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Abstract—This paper proposes a TSK-type neural fuzzy network (TNFN) with a group interaction-based 

evolutionary algorithm (GIEA) for constructing the cancer cell colonies diagnosis system (CCCDS). The 

proposed GIEA is designed on the basis of symbiotic evolution which each chromosome in the population 

represents only partial solution. The whole solution consists of several chromosomes. The GIEA is 

different from the traditional symbiotic evolution. Each population in the GIEA is divided into several 

groups. Each group represents a set of the chromosomes that belongs to only one fuzzy rule. Moreover, in 

the GIEA, the interaction ability is considered that the chromosomes will interact with other groups to 

generate the better chromosomes by elites-base interaction crossover strategy (EICS). In the CCCDS, the 

EICS is used to train the CCCDS. After trained by the EICS, the CCCDS can diagnose the visible cancer 

cell colonies automatically. The performance of the GIEA is proved to be better than other existing 

models in diagnosing cancer cell colonies. 

 

Keywords: TSK-type Neural fuzzy network, Cancer Cell Colonies, group interaction-based evolutionary 

algorithm. 

�.  INTRODUCTION  

  The concept of the fuzzy logic or artificial neural networks for control problems has become a popular 

research area [1]-[3]. Traditional control theory usually requires a mathematical model for designing controllers. 

The inaccuracy of mathematical models at plants usually reduces the performance of the controllers, especially 
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for nonlinear and complex control problems [4]-[6]. Fuzzy logic can express the ambiguity of human thinking 

and translate expert knowledge into computable numerical data. 

In the design of a fuzzy controller [7]-[9], adjusting the required parameters is important. Therefore, 

back-propagation (BP) training was widely used in [1], [2]. It is an effective training technique and applied to 

networks with a forward structure. Since the steepest descent technique used in BP training can minimize the 

error function, the algorithms may reach the local minima fast and never find the global solution. To solve these 

problems, several evolutionary algorithms, such as genetic algorithm (GA) [10], genetic programming [11], 

evolutionary programming [12], and evolution strategies [13], have been proposed. They are similar and global 

search techniques. They simultaneously evaluate many points in the search space so they probably converge 

toward the global solution. Therefore, an evolutionary method using for training the fuzzy model has changed 

into an important field. 

The evolutionary fuzzy model generates a fuzzy system automatically throuth incorporating evolutionary 

learning procedures [14]-[19], where the well-known procedure is the genetic algorithms (GAs). In [14], Karr 

applied GAs to the design of the membership functions of a fuzzy controller, with the fuzzy rule set assigned in 

advance. Many researchers have applied GAs to optimize both the parameters of the membership functions and 

the rule sets [15] on the basis of. Lin and Jou [16] proposed GA-based fuzzy reinforcement learning to control 

magnetic bearing systems. In [17], Juang et al. proposed genetic reinforcement learning in the design of fuzzy 

controllers. The GA adopted in [17] was based upon traditional symbiotic evolution which, when applied to 

fuzzy controller design, complemented the local mapping property of a fuzzy rule. In [18], Tang proposed a 

hierarchical genetic algorithm. The hierarchical genetic algorithm enables the optimization of the fuzzy system 

design for a particular application. In [19], Lin proposed a hybrid evolution learning algorithm (HELA). The 

HELA combines the compact genetic algorithm (CGA) and the modified variable-length genetic algorithm to 

perform the structure/parameter learning for constructing the network dynamically. However, these approaches 

encounter one or more problems as below: 1) all the fuzzy rules are encoded into one chromosome; 2) the 

population cannot evaluate each fuzzy rule locally. 

Recently, neural fuzzy network have been applied to diagnosis system [20]-[23] in several researches. 

Genetic algorithm optimized fuzzy neural network (GA-FNN) proposed by Levente et al. [20] is capable of 

greatly assisting medicinal chemists in the design of lead compounds for HIV-1 protease and other 

therapeutically important enzymes. A fuzzy neural network (FNN) proposed by Quteishat et al. [21] was trained 

on a dataset of 177 HIV-1 protease ligands with experimentally measured IC50 values. The advanced fuzzy 

cellular neural network (AFCNN), Wang et al. [22] proposed is a variant of the fuzzy cellular neural network 

(FCNN) and is proposed to effectively segment CT liver images. The improved fuzzy cellular neural network 

(IFCNN) proposed by Wang et al. [23] has the global stability and uses the experimental results for microscopic 

white blood cell to demonstrate its obvious advantage over FCNN in keeping the boundary integrity.  

