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Abstract—In virtualized environments, performance interference between virtual machines (VMs) is a 
key challenge. In order to mitigate resource contention, an efficient VM scheduling is positively necessary. 
In this paper, we propose a workload-aware VM scheduler on multi-core systems, which finds a system-
wide mapping of VMs to physical cores. Our work aims not only at minimizing the number of used hosts, 
but at maximizing the system throughput. To achieve the first goal, our scheduler dynamically adjusts a 
set of used hosts. To achieve the second goal, it maps each VM on a physical core where the physical core 
and its host most sufficiently meet the resource requirements of the VM. Evaluation demonstrates that 
our scheduling ensures efficient use of data center resources. 

Keywords- server consolidation; virtualization; virtual machine scheduling; multi-core systems. 

I.  INTRODUCTION 
The soaring energy consumption by data centers [15, 8, 22] and their low utilization [18, 3, 8] have become 

main drivers for server consolidation initiatives. Server consolidation using virtualization is a well-known 
approach to reduce the total number of servers that an organization requires. However, consolidating servers 
while ensuring performance is very challenging, because current virtualization techniques do not provide 
effective performance isolation between VMs. Contention for shared resources can cause significant variance in 
observed system throughput [2, 6, 23]. An efficient VM scheduling is positively needed to mitigate resource 
contention. Prior works on VM scheduling can be classified into two types according to the scheduling scope. 
VMs have been scheduled with respect to either other VMs in the current host (within-host) [11, 4, 14, 21, 17] or 
all VMs in the system (system-wide) [5, 25, 9, 10, 26]. Within-host schedulers focused on how to exploit CPUs in 
order to maximize throughput of a given host. VM placement considering workload characteristics was out of 
their concern. System-wide schedulers mainly considered system-wide placement to minimize resource 
contention between VMs. Contrary to within-host schedulers, they disregarded mapping of VMs to physical 
cores.  

We argue that prior works have missed a good opportunity of cost and performance optimization by 
disregarding workload-aware VM placement or multi-core systems. Firstly, contention for physical resources 
impacts performance differently in different workload configurations, causing significant variance in observed 
system throughput [1, 16, 20, 19, 24]. To this end, characterizing workload that generates resource contention and 
reflecting such contention in VM placement are important to maximize the system throughput. Secondly, though 
more and more multi-core CPUs are put into servers in data centers, multi-core systems cannot automatically 
obtain scalable performance according to the number of cores. Physical cores compete for the interconnect 
bandwidth, memory controllers, and caches. Therefore, VM schedulers should consider core-level mapping for 
scalable performance with increasing core counts [13, 12, 21, 17]. Our finding is that two types of scheduling are 
so complementary that their integration can improve the system throughput.  

In this paper, we propose a workload-aware VM scheduler on multi-core systems, which finds a system-wide 
mapping of VMs to physical cores. To map VMs on cores, we assign a signature to each of VMs and physical 
cores. A VM signature is a vector representing its resource demands, while a physical core signature is a vector 
representing remaining resource levels of itself and its host. Our work aims not only at minimizing the number of 
used hosts, but at maximizing the system throughput. To achieve the first goal, our scheduler dynamically adjusts 
a set of used hosts. Whenever new jobs arrive or inadequately utilized (i.e., either overloaded or under-loaded) 
hosts are detected, VM scheduling is triggered. Our scheduler estimates the minimum number of hosts to be able 
to meet the resource requirements of VMs. Considering current load of each host, it chooses the estimated 
number of hosts, and turns off hosts not chosen. To achieve the second goal, our scheduler attempts to mitigate 
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resource contention. Given VMs and chosen hosts, it maps each VM on a physical core where the physical core 
and its host most sufficiently meet the resource requirements of the VM.  

We implemented our scheduler as simulation, and also simulated two types of system-wide schedulers for 
performance comparison. We ran well-known benchmark applications with various characteristics to demonstrate 
that our simulation was reasonable. Experimental results illustrate that our scheduling brought a maximum of 
10.5% performance improvement compared to prior works. 

