
Workload-aware VM Scheduling on Multi-
core Systems

Insoon Jo, Im Y. Jung*, Heon Y. Yeom
School of Computer Science and Engineering

Seoul National University
Seoul, Korea, 151-742

{ischo, iyjung}@dcslab.snu.ac.kr, yeom@snu.ac.kr
*Corresponding Author

Abstract—In virtualized environments, performance interference between virtual machines (VMs) is a
key challenge. In order to mitigate resource contention, an efficient VM scheduling is positively necessary.
In this paper, we propose a workload-aware VM scheduler on multi-core systems, which finds a system-
wide mapping of VMs to physical cores. Our work aims not only at minimizing the number of used hosts,
but at maximizing the system throughput. To achieve the first goal, our scheduler dynamically adjusts a
set of used hosts. To achieve the second goal, it maps each VM on a physical core where the physical core
and its host most sufficiently meet the resource requirements of the VM. Evaluation demonstrates that
our scheduling ensures efficient use of data center resources.

Keywords- server consolidation; virtualization; virtual machine scheduling; multi-core systems.

I. INTRODUCTION
The soaring energy consumption by data centers [15, 8, 22] and their low utilization [18, 3, 8] have become

main drivers for server consolidation initiatives. Server consolidation using virtualization is a well-known
approach to reduce the total number of servers that an organization requires. However, consolidating servers
while ensuring performance is very challenging, because current virtualization techniques do not provide
effective performance isolation between VMs. Contention for shared resources can cause significant variance in
observed system throughput [2, 6, 23]. An efficient VM scheduling is positively needed to mitigate resource
contention. Prior works on VM scheduling can be classified into two types according to the scheduling scope.
VMs have been scheduled with respect to either other VMs in the current host (within-host) [11, 4, 14, 21, 17] or
all VMs in the system (system-wide) [5, 25, 9, 10, 26]. Within-host schedulers focused on how to exploit CPUs in
order to maximize throughput of a given host. VM placement considering workload characteristics was out of
their concern. System-wide schedulers mainly considered system-wide placement to minimize resource
contention between VMs. Contrary to within-host schedulers, they disregarded mapping of VMs to physical
cores.

We argue that prior works have missed a good opportunity of cost and performance optimization by
disregarding workload-aware VM placement or multi-core systems. Firstly, contention for physical resources
impacts performance differently in different workload configurations, causing significant variance in observed
system throughput [1, 16, 20, 19, 24]. To this end, characterizing workload that generates resource contention and
reflecting such contention in VM placement are important to maximize the system throughput. Secondly, though
more and more multi-core CPUs are put into servers in data centers, multi-core systems cannot automatically
obtain scalable performance according to the number of cores. Physical cores compete for the interconnect
bandwidth, memory controllers, and caches. Therefore, VM schedulers should consider core-level mapping for
scalable performance with increasing core counts [13, 12, 21, 17]. Our finding is that two types of scheduling are
so complementary that their integration can improve the system throughput.

In this paper, we propose a workload-aware VM scheduler on multi-core systems, which finds a system-wide
mapping of VMs to physical cores. To map VMs on cores, we assign a signature to each of VMs and physical
cores. A VM signature is a vector representing its resource demands, while a physical core signature is a vector
representing remaining resource levels of itself and its host. Our work aims not only at minimizing the number of
used hosts, but at maximizing the system throughput. To achieve the first goal, our scheduler dynamically adjusts
a set of used hosts. Whenever new jobs arrive or inadequately utilized (i.e., either overloaded or under-loaded)
hosts are detected, VM scheduling is triggered. Our scheduler estimates the minimum number of hosts to be able
to meet the resource requirements of VMs. Considering current load of each host, it chooses the estimated
number of hosts, and turns off hosts not chosen. To achieve the second goal, our scheduler attempts to mitigate

Insoon Jo et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 11 November 2011 3634

resource contention. Given VMs and chosen hosts, it maps each VM on a physical core where the physical core
and its host most sufficiently meet the resource requirements of the VM.

We implemented our scheduler as simulation, and also simulated two types of system-wide schedulers for
performance comparison. We ran well-known benchmark applications with various characteristics to demonstrate
that our simulation was reasonable. Experimental results illustrate that our scheduling brought a maximum of
10.5% performance improvement compared to prior works.

We discuss related work in Section 2. In Section 3, we describe how our scheduling works. Section 4 presents
simulation and experimental results. We conclude with a summary of our work in Section 5.