In this paper, as same with [20]-[23], we also applied neural fuzzy network to diagnosis the system. 

Therefore, TSK-type neural fuzzy network (TNFN) with a group interaction-based evolutionary algorithm 

(GIEA) is proposed for constructing the cancer cell colonies diagnosis system (CCCDS). In CCCDS, Medical 

treatments for liver cancer can be divided into three general categories: chemotherapy, hyperthermia and 
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radiotherapy. The Clonogenic Assay [24-27] is the current standard in vitro for hyperthermia and radiotherapy 

because its results correlate with biopsy results. The results of the MTT [24] assay showed a high degree of 

correlation with HTCA results in predicting the sensitivity of cancer cell lines to platinum analogues and 

anthracyclines/anthracenedione. N. Maximilian et al. made densitometric [25] software available with a detailed 

description of how to use and install the necessary features; J. Dahle et al. [26] employed a flat bed scanner to 

image 12 60-mm petri dishes at a time. Two major problems in automated colony counting are the clustering of 

colonies and edge effects; the feasibility, evaluation [27], and predictive value of the colony-forming assay with 

human tumor xenografts for screening anticancer drugs have been studied. 

The advantages of the proposed GIEA are summarized as below: 1) The GIEA uses group-based 

population to evaluate the fuzzy rule locally. 2) The GIEA uses the EICS method to let the better solutions from 

different groups cooperate to generate better solutions in the next generation. 3) It indeed can obtain better 

performances and converge faster than other traditional genetic methods. 

�.  REVIEW A TSK-TYPE NEURAL FUZZY NETWORK 

A Takagi-Sugeno-Kang (TSK) type neural fuzzy network (TNFN) [28] employs different implication and 

aggregation methods than the standard Mamdani controller. Instead of using fuzzy sets the conclusion part of a 

rule, is a linear combination of the crisp inputs: 
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where 
ijm , and

ij  represent a Gaussian membership function with mean and deviation with i-th dimension and 

j-th rule node. 
0 jw represents the first parameter of a linear combination of input variables with j-th rule node 

and 
ijw  represents the i-th parameter of a linear combination of i-th input variable. Since the consequence of a 

rule is crisp, the defuzzification step becomes obsolete in the TSK inference scheme. Instead, the control output 

is computed as the weighted average of the crisp rule outputs, which is computationally less expensive then 

calculating the center of gravity. 

A five-layer network structure of TFC is shown in the figure 1, where n and M is, respectively, the number 

of input dimensions and the number of rules. It is a five-layer network structure. The functions of the nodes in 

each layer are described as follows: 

Layer1 (Input Node): No function is performed in this layer. The node only transmits input values to layer 2. 

That is 

ii xu )1(                                      (2) 

Layer2 (Membership Function Node): Nodes in this layer correspond to one linguistic label of the input 

variables in layer1; that is, the membership value specifying the degree to which an input value belongs to a 

fuzzy set is calculated in this layer. For an external input ix , the following Gaussian membership function is 

used: 
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where
ijm and

ij are, the center and the width of the Gaussian membership function of the j-th term of the i-th 

input variable ix , respectively. 

 

Figure 1. The TSK-type neural fuzzy networwk. 

Layer 3 (Rule Node): The output of each node in this layer is determined by the fuzzy AND operation. Here, the 

product operation is utilized to determine the firing strength of each rule. The function of each rule is 

         
i

ijj uu )2()3(                                     (4) 

Layer 4 (Consequent Node): Nodes in this layer are called consequent nodes. The input to a node in layer 4 is 

the output delivered from layer 3, and the other inputs are the input variables from layer 1 as depicted in the 

figure 1. For this kind of node, we have 

)(
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0
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n

i
iijjjj xwwuu                               (5) 

where the summation is over all the inputs and where 
ijw  are the corresponding parameters of the consequent 

part. 

Layer 5 (Output Node): Each node in this layer corresponds to one output variable. The node integrates all the 

actions recommended by layers 3 and 4 and acts as a defuzzifier with 
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where M is the number of fuzzy rule. 

�.  GROUP INTERACTION-BASED EVOLUTIONARY ALGORITHM (GIEA) 

This section will introduce the proposed group interaction-based evolutionary algorithm (GIEA) method. 