We discuss related work in Section 2. In Section 3, we describe how our scheduling works. Section 4 presents 
simulation and experimental results. We conclude with a summary of our work in Section 5.  

II. RELATED WORK 

A. Importance of Workload Characterization 

VM schedulers repeat three steps: workload characterization, performance estimation, and scheduling 
decision. For example, PAC [10] periodically characterizes each VM as repetitive time series of resource 
consumption, and each host as repetitive time series of remaining resources. It estimates VM’s performance on 
each host by measuring difference between time series of VM and host, and then schedules VM to a host with 
minimum difference. For VM schedulers, how to characterize workload determines how to estimate VM’s 
performance on each target (either physical core or host). Scheduling decision is just a process of selecting the 
most suitable target based on estimation. 

B. Prior Approaches 

Most of prior works have characterized VMs as their CPU usages. However, characterization solely based on 
CPU usages is inappropriate for modeling resource contention, because CPU sharing between VMs is least 
problematic in virtualized environments. TABLE I represents the benchmark suits we used in this paper, and Fig. 
1 shows the performance interference between co-located two Xen VMs.  

TABLE I.  BENCHMARK SUITS USED IN OUR EXPERIMENTS 

Benchmark Programs Remarks 

SEPCcpu2006 gobmk, bzip2, mcf, gcc, astar, hmmer, lbm, and etc CPU, MEM-intensive applications 

NPB cg, mg, ep, lu, sp, bt CPU + Network 

TPC-C tpc CPU + I/O 

Disk postmark, copy, bonnie++, iozone CPU + I/O 

netperf netperf Network 

 

 

 

 

 

 

 

 

 

 

Figure 1.  The performance impact of co-locating two VMs in Xen. 

In this experiment, each VM ran an application in its entirety, and therefore the behavior of VM represented 
the behavior of running application. We ran a pair of VMs (VM1, VM2) by pinning them to different physical 
cores. VM1 ran either gobmk or mcf, and VM2 ran one of netperf, gobmk, bzip2, and mcf. Y-axis values in Fig. 1 
represent slowdown of VM2 when running with VM1. Note that performance was normalized. Thus, any 
application running as a stand-alone VM has normalized performance of one. gobmk from SEPCcpu2006 is CPU-
intensive workload, while mcf from the same suite is memory-intensive one. Fig. 1 shows how much CPU-
intensive and memory-intensive applications interfere with other applications. gobmk had little interference with 
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all other applications, while running with mcf together brought non-trivial variance in application’s throughput. In 
Fig. 1, applications are ordered by their memory utilization. The more applications consumed memory, the more 
they slowed down. Slowdown reached a maximum of 44%.  

To more correctly characterize VMs, some recent works considered contention for multiple shared resources. 
They characterize each VM as repetitive time series (signatures) of multiple resource consumption [10, 26], and 
hosts as signatures of available resources. Then, they choose a host whose signature is most similar to that of the 
VM. These works must incur severe overhead caused from complex signatures. Their signatures are based on 
time series of resource consumption. Finding repetitive patterns among time series and matching them require 
intensive computation. Moreover, they focused on choosing the most suitable hosts, but disregarded mapping of 
VMs to physical cores. Physical cores are another source of performance interference as shown in Fig. 2. In the 
second experiment, we had a pair of VMs run the same application, and ran them twice with different core 
mappings. We averaged out runtime of each pair of VMs, and normalized it by runtime as a stand-alone VM. Fig. 
2 shows performance impact of core mappings. Four CPU-intensive applications showed performance variance 
from 6% to 22% according to the core mapping. Other studies have shown similar results. How efficiently to 
schedule VMs to physical cores brought 16% [21] and 40% [17] performance improvements.  

 

 

 

 

 

 

 

 

 

Figure 2.  The performance impact of core mappings. 