II. RELATED WORK

A. Importance of Workload Characterization

VM schedulers repeat three steps: workload characterization, performance estimation, and scheduling
decision. For example, PAC [10] periodically characterizes each VM as repetitive time series of resource
consumption, and each host as repetitive time series of remaining resources. It estimates VM’s performance on
each host by measuring difference between time series of VM and host, and then schedules VM to a host with
minimum difference. For VM schedulers, how to characterize workload determines how to estimate VM’s
performance on each target (either physical core or host). Scheduling decision is just a process of selecting the
most suitable target based on estimation.

B. Prior Approaches

Most of prior works have characterized VMs as their CPU usages. However, characterization solely based on
CPU usages is inappropriate for modeling resource contention, because CPU sharing between VMs is least
problematic in virtualized environments. TABLE I represents the benchmark suits we used in this paper, and Fig.
1 shows the performance interference between co-located two Xen VMs.

TABLE I. BENCHMARK SUITS USED IN OUR EXPERIMENTS

Benchmark Programs Remarks

SEPCcpu2006 gobmk, bzip2, mcf, gcc, astar, hmmer, lbm, and etc CPU, MEM-intensive applications

NPB cg, mg, ep, lu, sp, bt CPU + Network

TPC-C tpc CPU + I/O

Disk postmark, copy, bonnie++, iozone CPU + I/O

netperf netperf Network

Figure 1. The performance impact of co-locating two VMs in Xen.

In this experiment, each VM ran an application in its entirety, and therefore the behavior of VM represented
the behavior of running application. We ran a pair of VMs (VM1, VM2) by pinning them to different physical
cores. VM1 ran either gobmk or mcf, and VM2 ran one of netperf, gobmk, bzip2, and mcf. Y-axis values in Fig. 1
represent slowdown of VM2 when running with VM1. Note that performance was normalized. Thus, any
application running as a stand-alone VM has normalized performance of one. gobmk from SEPCcpu2006 is CPU-
intensive workload, while mcf from the same suite is memory-intensive one. Fig. 1 shows how much CPU-
intensive and memory-intensive applications interfere with other applications. gobmk had little interference with

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

netperf gobmk bzip2 mcf

Sl
ow

do
w

n

with gobmk with mcf

Insoon Jo et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 11 November 2011 3635

all other applications, while running with mcf together brought non-trivial variance in application’s throughput. In
Fig. 1, applications are ordered by their memory utilization. The more applications consumed memory, the more
they slowed down. Slowdown reached a maximum of 44%.

To more correctly characterize VMs, some recent works considered contention for multiple shared resources.
They characterize each VM as repetitive time series (signatures) of multiple resource consumption [10, 26], and
hosts as signatures of available resources. Then, they choose a host whose signature is most similar to that of the
VM. These works must incur severe overhead caused from complex signatures. Their signatures are based on
time series of resource consumption. Finding repetitive patterns among time series and matching them require
intensive computation. Moreover, they focused on choosing the most suitable hosts, but disregarded mapping of
VMs to physical cores. Physical cores are another source of performance interference as shown in Fig. 2. In the
second experiment, we had a pair of VMs run the same application, and ran them twice with different core
mappings. We averaged out runtime of each pair of VMs, and normalized it by runtime as a stand-alone VM. Fig.
2 shows performance impact of core mappings. Four CPU-intensive applications showed performance variance
from 6% to 22% according to the core mapping. Other studies have shown similar results. How efficiently to
schedule VMs to physical cores brought 16% [21] and 40% [17] performance improvements.

Figure 2. The performance impact of core mappings.

Lim et al. [20] proposed a mathematical model to characterize workload using multiple resource usages. They
characterize a host as a collection of m resource queues. They also characterize each application as a vector of
size m, where i-th element is calculated as the amount of time using i-th resource divided by its runtime when
running in stand-alone mode. However, this model is never practical. According to the model, running multiple
applications together should not take longer than their sequential execution. This is not true in virtualized
environments. Severe contention between two VMs may lead to slowdown of more than twice. The fundamental
problem is how to obtain resource vectors. Generally, resource usage is represented as utilization or throughput.
Measuring the amount of time using I/O and network is unusual and not easy.

