Software efforts estimation using Use Case Point approach by increasing Technical Complexity and Experience Factors

Chetan Nagar¹

¹Ph.D Student, Mewar University (Gangrar) Chittodgarh Rajasthan India callchetan_nagar@yahoo.com

Abstract— An IT industry wants a simple and accurate method of efforts estimation. Estimation of efforts before starting of work is a prediction and prediction always not accurate. Intermediate COCOMO considered 17 factor that affecting the efforts, UCP considered 13 Technical Complexity Factors and 05 Experience factors. There is a lot factors that can affect efforts estimation .Most of the parameter are covered by COCOMO and UCP, but some parameters which are included in COCOMO left by UCP. UCP is one of the popular approaches of effort estimation. This paper is increasing the Technical complexity and Experience factors used in traditional UCP approach.

Keywords—.UCP (Use Case Point: it is one of the approach of efforts estimation), COCOMO (it is one of the approach of efforts estimation). FP (Function Point), TCP (Technical Complexity Factors), EF (Experience Factor), Efforts Estimation, EAF (Efforts Adjustment Factors) Cost Drivers,

I. INTRODUCTION

Several estimating models have been developed over the years. Those preceding Use Case Point (UCP) and forming the basis for the UCP model include Function Point Analysis and the Constructive Cost Model. Function Point Analysis (FPA) was a valuable technique developed by A. J. Albrecht, in 1977. FPA assigns a point to each function in an application. Various modifiers then act on the function points in order to adjust for the product environment. Modifiers typically included applying weighted percentages or multipliers that would directly increase or decrease the point values. Environment factors included modifiers for complexity of technical issues, developer skill level, and risk. One problem organizations attempting to use this method would run into was consistent definition of a function and consistent definition of environmental factors across multiple projects and multiple development languages. To produce reliably accurate estimates, FPA relies heavily on historical data to derive weighting values and modifiers. Software efforts estimation is one of important activity of software development. The Constructive Cost Model, also known as COCOMO, was created by Barry Boehm, in 1981. COCOMO used statistical returns to calculate project cost and duration within a given probability. The model sought to provide a tool for predictably estimating cost, and continues to evolve today under the sponsorship of the University of Southern California. The model was/is interesting and produced worthy merits in applying statistical analysis to the problem of cost estimating. However, a major defining point in statistics is sample set size. The underlying assumption for COCOMO (like FPA) is that a statistically significant historical database exists to drive the statistical factoring. This will become a common theme through many attempts to create estimating models. Software engineering teams are typically very good at collecting lists of bugs, but notoriously bad at gathering meaningful historical or statistically significant metrics useful in predicting future projects.

One after one three models of COCOMO given by Barry Boehm:

A. Simple COCOMO.

- B. Intermediate COCOMO.
- C. Advance COCOMO

A. Simple COCOMO: - It was the first model suggested by Barry Boehm, which Follows following formula:

Efforts= a*(KLOC)^b

Here a and b are complexity factor.

Complexity Factors				
Model	А	В		
Organic (simple in terms of size and complexity	3.2	1.05		
Semi-ditched (average in terms of	3.0	1.12		
size and complexity				
Embedded (Complex)	2.8	1.20		

TABLE I Complexity Factors

B. *Intermediate COCOMO*:-Previous model does not include the factors which can affect the efforts. Intermediate COCOMO includes 17 factors that can affect the efforts estimation.

Efforts= a*(KLOC) ^b *EAF

Here a and b are complexity factor.

TABLE III	
Complexity Feators	
Complexity Factors	

Model	А	В
Organic (simple in terms of size and complexity	3.2	1.05
Semi-ditched (average in terms of size and complexity	3.0	1.12
Embedded (Complex)	2.8	1.20

Following are Efforts Adjustment Factors used in Intermediate COCOMO. Typical values for EAF range from 0.9 to 1.4.

Efforts	TABLE IIIII s Adjustment Factors used in Intermediate COCOMO
Cost Driver Sample	e Project Value Description
DATA	Database size.
CPLX	Product complexity.
TIME	Execution time constraint.
STOR	Main storage constraint.
RUSE	Required reusability.
DOCU	Documentation match to life-cycle needs.
PVOL	Platform volatility.
SCED	Scheduling factor.
RELY	Required reliability.
TOOL	Use of software tools.
APEX	Application experience.
ACAP	Analyst capability.
PCAP	Programmer capability.
PLEX	Platform experience.
LTEX	Language and tools experience.
PCON	Personnel continuity.
SITE	Multisite development.
OCOMO: In advance	COCOMO model no of afforts adjustment factors are increased, now

C. Advance COCOMO:-In advance COCOMO model no of efforts adjustment factors are increases, now it become 22.

Efforts= a*(KLOC) ^b*EAF

Here a and b are complexity factor.