Lim et al. [20] proposed a mathematical model to characterize workload using multiple resource usages. They 
characterize a host as a collection of m resource queues. They also characterize each application as a vector of 
size m, where i-th element is calculated as the amount of time using i-th resource divided by its runtime when 
running in stand-alone mode. However, this model is never practical. According to the model, running multiple 
applications together should not take longer than their sequential execution. This is not true in virtualized 
environments. Severe contention between two VMs may lead to slowdown of more than twice. The fundamental 
problem is how to obtain resource vectors. Generally, resource usage is represented as utilization or throughput. 
Measuring the amount of time using I/O and network is unusual and not easy. 

III. DESIGN 
In this section we present our scheduling algorithm, and describe how it works. 

A. Workload Characterization 

We characterize each VM as its signature. Given an application, we start a stand-alone VM, which runs the 
application in its entirety. We define its signature as a vector whose elements are average values of CPU, 
memory, I/O, and network consumption during running in stand-alone mode. VM signature represents its 
resource demands. To accurately capture them, we consider multiple resource consumption. If using monitoring 
tools like xentop and libxenstat, we can continuously measure CPU, memory, I/O, and network consumption of a 
VM without noticeable overhead. By collecting data till the application ends, we can easily obtain time series of 
each resource consumption during runtime. Time series are put into four groups according to the resource type. 
To generate VM signature, we just average out time series in each group. Contrary to using time series 
themselves, using their average values must incur no overhead. Therefore, the key challenge of characterizing 
workload as average resource consumption is the nature of general workload. If most applications have high 
variance in time series of resource consumption, performance estimation based on average consumption must 
cause significant variance in observed system throughput. We argue that most applications have either low 
variance in time series of resource consumption or no regularity in consuming resources. For the first case, 
characterizing workload using average consumption is an efficient approach. For the second case, estimating 
resource consumption based on historical time series must incur severe overhead without providing reasonable 
throughput. Contrary to this, performance estimation based on average consumption must incur no overhead 
while providing as much throughput as using time series. Therefore, our estimation can be a reasonable solution 
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for the second case, too. To justify our argument, we traced 32 applications, which belong to benchmark suits 
shown in TABLE I. TABLE II shows eleven representative applications among 32. As shown in Fig. 3, 
applications with intensive workload tended to constantly and fully utilize specific resources.  

TABLE II.  REPRESENTATIVE WORKLOAD BENCHMARK 

Application Characteristics 
(CpuMemDiskNet) Remarks Application Characteristics 

(CpuMemDiskNet) Remarks 

gobmk Cd Intensive workload bzip2 Cm Mixed workload 

mcf CM Intensive workload gcc Cmd Mixed workload 

postmark D Intensive workload cg cmn Mixed workload 

netperf cN Intensive workload mg cmn Mixed workload 

copy d Lightly weighted I/O tpc cmn Mixed workload 

   bonnie++ cd Mixed workload 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Resource utilization of intensive workload. 

Fig. 4 shows resource usages of mixed workload. Some applications ((a) and (b)) showed almost constant 
consumption activities, while the others ((c), (d), and (e)) showed no regular patterns.  
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Figure 4.  Resource utilization of mixed workload. 

To map each VM on a physical core, we also characterize physical cores. For each physical core, we measure 
its utilization. We also measure memory utilization, I/O throughput, and network throughput of its host. We 
generate a physical core signature by subtracting current utilization from maximum utilization of each system 
component. A VM signature is static, since rarely updated once made. Contrary to this, a physical core signature 
is dynamic. Because it is a vector representing remaining resource levels of itself and its host when scheduling 
decision is made. Using distance measure between two vectors, our scheduler assigns each VM into a host with a 
physical core whose signature has the longest distance to the signature of the VM. This is worst-fit assignment, 
i.e., we map a VM to a physical core where the physical core and its host most sufficiently meet the resource 
requirements of the VM. 