Recently, there are many research works try to improve the traditional GAs performance [29]-[32]. One 

category of them tries to modify the structure of a population. Examples in this category include the distributed 

GA [30], the cellular GA [31], and the symbiotic GA [32]. 

At research works [32] proposes the group interaction-based evolutionary algorithm (GIEA) for improving 

the symbiotic GA. The GIEA algorithm is developed from a symbiotic evolution. The idea of symbiotic 

evolution was first proposed in an implicit fitness-sharing algorithm that is used in an immune system model 

[33]. The authors developed artificial antibodies to identify artificial antigens. Because each antibody can match 

only one antigen, a different population of antibodies is required to effectively defend against a variety of 

antigens. As shown in [17] and [32], partial solutions can be characterized as specializations. The specialization 

property ensures diversity, which prevents a population from converging to suboptimal solutions. A single 

partial solution cannot “take over” a population since there must exists other specializations. Unlike the standard 

evolutionary approach which always causes a given population to converge, hopefully at the global optimum, 

but often at a local one, the symbiotic evolution find solutions in different, unconverted populations [17] and 

[32]. The GIEA is different from the traditional symbiotic evolution; with each population in the GIEA is 

divided to several groups. Each group represents a set of the chromosomes that belong to a fuzzy rule. 

There are several groups in the GIEA’s structure of the population. Each group represents a set of the 

chromosomes that belong to a fuzzy rule. The structure of the chromosome in the GIEA is shown in the figure 2. 

However, to let groups that can cooperate to generate better solutions, the GIEA proposes the elites-base 

interaction crossover strategy (EICS) to let the better solutions form different groups can cooperate to generate 

better solutions in the next generation.  

The chromosomes of the GIEA are representing one fuzzy rule. A fuzzy rule that had the form of equation 

(1) is described in the figure 3 where 
ijm  and 

ij  represent a Gaussian membership function with a mean and 

a deviation with i-th dimension and j-th rule node. 

 There are six major steps in the learning process of the GIEA and described as follows: (a) initialization, 

(b) fitness assignment, (c) elite-based reproduction strategy (ERS), (d) elites-base interaction crossover strategy 

(EICS), and (f) mutation. The whole learning process is described step-by-step as follows: 
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Figure 2. The structure of the chromosomes in GIEA. 

 

Figure 3. Coding a rule of a TNFN into a chromosome in the GIEA. 

a. Initialization step: 

To start designing the GIEA, the several initial groups of individuals forming should be generated. 

Random values within a fixed range are generated for the initial groups of the GIEA. The equations which 

generate the initial chromosomes in each group are shown as follows: 

Deviation: Chrg,c [p]=random[ min , max ] 

where p=2, 4, …, 2n; g=1, 2, …, M; c=1, 2, …, NC;            (7) 

     Mean: Chrg,c [p]= random[ minm , maxm ] 

     where p=1, 3, …, 2n-1;                                   (8) 

  Weight: Chrg,c [p]= random [ minw , maxw ] 

         where p=2n+1, 2n+2, …, 2n+(1+n),                       (9) 

where Chrg,c represents c-th chromosome in g-th group; M represents total number of groups and NC is the total 

number of chromosomes in each group; p represents the p-th gene in a Chrg,c; and [ min , max ], [ minm , 

maxm ], and [ minw , maxw ] represent the range that are predefined to generate the chromosomes. 

b. Fitness assignment step: 

As previously state, for the GIEA, the fitness value of a rule (an individual) is calculated by summing up the 

fitness values of all the possible combinations in the chromosomes that are selected randomly from M groups. 
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The fitness value assigning steps are described as follows:  

• Step 1. Randomly choose one fuzzy rule from each group such that the size is NC. 

• Step 2. Evaluate every TNFN that is generated from step1 to obtain a fitness value. The fitness value is 

defined as follows: 

 

1

1_ ,(1 ( , ))

where ( , ) ( )
N

i i
i

Fitness Value E y y

E y y y y


 

 
                             (10) 

where iy  represents the desired value of the ith output, iy  represents the predicted value, ),( yyE is a error 

function and N represents a numbers of the training data of each generation. The average fitness value represents 

the performance of a rule (individual). 

• Step 3. To divide the fitness value by M and accumulate the divided fitness value to the selected rules which 

their fitness value records that were set to zero initially. 

• Step 4. Repeat the above steps until each rule (chromosome) in each group has been selected a sufficient 

number of times, and record the number of TNFN models in which each individual has participated. 