Model	А	В
Organic (simple in terms of size and complexity	3.2	1.05
Semi-ditched (average in terms of size and complexity	3.0	1.12
Embedded (Complex)	2.8	1.20

TABLE IVV USE CASE CALCULATION

Following parameters not included in intermediate COCOMO:

Efforts Adjustment Fac	tors used in Advance COO	COMO other than Intermediate COCOMO
Scale Factor	Sample Project Value	Description
PREC	nominal	Precedence.
PMAT	CMM Level I (upper)	Process maturity.
TEAM	nominal	Team cohesion.
FLEX	nominal	Development flexibility.
RESL	little (20%)	Architecture and risk resolution.

TABLE V

In the mid-1990s, Jim Rum Baugh, Grady Booch and Ivar Jacobson of Rational Software Corporation developed the Unified Modeling Language (UML) as notation and methodology for developing object-oriented software. UML was incorporated into the Rational Unified Process (RUP) by Rational Software. Within UML is the concept of defining the requirements for software products with Use Cases. Around the same time, Gustav Karner, also of Rational Software Corporation, created a software project estimating technique based on Use Case Points, much the way that FPA assigns points to functions, and including statistical and weighted modifiers. Karner's technique is now incorporated into RUP. Use Cases, as defined by UML, describe the things actors want the system to do and have proven to be an easy method for capturing the scope of a project early in its lifecycle. For their use, the case study team liked being able to create estimates early in the project lifecycle as a way to respond to the needs of their customers. Additionally, they find Use Cases to be a more consistent artifact then functions upon which to base an early project estimate. However, like FPA and COCOMO, the accuracy of estimates created using the RUP UCP estimating technique is largely dependent on a sizable volume of relevant historical data.

In UCP approach estimation divided into three parts

- A. Calculate no of Actors.
- B. Calculate no of Use Cases
- C. Calculate TCF and EF

A. Calculate no of Actors:-We use following table to calculate no of Actors used in project

Actor Calculation						
Actor Description Quantity Weight Subtotal						
Туре			Factor			
Simple	Defined		1			
_	API					

TABLE VV	
aton Calaulation	

Average	Interactive		2	
	or protocol			
	driven			
	interface			
Complex	Graphical		3	
	user			
	interface			
Total Actor Points				

B. Calculate no of Use Cases:-We use following table to calculate no of Use Cases used in project

TABLE VIVI					
	Use C	ase Calculati	on		
Use	Description	Quant	Weight	Subtotal	
Case	_	ity	Factor		
Туре					
Simple Up to 3			5		
	transactions				
Average	4 to 7		10		
	transactions				
Complex	More than 7		15		
	transactions				
Total Use Cases					

 $UUCP = Weighted \ Actors + Weighted \ Use \ Cases$

UCP=UUCP*TCF*EF

Calculate TCF (Technical Complexity Factor)

List of Technical factors where weight factor rate from 0-2 and project rating rate from 0-5

TABLE VIIV	II
Technical Complexity	Factors

Technical Complexity Factors					
Technic	Factor	Wight	Project	Sub	
al	Description	Factor	Rating	Total	
Factor					
T1	Must have a	2			

	diatailanta d	[[
	distributed		
	solution		
T2	Must Respond	1	
	to specific		
	performance		
	objective		
T3	Must meet end	1	
	user efficiency		
	desired		
T4	Complex	1	
	internal		
	processing		
T5	Code must	1	
10	reusable	1	
T6	Must be easy	0.5	
10	to install	0.5	
T7	Must be easy	0.5	
1 /	-	0.5	
T8	to use Must be	2	
10		Z	
T O	portable	1	
T9	Must be easy	1	
	to change		
T10	Include special	1	
	security		
	feature		
T11	Must provide	1	
	direct access to		
	third parties		
T12	Requires	1	
	special user		
	training		
	facilities		
T13	Must allow	1	
	concurrent		
	user		
TOTAL			

TCF= (0.01 * TC factor) + 0.6 Calculate EF (EXPERIENCE FACTOR)

TAE	BLE VIIIX			
Experience Factor				

Experie	Factor	Wight	Project	Sub
nce	Description	Factor	Rating	Total
factor				
E1	Familiar with	1		
	FTP software			

	Process		
E2	Application	0.5	
	Experience		
E3	Paradigm	1	
	Experience		
E4	Lead analyst	0.5	
	capability		
E5	Motivation	0	
E6	Stable	2	
	Requirements		
E7	Part time	-1	
	workers		
E8	Difficulty of	-1	
	programming		
	Language		
TOTAL			

EF= (-0.03 *E factor) + 1.4

II. RESEARCH WORK

In our research we are including all factors of COCOMO in to UCP .Some parameters which is included in COCOMO not included in UCP. These are the parameter that can be including in UCP in our search

- 1. Database Size.
- 2. Documentation
- 3. Scheduling Factors
- 4. Use of software tools
- 5. Multi site Development.
- 6. Programmer Capability
- 7. Platform Experience
- 8. Personnel Continuity.

