwindow, Xr , Mr , population-factor and Comparison-factor from the user;

Np ← Number of task * Np-factor;

Ng ← Number of task * Ng-factor;
 (Fig- 3a – the modification in first step of algorithm shown in fig 2)

3-4: calculate value of CD

If(CD >= Comparision_base)

/*so, annealing happens */

Np ← Np * population-factor;

Xr ← Xr * crossover-factor;

Mr ← Mr * mutation-factor;

Reset slidingwindow to zero;

Endif

(Fig 3b – the fourth sub-step of the step three is added to the algorithm shown in fig 2)

 GASAScheduler algorithm is similar to DGA however, the first step is modified as shown in fig(3a) and the
fourth sub-step of the step three is added to the algorithm as shown in fig(3b).

In step one the data i.e., WDAG, ECT and R from the file and other parameters are taken as input from the user.
Population- factor, crossover-factor and mutation-factor are the cooling schedules of the algorithm. The
crossover and mutation operators are applied on the current generation to produce a new generation and for
copying the four best chromosomes of the current generation without any changes to the new one. All the
chromosomes of the new one, all of the chromosomes of new generation are decoded and the best optimal
solution is stored in the Best-optimalsolution array. Therefore the stored fitness value of each element is better
than the previous ones, so the Best-optimalsolution is a descending array.

 For applying SA method, in the fourth sub-step, the convergence of the Best-optimalsolution element is tested
by a new idea. This idea uses a sliding window which its length depends on the number of tasks in WDAG. The
sliding window length (SWL) is given by the equation (3) as shown below:

SWL = number_of_task * sliding_window ………(3)

Sliding_window is a coefficient of the sliding window which its suitable value is determined latter. If the
beginning of the sliding window is the index i of the Best-optimalsolution, then the convergence degree (CD) is
calculated by the equation (4):

Arun Baruah / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 01 January 2012 58

ܦܥ = ∑ ݅=1݇−1+݈ݓݏ݊݋݅ݐݑ݈݋ݏ݈ܽ݉݅ݐ݌ܱ_ݐݏ݁ܤ ……...…(4)

swl *Best_optimalsolution

Considering the decending array Best_optimalsolution, the CD is always equal or less than one. If the value of
the CD is near to one, the values of the elements are more convergent, then applying the cooling schedules will
be more appropriate. The value of the CD is compared to a comparison-base; if the CD is equal or more than
that, the SA will happen and the sliding window counter will be set to zero; otherwise the next iteration of the
algorithm will be done. This minimum distance between two SA events is equal to the SWL. Determining the
optimal parameters of the GASAScheduler: The algorithm is written in java. A set of 30 graph was taken. All
elements of the matrix R is set to one. To find out the proper value of each parameter i.e., crossover-factor,
mutation-factor, population-factor, comparison-base, sliding_window, the different values are assigned to each
parameters, while the values of the other parameters remain fixed. Then the computation time and the overall
completion time for each WDAG are calculated and accordingly, the best value for each parameter is
determined as follows:

Crossover-factor =0.6, population-factor=0.8, mutation-factor = 1.1, comparison-base =0.95, sliding-window
=0.25

V. Simulation and results

A set of simulation is done using the Gridsim (grid simulator) to compare GASAScheduler with the WDAG
scheduling algorithm. A set of 15 random WDAG graph consists of about 100 to 200 tasks are generated
randomly as shown in table (3). The matrix ECT is generated by random and all elements of the matrix R are set
to one. Xr =0.6, Mr =0.05 are set for two algorithms and Np =500, Ng = 1000 are defined for DGA.

To run the simulations of two algorithms in the nearly same condition, the initial values for Np-factor and Ng-
factor are set to 3 to 6 respectively, so that by multiplying their values to the number of tasks (between 100 and
200), the Np and Ng are attained at DGA range value. The other GASAScheduler parameters are equal to the
same values which are obtained in section 4.

Graph number Number of tasks Number of nodes Number of dependencies
1 102 5 546
2 115 10 56
3 117 7 1559
4 140 9 3785
5 142 8 9300
6 151 6 7786
7 157 5 6966
8 155 8 5846
9 158 7 3383
10 160 6 5475
11 179 6 675
12 180 6 4800
13 189 6 6517
14 199 5 5646
15 199 3 14202

Table –I WDAG used for comparison of two algorithms.