• Step 5. Divide the accumulated fitness value of each chromosome by the number of times it has been selected. 

The average fitness value represents the performance of a rule.  

c. Elites-based Reproduction Strategy (ERS):  

In this reproduction process, the individuals are copied according to their fitness values. A high fitness 

value denotes a good fit. The goal of the GIEA is to maximize the fitness value. For keeping the stable of the 

algorithm, this study proposes an elite-based reproduction strategy (ERS) to let the best combination of 

chromosomes in each group can be kept to the next generation. In the GIEA, the chromosome that has best 

fitness value may not be the chromosome in the best combination. About this, in the ERS, every chromosome in 

the best combination in each group must be kept by performing reproduction step. In the other chromosomes in 

each group, this study uses the roulette-wheel selection method [34] – a simulated roulette is spun – for this 

reproduction process. The best performing chromosomes in the top half of each group [17] advance to the next 

generation. The other half will be generated by crossover operations with the top half of the parent generation. 

In this reproduction step, the top half of the population for each group must be kept the same number of 

chromosomes. 

d. Elites-base Interaction Crossover Strategy (EICS):  

Form above step, we know the ERS operation can keep the best individuals but it does not create any new 

individuals. In nature, an offspring has two parents and inherits genes from both. A crossover operator is the 

main process with the parents’ chromosome. The probability of the crossover operation is according to a 

crossover rate. In this paper, for letting groups that can cooperate to generate better solutions, the elites-base 

interaction crossover strategy (EICS) is proposed to perform the crossover operation. The EICS mimics the 
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cooperation phenomenon in society, in which individuals become more suited to the environment as they 

acquire and share more knowledge of their surroundings. In the EICS, the elites of each group will select to 

perform crossover operation in the next generation. The best performing individuals in the top half of each 

group that are called elites are used to select the parents for performing the EICS. Details of the EICS are shown 

below. 

• Step 1. To Choice the first one of the parents from the original group by using the following equations: 

;,,2,1where,_

1
,

1
,

, Nct
fitness

fitness
RatioFitness

Nc

c
cg

t

u
ug

tg 
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


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;,,2,1where],1,0[][_ MgRandomgValueRand                     (12) 
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if,][_
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


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                       (13) 

where 
tgRatioFitness ,_  is a fitness ratio of the fitness value of t-th chromosome in the g-th group; 

]1,0[][_ gValueRand  is the random values of g-th group; ][_ gSiteAParent  is the site where the first parent 

is. According to equation (13), if the ][_ gValueRand  is greater than the fitness ratio at (t-1)-th chromosome in 

g-th group and smaller or equal to the fitness ratio at t-th chromosome in g-th group, the site of the first parent of 

g-th group is assigned to t. 

•Step 2. If the first parent is chosen, then the best performing elites in each group are used to determine the 

other parent. In this step, we use the following equation to calculate the all fitness ratio of every group: 

;,,2,1where,_
1

, MgfitnessFitnessTotal
Nc

c
cgg  



               (14) 

;,,2,1where

,
_

_
__

1

1

Mw

FitnessTotal

FitnessTotal
RatioFitnessTotal

M

g
g

w

u
u

w













                              (15) 

where 
gFitnessTotal _  represents the summation of the fitness value of every chromosomes in g-th group; 

wRatioFitnessTotal __  is a total fitness ratio of w-th group. 

•Step 3. Determine the group where the chromosome is selected from to be the other parent for performing 

crossover with the ][_ gSiteAParent -th chromosome in g-th group according to the following equations: 

;,,2,1where]1,0[][__ MgRandomgValueRandGroup                  (16) 
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where ]1,0[][__ gValueRandGroup  is a random values of g-th group;  ][__ gSiteBGroupParent  represents 

the site of the group that the second parent is selected from. 

•Step 4. After the ][__ gSiteBGroupParent -th group is selected, the ECCS determines the other present in the 

selected ][__ gSiteBGroupParent -th group according to the following equations: 
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where 
tgSelectedRatioFitness ,__  is a fitness ratio of the fitness value of t-th chromosome in the 

][__ gSiteBGroupParent -th group; and ][_ gSiteBParent  is the site where the second parent is. 