B. Notation and Assumptions 

We use the following notations in this paper: 

1) System S is a set of n hosts {h1, h2, · · · , hn}. 
2) hi (1 ≤ i ≤ n) runs zero or more VMs. hi is considered overloaded when its consumption of any resource 

exceeds an upper threshold δupper. Similarly, hi is considered under-loaded when its consumption of every 
resource is under a lower threshold δlower. 

3) {uhi} (1 ≤ i ≤ n) is a set of used hosts. It is a subset of {hi}, where uhi runs at least one VM. We assume hi 
in {hi}\{uhi} turn off. 

4) hi has nci cores (nci ≥ 1). cij (j ≥ 1) means j-th core of hi. 
5) The physical core signature sigcij of cij is a vector of size four. First two elements represent available 

bandwidth of I/O (sigcij1) and network (sigcij2) of hi. sigcij3 is available memory utilization of hi, and 
sigcij4 is available utilization of cij. 

6) cij is characterized by sigcij. 
7) Workload W is a set of l applications {a1, a2, · · · , al}. We assume dynamic workload, and therefore l 

changes over time. W has one or more instances of some applications, i.e., ai and aj (1 ≤ i, j ≤ l) may be 
instances of the same application even though i ≠ j.  

8) To obtain signature, VMi runs ai in stand-alone mode. The VM signature sigvi of VMi is a vector of size 
four. First two elements are average throughput of I/O (sigvi1) and network (sigvi2) during runtime. The 
last two are average utilization of memory (sigvi3) and CPU (sigvi4) during runtime. 

9) VMi is characterized by sigvi.  
10) τi denotes a runtime of ai when running with other VMs together.  
11) τW = max{τ1, τ2, ..., τl}. τW means a completion time of W. 

 

C. Scheduling of VMs 

We define VM scheduling as a problem to find a mapping {(VMi, cjk)} (1 ≤ i ≤ l, 1 ≤ j ≤ n, 1 ≤ k ≤ ncj), which 
reasonably lengthens τW by consolidation. We operate VM scheduling in the following two cases: (i) when new 
jobs arrive (ii) when inadequately utilized hosts are detected. Algorithm 1 shows how our scheduler works.  

First, it estimates the minimum number of hosts to be able to meet the resource requirement of VMs. VM 
placement has been considered an instance of bin packing problem, the problem of assigning a set of items (VMs) 
into a set of bins (hosts) while minimizing the number of bins in use. Bin packing problem is known as a 
combinatorial NP-hard problem, and best-fit, first-fit, and worst-fit heuristics are among the simplest heuristic 
algorithms for solving it. Best-fit heuristic is simplest to use for finding out the exact number of bins to 
accommodate a set of items, and therefore our scheduler operates Best Fit Decreasing (BFD) heuristic to estimate 
the minimum number of used hosts. BFD works by first sorting the list of elements into decreasing order, and 
then placing each item into the bin with the least amount of space left. To operate BFD, our scheduler sorts VM 
signatures into decreasing order. As we noted in the previous Subsection, VM signature sigvi of VMi is a vector 
of four elements. Our scheduler sorts VM signatures by one element and then the other according to the order of 
vector indices. Then, it starts best-fit assignment with an empty set of used hosts. Using distance measure 
between two vectors, it maps each VM in decreasing order on a physical core where the physical core and its 
hosts most closely meet the resource requirements of the VM. Given VMi, calcDistance calculates the distance 
between two vectors by Euclidean distance in 4-dimensional space. If a physical core and its host do not meet the 
resource requirements of VMi, the distance is set infinite. The shorter the distance is, the more closely a physical 
core and its host meet the resource requirements of VMi. If the distance between VMi and cxy is shortest, VMi is 
pinned to cxy. If all distances are infinite, our scheduler adds a new host to the set, and maps VMi on the first 
physical core of new host. To simplify estimation, we assume that each host has no load before entering the set of 
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used hosts. initializeSignature sets every physical core signature of new host maximally available state. Because a 
new assignment increases the loads of cxy and its host hx, the signature of cxy should be updated. updateSignature 
updates the physical core signature sigcjk of cjk. We measure the utilization of cjk. We also measure memory 
utilization, I/O throughput, and network throughput of hi. By subtracting current utilization from maximum 
utilization of each system component, we update sigcjk. After mapping the last VM, the size of the set of used 
hosts (i.e.,  |{shj}|) is what we want, the minimum number of used hosts to be able to accommodate {VMi}.  

