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Abstract— Multidimensional databases are beginning to be used in a wide range of applications. To meet 
this fast-growing demand, the R-tree family is being applied to support fast access to multidimensional 
data, for which the R+-tree exhibits outstanding search performance. In order to support efficient 
concurrent access in multi-user environments, concurrency control mechanisms for multidimensional 
indexing have been proposed. However, these mechanisms cannot be directly applied to the R+-tree 
because an object in the R+-tree may be indexed in multiple leaves. This paper proposes a concurrency 
control protocol for R-tree variants with object clipping, namely, Micro level Locking for clIPping 
indexing (MLIP). MLIP is the first concurrency control approach specifically designed for the R+-tree 
and its variants, and it supports efficient concurrent operations with serializable isolation, consistency, 
and deadlock-free. Experimental tests on both real and synthetic data sets validated the effectiveness and 
efficiency of the proposed concurrent access framework. 
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I.  INTRODUCTION 

As the fast-growing demand for multi-dimensional databases applications, the development of efficient access 
methods for multidimensional data has become a crucial aspect of database research. Many indexing structures 
(e.g., the R-tree  family, Generalized Search Trees (GiSTs), grid files, and z-ordering) have been proposed to 
support fast access to multidimensional data in relational databases. An important issue related to indexing, 
concurrency control methods that support concurrent access in traditional databases are no longer adequate for 
today’s multidimensional indexing structures due to the lack of a total order among key values. In order to 
support concurrency control in R-tree structures, several approaches have been proposed, such as Partial Locking 
Coupling (PLC), and granular locking approaches for R-trees and GiSTs. In multidimensional indexing trees, the 
overlapping of nodes will tend to degrade query performance, as one single point query may need to traverse 
multiple branches of the tree if the query point is in an overlapped area.                         

This paper proposes a concurrency control protocol for R-trees with object clipping, Micro level Locking for 
clipping indexing (MLIP), to provide phantom update protection for the R+-tree and its variants. We also 
introduce the ZR+-trees, which resolve the limitations of the original R+-tree by eliminating the overlaps of leaf 
nodes. MLIP, together with the ZR+-tree, constitutes an efficient and sound concurrent access model for 
multidimensional databases.  

The major contributions are as follows:  

• The concurrency control protocol, MLIP, provides serializable isolation, consistency, and deadlock-
free operations for indexing trees with object clipping. 

• The proposed multidimensional access method, ZR+-tree, utilizes object clipping, optimized 
insertion, and reinsert approaches to refine the indexing structure and remove limitations in 
constructing and updating R+-trees. 

• MLIP and the ZR+-tree enable an efficient and sound concurrent framework to be constructed for 
multidimensional databases. 
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• A set of extensive experiments on both real and synthetic data sets validated the efficiency and 
effectiveness of the proposed concurrent access framework. 

 

II. APPLYING CONCURRENCY CONTROL ON R+-TREES  

 
      Several efficient key value locking protocols to provide phantom update protection in B-trees have been 
proposed [3], [17], [18]. However, they cannot be directly applied to multidimensional index structures such as 
R-trees, because for multidimensional data, a total order of the key values on which these protocols are based is 
undefined. Granular locking protocols such as GL/R-tree [4], [5] for multidimensional indices have been 
proposed, but none can be directly applied to the R+-tree.  
 
      An example will show why the original GL/R-tree is not sufficient to provide phantom update protection for 
the R+-tree. The GL/R-tree defines two types of lockable granules: leaf granules that correspond to the MBR for 
each leaf node and external granules that are defined as ext (internal node) = (MBR for the internal node) — 
(MBRs for each of its children). In Fig. 1, assuming A and B are leaf nodes, the search window WS requires 
shared locks to be placed on the lockable granules A, whereas the update window WU requires exclusive locks 
to be placed on B. However, as in an R+-tree, the object D is shared by both leaf nodes and both locks only 
affect their own granules. In this case, the GL/R-tree protocol does not provide sufficient phantom update 
protection for the object D. One possible solution to this problem would be to lock objects rather than leaf 
granules. In this way, the objects’ MBRs can be viewed as leaf granules, and the external granules would be 
defined similarly for leaf nodes. 
 

                 
                                     Fig. 1. Example operations for GL/R-tree on an R+-tree. 
 