III. DESIGN
In this section we present our scheduling algorithm, and describe how it works.

A. Workload Characterization

We characterize each VM as its signature. Given an application, we start a stand-alone VM, which runs the
application in its entirety. We define its signature as a vector whose elements are average values of CPU,
memory, I/O, and network consumption during running in stand-alone mode. VM signature represents its
resource demands. To accurately capture them, we consider multiple resource consumption. If using monitoring
tools like xentop and libxenstat, we can continuously measure CPU, memory, I/O, and network consumption of a
VM without noticeable overhead. By collecting data till the application ends, we can easily obtain time series of
each resource consumption during runtime. Time series are put into four groups according to the resource type.
To generate VM signature, we just average out time series in each group. Contrary to using time series
themselves, using their average values must incur no overhead. Therefore, the key challenge of characterizing
workload as average resource consumption is the nature of general workload. If most applications have high
variance in time series of resource consumption, performance estimation based on average consumption must
cause significant variance in observed system throughput. We argue that most applications have either low
variance in time series of resource consumption or no regularity in consuming resources. For the first case,
characterizing workload using average consumption is an efficient approach. For the second case, estimating
resource consumption based on historical time series must incur severe overhead without providing reasonable
throughput. Contrary to this, performance estimation based on average consumption must incur no overhead
while providing as much throughput as using time series. Therefore, our estimation can be a reasonable solution

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

astar bzip2 hmmer mcf

Sl
ow

do
w

n

{0,1} {0,2}

Insoon Jo et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 11 November 2011 3636

for the second case, too. To justify our argument, we traced 32 applications, which belong to benchmark suits
shown in TABLE I. TABLE II shows eleven representative applications among 32. As shown in Fig. 3,
applications with intensive workload tended to constantly and fully utilize specific resources.

TABLE II. REPRESENTATIVE WORKLOAD BENCHMARK

Application Characteristics
(CpuMemDiskNet) Remarks Application Characteristics

(CpuMemDiskNet) Remarks

gobmk Cd Intensive workload bzip2 Cm Mixed workload

mcf CM Intensive workload gcc Cmd Mixed workload

postmark D Intensive workload cg cmn Mixed workload

netperf cN Intensive workload mg cmn Mixed workload

copy d Lightly weighted I/O tpc cmn Mixed workload

 bonnie++ cd Mixed workload

Figure 3. Resource utilization of intensive workload.

Fig. 4 shows resource usages of mixed workload. Some applications ((a) and (b)) showed almost constant
consumption activities, while the others ((c), (d), and (e)) showed no regular patterns.

0

5000

10000

15000

20000

25000

30000

35000

0
10
20
30
40
50
60
70
80
90

100

DI
SK

, N
ET

 (k
bp

s)

CP
U

, M
EM

 (%
)

(a) mcf

CPU MEM DISK NET

0

10000

20000

30000

40000

50000

60000

70000

0
10
20
30
40
50
60
70
80
90

100

DI
SK

, N
ET

 (k
bp

s)

CP
U

, M
EM

 (%
)

(b) netperf

CPU MEM DISK NET

0

5000

10000

15000

20000

25000

30000

35000

0
10
20
30
40
50
60
70
80
90

100

DI
SK

, N
ET

 (k
bp

s)

CP
U

, M
EM

 (%
)

(a) bzip2

CPU MEM DISK NET

0

5000

10000

15000

20000

25000

30000

35000

0
10
20
30
40
50
60
70
80
90

100

DI
SK

, N
ET

 (k
bp

s)

CP
U

, M
EM

 (%
)

(b) cg

CPU MEM DISK NET
0

5000

10000

15000

20000

25000

30000

35000

0
10
20
30
40
50
60
70
80
90

100

DI
SK

, N
ET

 (k
bp

s)

CP
U

, M
EM

 (%
)

(d) tpc

CPU MEM DISK NET

-5000

5000

15000

25000

35000

45000

55000

65000

0
10
20
30
40
50
60
70
80
90

100

DI
SK

, N
ET

 (k
bp

s)

CP
U

, M
EM

 (%
)

(e) copy

CPU MEM NET DISK

0

5000

10000

15000

20000

25000

30000

35000

0
10
20
30
40
50
60
70
80
90

100

DI
SK

, N
ET

 (k
bp

s)

CP
U

, M
EM

 (%
)

(c) mg

CPU MEM DISK NET

Insoon Jo et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 11 November 2011 3637

Figure 4. Resource utilization of mixed workload.

To map each VM on a physical core, we also characterize physical cores. For each physical core, we measure
its utilization. We also measure memory utilization, I/O throughput, and network throughput of its host. We
generate a physical core signature by subtracting current utilization from maximum utilization of each system
component. A VM signature is static, since rarely updated once made. Contrary to this, a physical core signature
is dynamic. Because it is a vector representing remaining resource levels of itself and its host when scheduling
decision is made. Using distance measure between two vectors, our scheduler assigns each VM into a host with a
physical core whose signature has the longest distance to the signature of the VM. This is worst-fit assignment,
i.e., we map a VM to a physical core where the physical core and its host most sufficiently meet the resource
requirements of the VM.