After the EICS selects the presents form the g-th group and ][__ gSiteBGroupParent -th group, the 

individuals ( ][_ gSiteAParent -th chromosome and the _ [ ]Parent SiteB g -th chromosome) are crossed and 

separated using a two-point crossover in the g-th group. The two-point crossover exchanges the site’s values 

between the selected sites of parents’ individual create new individuals. A new offspring will replace the 

individuals with poor performances. 

e. Mutation: 

Although ERS and EICS methods would produce many new strings, they do not introduce any new 

information to the population. An individual Mutation is an operator for altering a randomly allele of a gene. In 

this paper, a uniform mutation [34] is adopted, and the mutated gene is drawn randomly from the domain of the 

corresponding variable. 

The aforementioned steps are done repeatedly and stopped when the predetermined condition is achieved. 

�.  The cancer cell colonies diagnosis system (CCCDS) 

In this section the cancer cell colonies diagnosis system (CCCDS) is introduced.  In this paper, a scanner [26] 

is used to capture the culture dish image. As the culture dish was made from transparent acrylic, an even light 

source was required to avoid reflection and diffraction, precluding the use of a digital camera for image capture. 

Another advantage of using a scanner is its fixed focal distance. It will make the user unnecessary to spend time 

adjusting the focus during image capture. A cancer cell colony can only appear in six circular wells within one 

culture dish image. A image processing method will recognize the six circular wells.  

A binarization process is used to separate a cancer cell colony from the background inside the well region. 
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This paper uses an image differencing method in which the image of an empty culture dish is processed to 

provide a background image Ib without any cancer cell colonies. The image I of a culture dish with potential 

cancer cell colonies was then used as the input image and compared against the background image to form the 

foreground mask image Im. Im is defined as a binary image, and can be derived using equations (21) and (22) 

below , where τ f is a suitable threshold value. 

1, if  || ( , ) ( , )|| > ,
( , )

0, otherwise,
fI x y Ib x y

Im x y


 


                                    (21) 

2 2 2|| ( , ) ( , )||= ( ( , ) ( , )) ( ( , ) ( , )) ( ( , ) ( , )) ,r r g g b bI x y Ib x y I x y Ib x y I x y Ib x y I x y Ib x y         (22) 

Once the norm of the input image I and the background exceeds a certain threshold value at (x,y), that point 

will be the foreground point and equation (23) will tag it as 1 The definition of the Ip that can be acquired from 

Im is given below:  

( , ), if  ( , ) 1,
( , )

0, otherwise,

I x y Im x y
Ip x y


 


                                        (23) 

In other words, Ip consists only of image pixels defined as 1 in Im. All other image pixels, where Im is 0, are 

considered to be a part of the background. 

For the cancer cell colony identification system, to determine whether an object is a cancer cell colony or not, 

it must base on that object's features. Therefore, the system which proposed in this paper uses color information 

to identify cancer cell colonies instead of shape for identification. This color information includes the 

relationship between RGB values, the hue (H), and whether there are more than 50 cells in a colony or not. 

Surface area is another important feature. The expression for H can be derived from equation (24):  

( , ), if ( , ) ( , ),
( , )

360 ( , ), if ( , ) ( , ),

x y B x y G x y
H x y

x y B x y G x y





   

                           (24) 
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 Manual empirical assessment shows that stained cancer cell colonies tend to be purple tinted. Equation (25) 

can be used to remove noise in an effective manner. In this normal cancer cell colony, the RGB difference value 

was 152.   

( ) ( ) ( ) ( ) ,rgb mean mean meanR area G area R area B area                               (25) 

The proposed system uses a high-powered Charge Coupled Device (CCD) to observe 100 cancer cell colonies 

at 200X magnification. The individual cells in each colony are then mapped to their corresponding image pixels 

in the culture dish image. A clinical experience indicates there are 50 cells approximate to 25 pixels in a culture 

dish image. 

�.  SIMULATION 

Simulation is discussed in this section. The example was run to evaluate the cancer cell colonies diagnosis 

system (CCCDS). For the simulation, the initial parameters are given in Table 1. The initial parameters are 
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determined by practical experimentation or trial-and-error tests [35]. 