        Although this solution solves the above problem for deletions (and updates), the object-level  locking 
substantially increases the number of locks. For example, if a search window were to return 10,000 objects, this 
would require 10,000 object-level locks to be placed for the duration of the search and then released at the time 
of commitment. Using coarse leaf granules, as proposed in the GL/R-tree, and assuming 100 maximum entries 
per node and an average fill factor of 0.5, only 200 such locks would need to be requested. Therefore, for 
applications where selection is the predominant operation, locking at the object level may not be a desirable 
solution, and a new locking protocol is therefore required to provide phantom update protection efficiently for 
indexing trees with object clipping. 

 

III. DEFINITION OF MLIP AND ZR+-TREE 

 
     Before proceeding to the details of the proposed concurrent access framework, we first define the notations 
that will be used throughout this paper. 
 
Terms and Notations 
 
     The presence of a standard lock manager [15] is presumed to support conditional and unconditional lock 
requests, as well as instant, manual, and commit lock durations in MLIP. A conditional lock request means that 
the requester will not wait if the lock cannot be granted immediately; an unconditional lock request means that 
the requester is willing to wait until the lock becomes grantable. Instant duration locks merely test whether a 
lock is grantable, and no lock is actually placed. Manual duration locks can be explicitly released before the 
transaction is completed. If they are not released explicitly, they are automatically released at the time of 
commit or rollback. Commit duration locks are automatically released when the transaction ends. 
Conventionally, five types of locks, namely, S (shared locks), X (exclusive locks), IX (Intention to set X locks), 
IS (Intention to set S locks), and SIX (Union of S and IX locks) [6] are used. In the proposed protocol, only S 
and X locks are used to support concurrent operations with relatively simple maintenance processes. 
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The lock manager in MLIP is presumed to support the acquisition of multiple locks as an atomic operation. If 
this is not the case, such a procedure can be conveniently implemented by acquiring the first lock in a list 
unconditionally and all subsequent locks conditionally, with the procedure releasing all the acquired locks and 
restarting if any of the conditional locks cannot be acquired. Furthermore, a transaction can place any number of 
locks on the same granule as long as they are compatible. The lock manager will place separate locks for each 
granule, and each lock will be distinct even if the lock modes are the same. When releasing manual duration 
locks, both the lock granule and lock mode must be specified. 
 
                                                       TABLE 1 ZR+-Tree Node Attributes 

                           
      
The terms used to describe the ZR+-tree structure are listed in Table 1.Suppose T denotes a ZR+-tree, then 
T:root refers to the root node of this tree. For each node P in T, P:isLeaf indicates whether the node P is a leaf 
node or not, P:level gives the level of P in T,P: entries denotes the current number of entries in the node ,and P: 
capacity is the maximum number of entries the node P can hold. P:mbr gives the MBR for the node P and is 
defined as an empty rectangle when P is NIL. For internal nodes, P:childi is an entry pointing to a node, which is 
P’s ith child, and P:recti gives the MBR of the ith entry. For leaf nodes, P:childi gives the object pointed to by 
the ith entry, and P:recti refers to the MBR of this entry. For each rectangle R, R:l denotes the lower left corner 
and R:h denotes the upper right corner. 
     
    Similar to the R+-tree, the ZR+-tree is height balanced, so for each P in T, where P:isLeaf is true, P:level is 
the same. This also implies that if P is an internal node, then for all P:childi, P:childi:isLeaf is false, or for all 
P:childi, P:childi:isLeaf is true. As data objects in a ZR+-tree may be clipped, for leaf nodes, P:recti may only 
indicate part of the MBR of a data object. Therefore, an object can be exclusively covered by multiple nodes. 
Furthermore, P:mbr must cover all the P:recti, regardless of whether P:childi is an internal node or not. 

 
R+-Tree and ZR+-Tree 
 

• R+-trees can be viewed as an extension of K-D-B-trees [22] to cover rectangles in addition to points. 
The original R+-tree has the following properties [23]: 

 
• A leaf node has one or more entries of the form (oid; RECT), where oid is an object identifier, and 

RECT is the Minimum Bounding Rectangle (MBR) of a data object. 
• An internal node has one or more entries of the form (p;RECT), where p points to an R+-tree leaf or 

internal node R, such that if R is an internal node, then RECT is the MBR of all the (pi;RECTi) in R. 
However, if R is a leaf node, for each (oidi; RECTi) in R, RECTi does not need to be completely 
enclosed by RECT; each RECTi simply needs to overlap with RECT. 