B. Notation and Assumptions

We use the following notations in this paper:

1) System S is a set of n hosts {h1, h2, · · · , hn}.
2) hi (1 ≤ i ≤ n) runs zero or more VMs. hi is considered overloaded when its consumption of any resource

exceeds an upper threshold δupper. Similarly, hi is considered under-loaded when its consumption of every
resource is under a lower threshold δlower.

3) {uhi} (1 ≤ i ≤ n) is a set of used hosts. It is a subset of {hi}, where uhi runs at least one VM. We assume hi
in {hi}\{uhi} turn off.

4) hi has nci cores (nci ≥ 1). cij (j ≥ 1) means j-th core of hi.
5) The physical core signature sigcij of cij is a vector of size four. First two elements represent available

bandwidth of I/O (sigcij1) and network (sigcij2) of hi. sigcij3 is available memory utilization of hi, and
sigcij4 is available utilization of cij.

6) cij is characterized by sigcij.
7) Workload W is a set of l applications {a1, a2, · · · , al}. We assume dynamic workload, and therefore l

changes over time. W has one or more instances of some applications, i.e., ai and aj (1 ≤ i, j ≤ l) may be
instances of the same application even though i ≠ j.

8) To obtain signature, VMi runs ai in stand-alone mode. The VM signature sigvi of VMi is a vector of size
four. First two elements are average throughput of I/O (sigvi1) and network (sigvi2) during runtime. The
last two are average utilization of memory (sigvi3) and CPU (sigvi4) during runtime.

9) VMi is characterized by sigvi.
10) τi denotes a runtime of ai when running with other VMs together.
11) τW = max{τ1, τ2, ..., τl}. τW means a completion time of W.

C. Scheduling of VMs

We define VM scheduling as a problem to find a mapping {(VMi, cjk)} (1 ≤ i ≤ l, 1 ≤ j ≤ n, 1 ≤ k ≤ ncj), which
reasonably lengthens τW by consolidation. We operate VM scheduling in the following two cases: (i) when new
jobs arrive (ii) when inadequately utilized hosts are detected. Algorithm 1 shows how our scheduler works.

First, it estimates the minimum number of hosts to be able to meet the resource requirement of VMs. VM
placement has been considered an instance of bin packing problem, the problem of assigning a set of items (VMs)
into a set of bins (hosts) while minimizing the number of bins in use. Bin packing problem is known as a
combinatorial NP-hard problem, and best-fit, first-fit, and worst-fit heuristics are among the simplest heuristic
algorithms for solving it. Best-fit heuristic is simplest to use for finding out the exact number of bins to
accommodate a set of items, and therefore our scheduler operates Best Fit Decreasing (BFD) heuristic to estimate
the minimum number of used hosts. BFD works by first sorting the list of elements into decreasing order, and
then placing each item into the bin with the least amount of space left. To operate BFD, our scheduler sorts VM
signatures into decreasing order. As we noted in the previous Subsection, VM signature sigvi of VMi is a vector
of four elements. Our scheduler sorts VM signatures by one element and then the other according to the order of
vector indices. Then, it starts best-fit assignment with an empty set of used hosts. Using distance measure
between two vectors, it maps each VM in decreasing order on a physical core where the physical core and its
hosts most closely meet the resource requirements of the VM. Given VMi, calcDistance calculates the distance
between two vectors by Euclidean distance in 4-dimensional space. If a physical core and its host do not meet the
resource requirements of VMi, the distance is set infinite. The shorter the distance is, the more closely a physical
core and its host meet the resource requirements of VMi. If the distance between VMi and cxy is shortest, VMi is
pinned to cxy. If all distances are infinite, our scheduler adds a new host to the set, and maps VMi on the first
physical core of new host. To simplify estimation, we assume that each host has no load before entering the set of

Insoon Jo et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 11 November 2011 3638

used hosts. initializeSignature sets every physical core signature of new host maximally available state. Because a
new assignment increases the loads of cxy and its host hx, the signature of cxy should be updated. updateSignature
updates the physical core signature sigcjk of cjk. We measure the utilization of cjk. We also measure memory
utilization, I/O throughput, and network throughput of hi. By subtracting current utilization from maximum
utilization of each system component, we update sigcjk. After mapping the last VM, the size of the set of used
hosts (i.e., |{shj}|) is what we want, the minimum number of used hosts to be able to accommodate {VMi}.