TABLE 1 THE INITIAL PARAMETERS BEFORE TRAINING 

Parameters Value Parameters Value Parameters Value 

Group Size 10 Time_Value 10100 min max[ , ]m m  [0, 2] 

Crossover Rate 0.5 Desired_Times 10000 min max[ , ]w w  [-20, 20] 

Mutation Rate 0.3 min max[ , ]   [0, 2]   

Example. Evaluating the CCCDS 

In this example, the simulation of GIEA-CCCDS is demonstrated. A total of 25 culture dish specimens were 

prepared. Each dish contained six 35mm-sized wells, yielding a total of 150 single cell images to process. The 

resolution of image is 500 dots per inch (dpi), the width and height of each image is 2262 pixels and is 1492 

pixels for color image. 50 samples are used to train the TNFN-GIEA and 150 samples are used to test 

TNFN-GIEA. These were divided according to their incubation conditions into37℃, 41℃and42.5℃. Treatment 

times were 0.5h, 1h, 2h and 4h.  

The values are floating-point numbers assigned with the GIEA initially. The fitness function in this example 

is defined in equation (10) to train TNFN. Ten fuzzy rules are used to construct TNFN. The evolution learning 

processed for 500 generations is repeated 50 times. As for comparative analysis, this paper uses the accuracy of 

three grades to evaluate the performance of the CCCDS. After 50 runs, the final average training and testing 

accuracy of three grades gets up to 94% and 93%. 

In order to demonstrate the effectiveness and efficiency of the proposed TNFN-GIEA, the SE, GA, and 

ESP are applied to the same problem in this example. There are ten rules to construct the TNFN. The parameters 

set in three methods are as follows: 1) the numbers of fuzzy rules are all set as 6; 2) the population sizes of SE 

and GA are 100 and 50; 3) the population size of the SE and ESP are both set as 50; 4) the crossover rates of SE, 

ESP, and GA are 0.57, 0.36, and 0.61; 5) the mutation rate of SE, ESP, and GA are 0.09, 0.15, and 0.14. The 

learning curves of the four methods (GIEA, SE, ESP, and GA) are shown in the figure 4. As shown in this figure, 

the TNFN-GIEA obtains better fitness value than others.  

After 50 runs, the final average training accuracy of the SE [17], ESP [36], and GA [14] approximates 

75%, 76%, and 70%. The final average testing accuracy of the SE [17], ESP [36], and GA [14] approximates 

71%, 72%, and 68%. 

The comparison about the training accuracy, testing accuracy and CPU times of proposed method and 

other methods ([14, 17, 19, 36, and 37]) are shown in table2. In this experiment, a Pentium III chip with a 

400MHz CPU, a 512MB memory, and the visual C++ 6.0 simulation software are applied to this experiment. 

This paper can detect the visible cancer cell colonies diagnosed by the proposed GIEA-CCCDS automatically. 

Moreover, the performance of the GIEA-CCCDS is proved to be better than other methods. 
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Figure 4. The learning curves of the GIEA, ESP [36], SE [17] and GA [14]. 

TABLE 2 COMPARISON OF PERFORMANCE FOR DIFFERENT METHODS. 

�.  CONCLUSION 

This paper proposed a TSK-type neural fuzzy network (TNFN) with group interaction-based evolutionary 

algorithm for constructing cancer cell colonies diagnosis system (GIEA-CCCDS). The proposed GIEA-CCCDS 

can be divided into two parts. The first part is the learning algorithm and the group interaction-based 

evolutionary algorithm (GIEA) is proposed. The GIEA can evaluate the fuzzy rule locally and interact with each 

group to produce the better chromosomes by elites-base interaction crossover strategy (EICS). The second part 

is the diagnosis system and the CCCDS trained by GIEA is proposed. The cancer cell colonies can be diagnosed 

by CCCDS automatically. The summarization of the advantages of the proposed GIEA-CCCDS are as follows: 

1) the GIEA-CCCDS evaluates the fuzzy rule locally with group-based population; 2) the GIEA-CCCDS uses 

the EICS to make the better solutions form different groups and interact each other to generate better solutions 

in the next generation; 3) the GIEA-CCCDS can detect the cancer cell colonies automatically. Computer 

simulations have been proved that the proposed method is provided with a better performance than the other 

methods. 

Method 
Training Accuracy Testing Accuracy 

CPU Time (Seconds) 
Best Worst Mean Best Worst Mean 

GIEA 95% 93% 94% 95% 90% 93% 94.22 

HELA [19] 87% 83% 85% 85% 82% 84% 131.26 

GSE [37] 81% 77% 79% 81% 71% 76% 140.51 

ESP [36] 77% 75% 76% 75% 69% 72% 154.65 

SE [17] 76% 74% 75% 73% 69% 71% 163.96 

GA [14] 73% 67% 70% 71% 65% 68% 147.38 
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