• For any two entries (p1; RECT1) and (p2; RECT2) in an internal node R, the overlap between RECT1 
and RECT2 is zero. 

• The root has at least two children unless it is a leaf. 
• All leaves are at the same level. 

 

                      
                                               Fig. 2. An example of ZR+-tree for the data in Fig. 1 
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     As the proposed tree structure eliminates overlaps even among entries in different leaf nodes, it is named the 
Zero-overlap R+-tree (ZR+-tree). The essential idea behind the ZR+-tree is to logically clip the data objects to 
fit them into the exclusive leaf nodes. 
    
      There are two fundamental differences between the clipping techniques applied in the ZR+-tree and the R+-
tree:  
 

• From the definition of the ZR+-tree, object clipping in the ZR+-tree must differentiate the MBRs of the 
segmented objects in leaf nodes (e.g., MBRs of D1 and D2 in Fig. 2), while the clipping in the R+-tree 
retains the original MBRs (e.g., MBRs of the two Ds in the leaf node A and leaf node B ).  

 
• In the ZR+-tree, each entry in a leaf node is a list of segmented objects that share the same MBR, while 

each leaf node entry in the R+-tree contains exactly one object. 
 
 
Micro level Locks 
 
     Each leaf node in the ZR+-tree is defined as a micro level lockable granule. We also define an external 
lockable granule for each ZR+-tree node as the difference between the MBR of the node and the union of the 
MBRs of its children. In order to reduce the overhead associated with lock maintenance, objects are not 
individually lockable. The clip array introduced as an auxiliary structure to store the object clipping information 
does not need to be locked because the locking strategies on leaf nodes ensure the serializability of access for 
the same object, and updating one object will not affect the other objects.  
              
       Thus, in the case of the indexing tree in Fig. 1, the leaf nodes A and B, ext(A), ext(B), and extiroot) are 
defined as lockable granules. ext(A) covers the region A.mbr — (C.mbrU Di.mbrU E.mbr), and extiroot) covers 
the region MBTL( A.mbr U B.mbr) — (A.mbr U B.mbr) ). The above lockable granules cover the entire MBR of 
the tree root. However, all of these lockable granules do not fully cover any search windows that are partially or 
fully located outside the MBR of the root. One option is to define ext(T) as a lockable granule that covers all 
such INDEXING space. 

 

IV. OPERATIONS WITH MLIP ON ZR+-TREE  

     To support concurrent spatial operations on the R+-tree and its variants, a granular locking-based 
concurrency control approach, MLIP, that considers the handling of clipped rectangles is proposed. The 
approach is designed to meet the following requirements: 
1.     The following concurrent operations should be supported. 
Select for a given search window. This is presumed to be the most frequent operation. This operation could 
result in the selection of a large number of objects, though this may be only a fraction of the total number of 
objects. Hence, it is desirable to have as few locks as possible that must be requested and released for this 
operation. 
Insert a given object. Having redefined the properties of the R+-tree with clipped objects, a new algorithm must 
be provided for insertion in the ZR+-tree. 
Delete objects intersected with a search window. Since an object in the ZR+-tree may be clipped and the search 
window might not select all the fragments of a given object, the algorithm is required to delete all fragments of 
the selected objects in order to maintain consistency. 
2.     The locking protocol should ensure serializable isolation for transactions, thus allowing any combination of 
the above operations performed. 
3.     The locking protocol should ensure consistency of the ZR+-tree under structure modifications. When ZR+-
tree nodes are merged or split in cases of underflow or overflow, the occasionally inconsistent state should not 
lead to invalid results. 
4.     The proposed locking protocol should not lead to additional deadlocks. 
Details of the algorithms are provided in the following sections with formal algorithm descriptions. 
 