ALGORITHM 1. VM SCHEDULING

Secondly, our scheduler adjusts the estimated number so as to accommodate VMs by worst-fit heuristic. To
mitigate resource contention between VMs, we prefer worst-fit assignment to other-fit assignments. Worst-fit
assignment more evenly distributes VMs to hosts than others, and therefore the former can deliver better
performance than the latter. Therefore, our scheduler obtains the initial size by best-fit heuristic, and then slightly
adjusts it for worst-fit assignment. At this time, it operates Worst Fit Decreasing (WFD) heuristic. WFD works by
first sorting the list of elements into decreasing order, and then placing each item into the most amount of space
left. After sorting VM signatures into decreasing order, our scheduler starts worst-fit assignment with a set of
used hosts with the initial size. Using the distance measure between two vectors, it maps each VM in decreasing

input: {VMi} (1 ≤ i ≤ l) /* VMs of changed workload W */
{sigvi} /* signatures of {VMi} */
{hj}(1 ≤ j ≤ n) /* all hosts in S */
{cjk}(1 ≤ k ≤ ncj) /* physical cores of {hj} */
{(VM′i, c′jk)} /* current mapping */
{uh′j} (1 ≤ j ≤ n) /* used hosts */
output: Re-arrangement of {VMi} by an adjusted mapping {VMi, cjk} which minimizes τW

/* estimate the minimum number of used hosts for {VMi} using BFD */
sort {VMi} into decreasing order of sigvi;
{shj} =∮;
foreach VMi in decreasing order do

foreach shj do
foreach cjk do

if remaining physical memory of shj is sufficient for domain memory of VMi then
dijk = calcDistance(sigvi, sigcjk);

if |{shj}| == 0 || every dijk is infinite then

add a new host hx to {shj};
foreach cxk do /* initialize physical core signatures of hx */

initializeSignature(sigcxk);
dix0 = calcDistance(sigvi, sigcx0);

map VMi to cxy whose dixy is shortest;

sigcxy = updateSignature(cxy, hx);

/* obtain the estimated number, and adjust it for worst-fit assignment */
nhosts = |{shj}|;
foreach non-negative integer z do

assign {VMi} to nhosts+z hosts using WFD;
if {VMi} fits in nhosts+ z hosts then

nhosts += z;
update {(VMi, cjk)} by this worst-fit mapping;
break;

/* choose the estimated number of hosts considering current load */
{uhj} = chooseUsedHosts({(VM′i, c′jk)}, nhosts);
turn on hosts in {uhj}\{uh′j};

/* apply the worst-fit mapping to chosen hosts */
foreach (VMi, cjk) do

if VMi arrives now then
start VMi by pinning on cjk;

else if (VMi, cjk) is not in {(VM′i, c′jk)} then
if cjk and c′jk belong to different hosts then

migrate VMi to hj and pin it on cjk;
else

pin VMi on cjk;

/* turn off unused hosts and update status */
turn off hosts in {uh′j}\{uhj};
set {(VMi, cjk)} current mapping, and {uhj} used hosts;

Insoon Jo et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 11 November 2011 3639

order on a physical core where the physical core and its hosts most sufficiently meet the resource requirements of
the VM. If no physical core and its host do not meet the resource requirements of VMi, it aborts assignment. After
increasing the number of used hosts by one, it restarts WFD from the first VM. If the assignment is safely done,
our scheduler obtains the number of hosts to be adjusted (i.e., nhosts) and the worst-fit mapping of VMs to nhosts
hosts (i.e., {(VMi, cjk)}).

Lastly, our scheduler implements the worst-fit mapping obtained in the second step. For dynamically
relocating VMs according to the mapping, we utilize live migration [7]. We assume that all VM images are held
in NFS server, and the overhead caused from live migration is low. It took less than 20 seconds to migrate a VM
with 2GB memory from one host to another using 1Gbps Ethernet [19]. chooseUsedHosts chooses a new set of
used hosts {uhj} with size nhosts as mapping target. In order to minimize live migration, our scheduler considers
current load of each host (i.e., {(VM′i, c′jk)}), and mainly selects highly-utilized hosts. Before applying mapping
to chosen hosts, it turns on hosts in {uhj}\{uh′j}, because they are unused and turn off. Then, it rearranges {VMi}
in {uhj} according to {(VMi, cjk)}. If {(VMi, cjk) is not changed, it does nothing. If VMi is a new job, it pins VMi
on cjk. If VMi is active and should be placed on different host, it migrates VMi to hj and pins VMi on cjk.
Otherwise, it re-pins VMi on cjk. To save energy, it turns off hosts in {uh′j}\{uhj}, because they will be used no
more.