ALGORITHM 1. VM SCHEDULING 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Secondly, our scheduler adjusts the estimated number so as to accommodate VMs by worst-fit heuristic. To 
mitigate resource contention between VMs, we prefer worst-fit assignment to other-fit assignments. Worst-fit 
assignment more evenly distributes VMs to hosts than others, and therefore the former can deliver better 
performance than the latter. Therefore, our scheduler obtains the initial size by best-fit heuristic, and then slightly 
adjusts it for worst-fit assignment. At this time, it operates Worst Fit Decreasing (WFD) heuristic. WFD works by 
first sorting the list of elements into decreasing order, and then placing each item into the most amount of space 
left. After sorting VM signatures into decreasing order, our scheduler starts worst-fit assignment with a set of 
used hosts with the initial size. Using the distance measure between two vectors, it maps each VM in decreasing 

input: {VMi} (1 ≤ i ≤ l)  /* VMs of changed workload W */ 
{sigvi}    /* signatures of {VMi} */ 
{hj}(1 ≤ j ≤ n)   /* all hosts in S */ 
{cjk}(1 ≤ k ≤ ncj)   /* physical cores of {hj} */ 
{(VM′i, c′jk)}   /* current mapping */ 
{uh′j} (1 ≤ j ≤ n)   /* used hosts */ 
output: Re-arrangement of {VMi} by an adjusted mapping {VMi, cjk} which minimizes τW 

 
/* estimate the minimum number of used hosts for {VMi} using BFD */ 
sort {VMi} into decreasing order of sigvi; 
{shj} =∮; 
foreach VMi in decreasing order do 

foreach shj do 
foreach cjk do 

if remaining physical memory of shj is sufficient for domain memory of VMi then 
dijk = calcDistance(sigvi, sigcjk); 

 
if |{shj}| == 0 || every dijk is infinite then 

add a new host hx to {shj}; 
foreach cxk do /* initialize physical core signatures of hx */ 

initializeSignature(sigcxk); 
dix0 = calcDistance(sigvi, sigcx0); 

 
map VMi to cxy whose dixy is shortest; 

sigcxy = updateSignature(cxy, hx); 
 
/* obtain the estimated number, and adjust it for worst-fit assignment */ 
nhosts = |{shj}|; 
foreach non-negative integer z do 

assign {VMi} to nhosts+z hosts using WFD; 
if {VMi} fits in nhosts+ z hosts then 

nhosts += z; 
update {(VMi, cjk)} by this worst-fit mapping; 
break; 
 

/* choose the estimated number of hosts considering current load */ 
{uhj} = chooseUsedHosts({(VM′i, c′jk)}, nhosts); 
turn on hosts in {uhj}\{uh′j}; 
 
/* apply the worst-fit mapping to chosen hosts */ 
foreach (VMi, cjk) do 

if VMi arrives now then 
start VMi by pinning on cjk; 

else if (VMi, cjk) is not in {(VM′i,  c′jk)} then 
if cjk and c′jk belong to different hosts then 

migrate VMi to hj and pin it on cjk; 
else 

pin VMi on cjk; 
 
/* turn off unused hosts and update status */ 
turn off hosts in {uh′j}\{uhj}; 
set {(VMi, cjk)} current mapping, and {uhj} used hosts; 
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order on a physical core where the physical core and its hosts most sufficiently meet the resource requirements of 
the VM. If no physical core and its host do not meet the resource requirements of VMi, it aborts assignment. After 
increasing the number of used hosts by one, it restarts WFD from the first VM. If the assignment is safely done, 
our scheduler obtains the number of hosts to be adjusted (i.e., nhosts) and the worst-fit mapping of VMs to nhosts  
hosts (i.e., {(VMi, cjk)}). 