Parameter 1-5 considered as TCF and 6-8 considered as EF.

New Technical Complexity Factors with weight factors is follows:

	TABLE X Extended Technical Factors					
Technic al	Factor Description	Wight Facto	Project Rating	Sub Total		
Factor		r				
T1	Must have a distributed solution	2				

	M (D 1)	1	T T	
T2	Must Respond to	1		
	specific			
	performance			
	objective			
T3	Must meet end	1		
	user efficiency			
	desired			
T4	Complex internal	1		
	processing			
T5	Code must	1		
15	reusable	1		
T6		0.5		
10	Must be easy to	0.5		
	install	0.5		
T7	Must be easy to	0.5		
	use			
T8	Must be portable	2		
T9	Must be easy to	1		
	change			
T10	Include special	1		
	security feature			
T11	Must provide	1		
	direct access to			
	third parties			
T12	Requires special	1		
112	user training	1		
	facilities			
T13	Must allow	1		
115		1		
T 1 4	concurrent user	1		
T14	Database Size.	1		
T15	Documentation	1		
T16	Scheduling	-1		
	Factors			
T17	Use of software	1		
	tools			
T18	Multi site	-1		
110	Development			
	Development			_
			1	

New Experience Factors with weight factors is follows:

Extended Experience factor				
Experie	Factor	Wight	Project	Sub
nce	Description	Factor	Rating	Total
factor				
E1	Familiar with	1		
	FTP software			
	Process			
E2	Application	0.5		

TABLE XIX

	I		1	
	Experience			
E3	Paradigm	1		
	Experience			
E4	Lead analyst	0.5		
	capability			
E5	Motivation	0		
E6	Stable	2		
	Requirements			
E7	Part time	-1		
	workers			
E8	Difficulty of	-1		
	programming			
	Language			
E9	Programmer	1		
	Capability			
E10	Platform	1		
	Experience			
E11	Personnel	1		
	Continuity			

III. RESULT

We have taken data from a small software development company. First we have estimated efforts by using old UCP method and estimated the efforts required to build the project. We have seen as usual estimated efforts were less than actual efforts and deviation (average deviation)) was % Result Shown in below table:

TABLE XIX Case Study					
PROJECT	ESTIMATED	ACTUAL	DEVIA		
NO	EFFORTS	EFFORTS	TION		
А	1320	1584	20		
В	880	1039	18		
С	1080	1221	13		
D	720	800	11		

Now we taken same projects and estimated the efforts using our approach. We have seen deviation is fall and it is % only. So have seen a improvement of % in estimation.

TABLE XIIXI					
	Case	Study			
PROJECT	ESTIMATE	ACTUAL	DEVIATI		
NO	D	EFFORTS	ON %		
	EFFORTS				
А	1426	1584	11		
В	938	1039	11		
С	1130	1221	08		
D	758	800	06		

IV. CONCLUSION

In this paper we have tried to reduce the % of deviation by using some extra factors. Although efforts estimation can never become a exact science, but we tried to minimize error of effort estimation. We cane see from result around 7% deviation is reduces. We have tried to include eight extra factors. We have assigned a weight factor this parameters, this values are assign on trail and error basis, you can change this values for your project than you may change.

REFERENCES

- [1] Vahid Khatibi, Dayang N. A. Jawawi "Software Cost Estimation Methods: Review", Journal of Emerging Trends in Computing and Information Sciences Volume 2 No. 1 January 2011.
- [2] Boehm," Software Engineering Economics", Prentice Hall, 1981.
- [3] Chiu, N.H., Huang, S.J., "The adjusted analogy-based software effort estimation based on similarity distances", Journal of Systems and Software 80 (4), 628–640.2007
- [4] Cuadrado-Gallego, J. J., Rodri, et al. "Analogies and Differences between Machine Learning and Expert Based Software Project Effort Estimation". Software Engineering Artificial Intelligence Networking and Parallel/Distributed Computing (SNPD), 11th ACIS International Conference
- [5] Roger E Masse "An Analysis of the Evolution of COCOMO and Function Point" July 8 1997. http://www.rogermasse.com/papers/software-metrics/
 [6] Edward R Carroll "Estimating Software Based on Use Case Point" October 2005 Companion to the 20th annual ACM SIGPLAN
- [6] Edward R Carroll "Estimating Software Based on Use Case Point" October 2005 Companion to the 20th annual ACM SIGPLAN conference on Object-oriented programming, systems, languages, and applications.
- [7] Rum Baugh, J, Jacobson, I., and Booch, G, the Unified Modeling Language Reference Manual, Addison Wesley, Boston, MA, 1999.