IV. EVALUATION

A. Experimental Setup

We used Intel Quad-core 2.83Ghz machines with 8GB memory, which were connected to 1Gbps Ethernet
switch. Our machines ran Ubuntu 10.04.3 LTS with Xen 4.0.1 hypervisor. We configured each VM with 1
VCPU, 2GB of memory, and 20GB of VM image. All VM images are held in NFS server for live migration, and
VMs use NFS storage rather than local disk. The benchmark suits used in our experiments are already shown in
Table I. We used SEPCcpu2006, NPB (NAS Parallel Benchmarks), TPC-C, various disk benchmarks, and
netperf. SEPCcpu2006 is an industry-standardized CPU intensive benchmark suits, comprised of real-world
applications intensively computing integer or floating point operations. NPB is widely used to evaluate parallel
machines. TPC-C is comprised of transaction processing and database applications, which are popularly used to
evaluate the performance of the OLTP systems. We traced all 32 applications from benchmark suits, and defined
their signatures using average resource consumption during running in stand-alone mode.

B. Monitoring Framework

There are many monitoring tools for VM performance analysis like libxenstat, xenopof, and xentrace, which
provide a huge number of different metrics on fine-grained events. However, we were only interested in per-VM
resource utilization. Therefore, we chose xentop as base monitoring tool. Per domain, we monitored the following
performance data every 2 second: CPU utilization, memory utilization, I/O throughput (reads and writes), and
network throughput (sent and received). We put time series of gathered data into four groups, and averaged out
time series in each group.

C. Simulation Results

We implemented our scheduler as simulation according to Algorithm 1. For performance comparison, we also
simulated system-wide schedulers using BFD and WFD heuristics. We simulated system-side schedulers based
on average resource consumption of VMs and available resources of hosts. In our simulation, each host can create
a maximum of eight VMs. First, the number of VMs a host can create and use is limited by its physical memory
size. In other words, it cannot create a set of VMs whose total memory size exceeds its physical memory size.
Secondly, assigning multiple VMs to one physical core is common. For example, standard instances of Amazon
EC2 assign one, two, or four virtual cores to each physical core. Therefore, assigning a maximum of eight VMs to
a host is reasonable assumption, as our machines have quad-cores. We randomly ordered 32 applications from
benchmark suits. We simulated that they arrived one at a time, and none of them finished till the last application
arrived.

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

N
um

be
r o

f u
se

d
ho

st
s

Number of VMs

Best-fit Worst-fit Ours

Insoon Jo et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 11 November 2011 3640

Figure 5. The number of used hosts as a function of the number of VMs.

Fig. 5 shows how the number of used hosts increased as more and more jobs arrived in system. In all cases,
best-fit scheduling needed the minimum number of hosts. Though our scheduler is based on worst-fit heuristic,
the required number of hosts did not significantly differ from best-fit scheduler to ours. As shown in the figure,
the difference was at most one.

Figure 6. Average number of migrations per host as a function of the number of VMs.

In our simulation, whenever new jobs arrive, VM scheduling is triggered. Each VM scheduler estimates the
number of used hosts, and rearranges VMs in newly-chosen set of hosts. This rearrangement may include
movement of VMs between hosts, which is carried out by live migration. Performance degradation caused from
resource contention can be severe. Therefore, live migration is considered unavoidable in virtualized
environments, besides, the overhead caused from a single live migration is low. Fig. 6 shows average number of
migrations each host performed when a new job arrived. Fortunately, these numbers did not linearly increase,
though the number of VMs in the system increased.

Figure 7. Standard deviation of the number of VMs per hosts.

To maximize overall performance in virtualized environments, contention for shared resources should be
minimized. To mitigate resource contention, our scheduler not only adopted worst-fit heuristic, but considered
physical cores. Fig. 7 represents the standard deviation of the number of VMs assigned to each host. As the
number of VMs increases, best-fit scheduler shows the highest deviation among three. This means that the
number of VMs each host ran was skewed, because it tends to more unevenly distribute VMs to hosts than worst-
fit heuristic.

0

0.5

1

1.5

2

2.5

3

3.5

4

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Av
er

ag
e

Number of VMs

Best-fit Worst-fit Ours

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

st
dd

ev

Number of VMs

Best-fit Worst-fit Ours

0

0.1

0.2

0.3

0.4

0.5

0.6

I/O Network Memory CPU

st
dd

ev

Best-fit Worst-fit Ours

Insoon Jo et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 11 November 2011 3641

Figure 8. Standard deviation of resource utilization per host.

Fig. 8 illustrates the resource contention caused from this uneven distribution. This figure represents standard
deviation of resource utilization of each host when all 32 VMs were running. As for best-fit scheduler, its uneven
distribution caused more contention for I/O and memory resources than the other schedulers, which can lead to
severe performance degradation in virtualized environments. Ours shows the lowest deviation for most types of
resources. This means that our scheduler tends to most appropriately distribute VMs to each host, resulting in
mitigating overall resource contention.