Lastly, our scheduler implements the worst-fit mapping obtained in the second step. For dynamically 
relocating VMs according to the mapping, we utilize live migration [7]. We assume that all VM images are held 
in NFS server, and the overhead caused from live migration is low. It took less than 20 seconds to migrate a VM 
with 2GB memory from one host to another using 1Gbps Ethernet [19]. chooseUsedHosts chooses a new set of 
used hosts {uhj} with size nhosts as mapping target. In order to minimize live migration, our scheduler considers 
current load of each host (i.e., {(VM′i, c′jk)}), and mainly selects highly-utilized hosts. Before applying mapping 
to chosen hosts, it turns on hosts in {uhj}\{uh′j}, because they are unused and turn off. Then, it rearranges {VMi} 
in {uhj} according to {(VMi, cjk)}. If {(VMi, cjk) is not changed, it does nothing. If VMi is a new job, it pins VMi 
on cjk. If VMi is active and should be placed on different host, it migrates VMi to hj and pins VMi on cjk. 
Otherwise, it re-pins VMi on cjk. To save energy, it turns off hosts in {uh′j}\{uhj}, because they will be used no 
more. 

IV. EVALUATION 

A. Experimental Setup 

We used Intel Quad-core 2.83Ghz machines with 8GB memory, which were connected to 1Gbps Ethernet 
switch. Our machines ran Ubuntu 10.04.3 LTS with Xen 4.0.1 hypervisor. We configured each VM with 1 
VCPU, 2GB of memory, and 20GB of VM image. All VM images are held in NFS server for live migration, and 
VMs use NFS storage rather than local disk. The benchmark suits used in our experiments are already shown in 
Table I. We used SEPCcpu2006, NPB (NAS Parallel Benchmarks), TPC-C, various disk benchmarks, and 
netperf. SEPCcpu2006 is an industry-standardized CPU intensive benchmark suits, comprised of real-world 
applications intensively computing integer or floating point operations. NPB is widely used to evaluate parallel 
machines. TPC-C is comprised of transaction processing and database applications, which are popularly used to 
evaluate the performance of the OLTP systems. We traced all 32 applications from benchmark suits, and defined 
their signatures using average resource consumption during running in stand-alone mode. 

B. Monitoring Framework 

There are many monitoring tools for VM performance analysis like libxenstat, xenopof, and xentrace, which 
provide a huge number of different metrics on fine-grained events. However, we were only interested in per-VM 
resource utilization. Therefore, we chose xentop as base monitoring tool. Per domain, we monitored the following 
performance data every 2 second: CPU utilization, memory utilization, I/O throughput (reads and writes), and 
network throughput (sent and received). We put time series of gathered data into four groups, and averaged out 
time series in each group. 

C. Simulation Results 

We implemented our scheduler as simulation according to Algorithm 1. For performance comparison, we also 
simulated system-wide schedulers using BFD and WFD heuristics. We simulated system-side schedulers based 
on average resource consumption of VMs and available resources of hosts. In our simulation, each host can create 
a maximum of eight VMs. First, the number of VMs a host can create and use is limited by its physical memory 
size. In other words, it cannot create a set of VMs whose total memory size exceeds its physical memory size. 
Secondly, assigning multiple VMs to one physical core is common. For example, standard instances of Amazon 
EC2 assign one, two, or four virtual cores to each physical core. Therefore, assigning a maximum of eight VMs to 
a host is reasonable assumption, as our machines have quad-cores. We randomly ordered 32 applications from 
benchmark suits. We simulated that they arrived one at a time, and none of them finished till the last application 
arrived.  
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Figure 5.  The number of used hosts as a function of the number of VMs. 