The above two algorithm executed for each graph thrice. After scheduling, the computation time and the total
completion time (in seconds) of each algorithm is shown table (2) below. Also the average computation time of

Arun Baruah / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 01 January 2012 59

GASAScheduler selected as a base and the ratio between the average computation time of DGA and the average
computation time of GASAScheduler is calculated from each graph. Then by adding the obtained ratios and
dividing the results by the number of graph, the average ratio is achieved. The above mentioned ratios are
calculated for average and overall completion time as shown in the table (2) below:

Graph
number

DGA GASAScheduler

Average
computation time
(sec)

Overall
completion time
(sec)

Average
computation time
(sec)

Overall completion
time (sec)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

222

1096

302

748

963

1296

550

897

821

998

1242

1039

1234

1279

1799

22514

1899

33732

58334

230869

256129

219969

196919

40890

125393

13589

84444

123199

159318

69789

66

536

320

372

477

493

477

460

508

499

606

683

891

1081

1756

22516

1888

34266

61197

330876

156129

210148

197809

51040

99050

13808

94132

111508

151198

103637

Sum of
ratios

26.89311465

15.10411209

15 15

Average
ratios

1.79287431

1.006940806

1 1

As the results shows, the computation time of GASAScheduler is decreased by about 80% compared to DGA.
However, the average total completion time is decreased.

VI. Conclusions

The task scheduling problem in the grid based system is NP-hard. Therefore the meta-heuristic algorithms
which obtain near optimal solution in an acceptable interval time as preferred to the dynamic programming. The

Arun Baruah / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 01 January 2012 60

genetic algorithm is one of the meta-heuristic algorithms which have high capacity to solve the complicated
problems like the task scheduling.

 In this paper, a new GA named GASAScheduler is presented which its population size and the number of
generations depends on the number of tasks. The computation time of this algorithm is decreased by using SA.
There is a tradeoff between the computation time and the total completion time. But with proper utilizing of SA,
the computation time of the algorithm decreases more, although the overall completion time is not increased.
The GASAScheduler proved highly influential in task scheduling problem.

VII. References

[1] Haupt, R.L., Haupt, S.E., Practical genetic algorithms, John willy & Sons, 2004.
[2] Armstrong, R., Hensgen, D., and Kidd, T., "The relative performance of various mapping algorithms is independent of sizable

variances in run-time predictions", 7th IEEE Heterogeneous Computing Workshop (HCW '98), 1998, pp. 79-87.
[3] Ali, S., Braun, T. D., Siegel, H. J., and Maciejewski, A. A., Heterogeneous computing, in Encyclopedia of Distributed Computing,

Kluwer Academic, Norwell, MA, 2001.
[4] Braun, T. D., Siegel, H. J. and Beck, N., "A comparison of eleven static heuristics for mapping a class of independent tasks onto

heterogeneous distributed systems", Journal of Parallel and Distributed Computing Vol. 61, 2001, pp. 810-837.
[5] Zafarani Moattar E., Rahmani A.M., Feizi Derakhshi M.R., "Job Scheduling in Multi Processor Architecture Using Genetic

Algorithm", 4th IEEE International conference on Innovations in Information Technology, dubai, 2007, pp. 248-251.
[6] Shenassa, M. H., Mahmoodi, M., "A novel intelligent method for task scheduling in multiprocessor systems using genetic algorithm",

journal of Franklin Institute, Elsevier, 2006, pp. 1-11.
[7] Pourhaji Kazem A. A., Rahmani A. M. and Habibi Aghdam H., , “A Modified Simulated Annealing Algorithm for Static Scheduling

in Grid Computing”, International Conference on Computer Science and Information Technology 2008 (ICCSIT 2008), Singapore
August 29 – September, 2008, pp. 623-627.

[8] Rahmani A. M., Vahedi M. A., "A Novel Task Scheduling in Multiprocessor Systems with Genetic Algorithm by Using Elitism
Stepping Method", INFOCOMP – Journal of Computer Science, Vol. 7(2), 2008, pp.58-64.

[9] Rahmani A. M., Moztaba Rezvani, "A Novel Genetic Algorithm for Static Task Scheduling in Distributed Systems International
Journal of Computer Theory and Engineeing, Vol. 1(1), 2009, pp.1793 -8201.

[10] Abdeyazdan M. and Rahmani A. M., "Multiprocessor TaskScheduling using a new Prioritizing Genetic Algorithm based on number of
Task Children", Book chapter of Distributed and Parallel Systems in Focus: Desktop Grid Computing, Springer Verlag, 2008, pp. 105-
114.

[11] Lee, Y.H., Chen, C., "A Modified Genetic Algorithm for Task Scheduling in Multiprocessor Systems", the 9th workshop on compiler
techniques for high-performance computing, 2003.

[12] Dhodhi, M. K., Ahmad, I., Yatama, A. and Ahmad, I., "An integrated technique for task matching and scheduling onto distributed
heterogeneous computing systems", Journal of Parallel and Distributed Computing, Vol. 62, 2002, pp. 1338–1361.

[13] X. Yao, “A New Simulated Annealing Algorithm”, International Journal of Computer Mathematics, 56: 1995, pp 161 – 168.

Arun Baruah / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 4 No. 01 January 2012 61