D. Result from Running Benchmark Applications

To demonstrate that our simulation was reasonable, we scheduled a set of seven benchmark applications using
real machines. Our machines have a total of 8GB physical memory. Each VM image was configured with 2GB
memory, and Xen hypervisor also consumes physical memory. Therefore, our machines can create a maximum of
three VMs. All schedulers assigned seven VMs to three machines. Fig. 9 illustrates that different scheduling
schemes lead to different slowdown results. Note that performance was normalized. Thus, any application
running as a stand-alone VM has normalized performance of one. As shown in the figure, applications
experienced the largest slowdown under best-fit scheduling, while the smallest slowdown under ours. Average
slowdowns of best-fit, worst-fit, and ours were 1.305, 1.232, and 1.168, respectively. Therefore, our scheduler
improved performance by 10.5% compared to best-fit scheduler, and 5.2% compared to worst-fit scheduler.

Figure 9. Slowdown of each application as a function of scheduling scheme.

V. CONCLUSION AND FUTURE WORK
By disregarding workload-aware VM placement or multi-core systems, prior works on VM scheduling have

missed a chance for better optimizing cost and performance. To address this problem, this paper proposes a
workload-aware VM scheduler on multi-core systems, which finds a system-wide mapping of VMs to physical
cores. Our scheduler has strengths in cost and performance compared to prior works. First, it minimizes the
number of used hosts by adjusting a set of used hosts according to time-varying workload. Secondly, it mitigates
resource contention by conducting worst-fit mapping of VMs to physical cores. Experimental results illustrate
that our scheduling brought a maximum of 10.5% performance improvement compared to prior works.

In the future, we would like to conduct an in-depth analysis of performance interference in virtualized
environments, and describe it using a quantitative model. By being integrated with this model, our scheduler can
more accurately estimate VM’s performance on each host, and provide a more efficient VM scheduling.

ACKNOWLEDGMENT
This research was supported by the KCC(Korea Communications Commission), Korea, under the

CPRC(Communications Policy Research Center) support program supervised by the KCA(Korea
Communications Agency) (KCA-2011-1194100004-110010100)

REFERENCES

[1] P. Apparao, R. Iyer, X. Zhang, D. Newell, and T. Adelmeyer, “Characterization & analysis of a server consolidation benchmark,” In
4th ACM SIGPLAN/SIGOPS international conference on Virtual execution environments (VEE'08), pp. 21–30, March 2008.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A
view of cloud computing,” Communications of the ACM, 53(4):50–58, April 2010.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

bzip2 cg gcc mcf mg milc postmark

Sl
ow

do
w

n

Best-fit Worst-fit Ours

Insoon Jo et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 11 November 2011 3642

[3] L. A. Barroso, and U. Holzle, “The case for energy-proportional computing,” Computer, 40(12):33–37, December 2007.
[4] D. Bautista, J. Sahuquillo, H. Hassan, S. Petit, and J. Duato, “A simple power-aware scheduling for multicore systems when running

real-time applications,” In 2008 IEEE International Symposium on Parallel and Distributed Processing (IPDPS 2008), April 2008.
[5] N. Bobroff, A. Kochut, and K. Beaty, “Dynamic placement of virtual machines for managing sla violations,” In 10th IFIP/IEEE

International Symposium on Integrated Network Management (IM2007), pp. 119–128, May 2007.
[6] R. Buyya, A. Beloglazov, and J. Abawajy, “Energy-efficient management of data center resources for cloud computing: A vision,

architectural elements, and open challenges,” In 2010 International Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA 2010), July 2010.

[7] C. Clark, K. Fraser, S. Hand, J. G. Hanseny, E. July, C. Limpach, I. Pratt, and A. Warfield, “Live migration of virtual machines,” In
2nd conference on Symposium on Networked Systems Design and Implementation (NSDI'05), pp. 273–286, May 2005.

[8] W. Forrest, and K. Brill, “The problem of power consumption in servers,” 2008, http://www.mckinsey.com/clientservice/bto/pointof-
view/Revolutionizing.asp.

[9] D. Gmach, J. Rolia, and L. Cherkasova, “Satisfying service level objectices in a self-managing resource pool,” In 3rd IEEE
International Conference on Self-Adaptive and Self-Organizing Systems (SASO 2009), pp. 243–253, September 2009.

[10] Z. Gong, and X. Gu, “Pac: Pattern-driven application consolidation for efficient cloud computing,” In 18th Annual IEEE/ACM
International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS'10), pp.
24–33, August 2010.

[11] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat, “Enforcing performance isolation across virtual machines in xen,” In 7th
ACM/IFIP/USENIX Middleware Conference (MIDDLEWARE 2006), pp. 342–362, November 2006.