Fig. 5 shows how the number of used hosts increased as more and more jobs arrived in system. In all cases, 
best-fit scheduling needed the minimum number of hosts. Though our scheduler is based on worst-fit heuristic, 
the required number of hosts did not significantly differ from best-fit scheduler to ours. As shown in the figure, 
the difference was at most one. 

 

 

 

 

 

 

 

 

Figure 6.  Average number of migrations per host as a function of the number of VMs. 

In our simulation, whenever new jobs arrive, VM scheduling is triggered. Each VM scheduler estimates the 
number of used hosts, and rearranges VMs in newly-chosen set of hosts. This rearrangement may include 
movement of VMs between hosts, which is carried out by live migration. Performance degradation caused from 
resource contention can be severe. Therefore, live migration is considered unavoidable in virtualized 
environments, besides, the overhead caused from a single live migration is low. Fig. 6 shows average number of 
migrations each host performed when a new job arrived. Fortunately, these numbers did not linearly increase, 
though the number of VMs in the system increased. 

 

 

 

 

 

 

 

 

Figure 7.  Standard deviation of the number of VMs per hosts. 

To maximize overall performance in virtualized environments, contention for shared resources should be 
minimized. To mitigate resource contention, our scheduler not only adopted worst-fit heuristic, but considered 
physical cores. Fig. 7 represents the standard deviation of the number of VMs assigned to each host. As the 
number of VMs increases, best-fit scheduler shows the highest deviation among three. This means that the 
number of VMs each host ran was skewed, because it tends to more unevenly distribute VMs to hosts than worst-
fit heuristic.  
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Figure 8.  Standard deviation of resource utilization per host. 

Fig. 8 illustrates the resource contention caused from this uneven distribution. This figure represents standard 
deviation of resource utilization of each host when all 32 VMs were running. As for best-fit scheduler, its uneven 
distribution caused more contention for I/O and memory resources than the other schedulers, which can lead to 
severe performance degradation in virtualized environments. Ours shows the lowest deviation for most types of 
resources. This means that our scheduler tends to most appropriately distribute VMs to each host, resulting in 
mitigating overall resource contention. 

D. Result from Running Benchmark Applications 

To demonstrate that our simulation was reasonable, we scheduled a set of seven benchmark applications using 
real machines. Our machines have a total of 8GB physical memory. Each VM image was configured with 2GB 
memory, and Xen hypervisor also consumes physical memory. Therefore, our machines can create a maximum of 
three VMs. All schedulers assigned seven VMs to three machines. Fig. 9 illustrates that different scheduling 
schemes lead to different slowdown results. Note that performance was normalized. Thus, any application 
running as a stand-alone VM has normalized performance of one. As shown in the figure, applications 
experienced the largest slowdown under best-fit scheduling, while the smallest slowdown under ours. Average 
slowdowns of best-fit, worst-fit, and ours were 1.305, 1.232, and 1.168, respectively. Therefore, our scheduler 
improved performance by 10.5% compared to best-fit scheduler, and 5.2% compared to worst-fit scheduler. 

 

 

 

 

 

 

 

 

 

Figure 9.  Slowdown of each application as a function of scheduling scheme. 

V. CONCLUSION AND FUTURE WORK 
By disregarding workload-aware VM placement or multi-core systems, prior works on VM scheduling have 

missed a chance for better optimizing cost and performance. To address this problem, this paper proposes a 
workload-aware VM scheduler on multi-core systems, which finds a system-wide mapping of VMs to physical 
cores. Our scheduler has strengths in cost and performance compared to prior works. First, it minimizes the 
number of used hosts by adjusting a set of used hosts according to time-varying workload. Secondly, it mitigates 
resource contention by conducting worst-fit mapping of VMs to physical cores. Experimental results illustrate 
that our scheduling brought a maximum of 10.5% performance improvement compared to prior works.  

In the future, we would like to conduct an in-depth analysis of performance interference in virtualized 
environments, and describe it using a quantitative model. By being integrated with this model, our scheduler can 
more accurately estimate VM’s performance on each host, and provide a more efficient VM scheduling. 
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