1)Select: 
 
Algorithm Select(W, T) 
Input: search window W, ZR+-tree T Output: set of objectelD O 
O := {}; P := T.root 
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If (P is NIL) or (not(P.mbr n W)) 
return O If W n P.mbroP.mbr / / Root does not cover W 
Lock(ext(T), S, Commit) / / Lock external of tree  
Lock(ext(P), S, Manual) / / Lock the root Stack L := {( P.mbr n W, P)} 
Loop until L is 0 (R, P) := L.pop For each i in P.rect IfP.rectnRThen If P.isLeaf Then 
0:=Ou P.chikL / / Add the objects that are not in results Unlock(P, S) Else 
If P.chikLisLeafThen 
LockCP.child,, S, Commit) Else 
LockCextCP.child;), S, Manual) L.push( {(P.rect n R, P.chikt)}) / / Put the child of P in stack 
 R := R - P.rect If (not P.isLeaf) and (R = 0) Unlock(ext(P),S) / / Release S Lock on ext(P) if not overlaps R 
Return 
 
2)Insert: 
 
Algorithm Insert(W, O, T) 
Input: key W, object O, ZR+-tree T, queue of X locks to request M Output: NIL 
L := {}; P := T.root; M := {}; S2 := {}  
If W H P.mbroP.mbr //root does not cover W 
M.enqueue({ext(T), X, Commit}) L.enqueue({P, W}) Loop until L is 0 (P, R) := L.dequeue If P.isLeaf S2 := S2 
+ {P, R} M.enqueue({P, X, Commit}) Else If P.mbr covers R and !(3 i, P.rect covers R) M.enqueue({ext(P), X, 
Commit}) 
SC := minExtend(W, P) //Choose list SC in P to extend to include W with minimum cost and update MBRs 
(Algorithm 3) L.enqueue({each node in S and its extended MBR}) break Else 
n := P.childi | P.childi covers R L.enqueue(n, R)  
If LockAll(M) //Request all the X locks and check version For every pair (P, R) in S2 P.child(P.entries) := O 
P.rect(P.entries++) := R If R<>W //The object is clipped 
StoreClipArray(0, R, P) //Store object in clip array  
If P.entries > P.capacity //Overflow Split(P) //If splits propagate to a node not in M then add the node to M and 
restart from LockAll Else 
Insert(W, O, T) //Restart insert operation Return 
 
 
 
3)Window Split: 
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4)Delete: 
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V.  QUERY PERFORMANCE 

 
    The performance for concurrent query execution was evaluated both for the R-tree with granular locking and 
the ZR+-tree with the proposed MLIP protocol. In order to compare these two multidimensional access 
frameworks, two parameters, namely, concurrency level and write probability, were applied to simulate different 
application  
environments on the three data sets. Here, concurrency level is defined as the number of queries to be executed 
simultaneously, and write probability describes how many queries in the whole simultaneous query set are 
update 
queries. The execution time measured in milliseconds was used to represent the throughput of each of the 
approaches. 

 
Fig. 3. Execution time for different concurrency levels. 

 

 
Fig. 4. Execution of MLIP. 

 

  The execution time costs for the three data sets with a fixed concurrency level and changing write probabilities 
when the query range is 1 percent of the data space. The concurrency level was fixed at two levels 30 and 50 as 
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representative levels, while the write probability varied from 5 percent to 40 percent. The y-axis in these figures 
shows the time taken to finish these concurrent operations, and the x-axis indicates the portions of update 
operations in all the concurrent operations in terms of percentages. Both approaches degrade the throughput 
when the write probability increases. Comparing the performance from the different write probabilities, MLIP 
on the ZR+-tree performs better than granular locking on the R-tree when the write probability is small. When 
the write probability increases, the throughput of the concurrency control on the R-tree comes close to and 
exceeds that of the ZR+-tree. Specifically, when the concurrency level is 30, the throughput of the ZR+- tree is 
better with a write probability lower than 30 percent in real data sets. When the concurrency level is raised to 
50, the particularly significant for evenly distributed data sets compared to DGL on the R-tree. 
 

VI. CONCLUSION 
   
This paper proposes a new concurrency control protocol, MLIP, with an improved spatial indexing approach, 
the ZR+-tree. MLIP is the first concurrency control mechanism designed specifically for the R+-tree and its 
variants. It assures serializable isolation, consistency, and deadlock free for indexing trees with object clipping. 
The ZR+-tree segments the objects to ensure every fragment is fully covered by a leaf node. This clipping-
object design provides a better indexing structure. Furthermore, several structural limitations of the R+-tree are 
overcome in the ZR+-tree by the use of a nonoverlap clipping and a clustering-based reinsert procedure. 
Experiments on tree construction, query, and concurrent execution were conducted on both real and synthetic 
data sets, and the results validated the soundness and comprehensive nature of the new design. In particular, the 
MLIP and the ZR+-tree excel at range queries in search-dominant applications. 
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