[12] M. H. Jamal, A. Qadeer, W. Mahmood, A. Waheed, and J. J. Ding, “Virtual machine scalability on multi-core processors based servers
for cloud computing workloads,” In 2009 IEEE International Conference on Networking, Architecture, and Storage (NAS 2009), pp.
90–97, July 2009.

[13] N. E. Jerger, D. Vantrease, and M. Lipasti, “An evaluation of server consolidation workloads for multi-core designs,” In IEEE 10th
International Symposium on Workload Characterization (IISWC 2007), pp. 47–56, September 2007.

[14] E. Kalyvianaki, T. Charalambous, and S. Hand, “Self-adaptive and self-configured cpu resource provisioning for virtualized servers
using kalman filters,” In ICAC'09, pp. 117–126, June 2009.

[15] J. G. Koomey, “Estimating total power consumption by servers in the u.s. and the world,” Technical report, Oakland, CA, 2007.
[16] A. Kvalnes, D. Johansen, P. Halvorsen, and C. Griwodz, “Support for enterprise consolidation of i/o bound services,” SOFTWARE -

PRACTICE AND EXPERIENCE, 40(12):1035–1051, December 2010.
[17] Y. Kwon, C. Kim, S. Maeng, and J. Huh, “Virtualizing performance asymmetric multi-core systems,” In 38th International

Symposium on Computer Architecture (ISCA 2011), June 2011.
[18] C. Lefurgy, X. Wang, and M. Ware, “Server-level power control,” In 4th International Conference on Autonomic Computing

(ICAC'07), June 2007.
[19] S.-H. Lim, J.-S. Huh, Y. Kim, and C. Das, “Migration, assignment, and scheduling of jobs in virtualized environment,” Technical

report, August 2011.
[20] S.-H. Lim, J.-S. Huh, Y.-J. Kim, G. M. Shipman, and C. R. Das, “A quantitative analysis of performance of shared service systems

with multiple resource contention,” Technical report, 2010, http://www.cse.psu.edu/research/publications/tech-reports/2010/cse-10-
010.pdf.

[21] H. Lv, X. Zheng, Z. Huang, and J. Duan, “Tackling the challenges of server consolidation on multi-core systems,” In 2010 IEEE
International Symposium on Workload Characterization (IISWC-2010), December 2010.

[22] L. Minas, and B. Ellison, “Revolutionizing data center efficiency,” 2009, http://drdobbs.com/215800830.
[23] I. S. Moreno, and J. Xu, “Energy-efficiency in cloud computing environments: Towards energy savings without performance

degradation,” International Journal of Cloud Applications and Computing (IJCAC), 1(1), 2011.
[24] F. Y.-K. Oh, H. S. Kim, H. Eom, and H. Y. Yeom, “Enabling consolidation and scaling down to provide power management for cloud

computing,” Technical report, August 2011.
[25] A. Verma, G. Dasgupta, T. K. Nayak, P. De, and R. Kothari, “Server workload analysis for power minimization using consolidation,”

In 2009 Conference on USENIX Annual technical conference (USENIX'09), June 2009.
[26] Q. Zhu, J. Zhu, and G. Agrawal, “Power-aware consolidation of scientific workflows in virtualized environments,” In 2010

ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC10), pp. 24–33,
November 2010.

AUTHORS PROFILE

Insoon Jo is a PhD candidate of the School of Computer Science and Engineering of Seoul National University in Korea. She received her
BS and MS degrees in computer science from the same university in 2004 and 2006, respectively. Her major research interests are
distributed systems, usable security, and cloud computing.

Dr. Im Y. Jung received the first B.S. degree in chemistry from Pohang University of Science and Technology in 1993 and the second B.S
degree in computer science from Seoul National University in 1999. And she received her M.S. degree in computer science and engineering
from Seoul National University in 2001. Since February 2001, she had been a researcher for 3 years in the Electronics and
Telecommunications Research Institute(ETRI), South Korea. She was granted Ph.D in Computer Engineering from Seoul National
University in 2010. Her current research interests include distributed computing system, IT convergence, data and system security, and
storage system.

Heon Y. Yeom is a professor with the School of Computer Science and Engineering of Seoul National University in Korea. He received his
BS degree in computer science from Seoul National University in 1984 and received the MS and PhD degrees in computer science from
Texas A&M University in 1986 and 1992, respectively. From 1992 to 1993, he was with Samsung Data Systems as a researcher. He joined

Insoon Jo et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 11 November 2011 3643

the Department of Computer Science of Seoul National University in 1993, where he currently teaches and researches on distributed systems,
cloud computing and power-saving systems, etc.

Insoon Jo et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 11 November 2011 3644

