
Software efforts estimation using Use Case
Point approach by increasing Technical

Complexity and Experience Factors

Chetan Nagar1
1Ph.D Student, Mewar University (Gangrar) Chittodgarh Rajasthan India

callchetan_nagar@yahoo.com

Abstract— An IT industry wants a simple and accurate method of efforts estimation. Estimation of efforts
before starting of work is a prediction and prediction always not accurate. Intermediate COCOMO
considered 17 factor that affecting the efforts, UCP considered 13 Technical Complexity Factors and 05
Experience factors. There is a lot factors that can affect efforts estimation .Most of the parameter are
covered by COCOMO and UCP, but some parameters which are included in COCOMO left by UCP.
UCP is one of the popular approaches of effort estimation. This paper is increasing the Technical
complexity and Experience factors used in traditional UCP approach.

Keywords—.UCP (Use Case Point: it is one of the approach of efforts estimation), COCOMO (it is one of
the approach of efforts estimation). FP (Function Point), TCP (Technical Complexity Factors), EF
(Experience Factor), Efforts Estimation, EAF (Efforts Adjustment Factors) Cost Drivers,

I. INTRODUCTION

Several estimating models have been developed over the years. Those preceding Use Case Point (UCP) and

forming the basis for the UCP model include Function Point Analysis and the Constructive Cost Model.
Function Point Analysis (FPA) was a valuable technique developed by A. J. Albrecht, in 1977. FPA assigns a
point to each function in an application. Various modifiers then act on the function points in order to adjust for
the product environment. Modifiers typically included applying weighted percentages or multipliers that would
directly increase or decrease the point values. Environment factors included modifiers for complexity of
technical issues, developer skill level, and risk. One problem organizations attempting to use this method would
run into was consistent definition of a function and consistent definition of environmental factors across
multiple projects and multiple development languages. To produce reliably accurate estimates, FPA relies
heavily on historical data to derive weighting values and modifiers. Software efforts estimation is one of
important activity of software development. The Constructive Cost Model, also known as COCOMO, was
created by Barry Boehm, in 1981. COCOMO used statistical returns to calculate project cost and duration
within a given probability. The model sought to provide a tool for predictably estimating cost, and continues to
evolve today under the sponsorship of the University of Southern California. The model was/is interesting and
produced worthy merits in applying statistical analysis to the problem of cost estimating. However, a major
defining point in statistics is sample set size. The underlying assumption for COCOMO (like FPA) is that a
statistically significant historical database exists to drive the statistical factoring. This will become a common
theme through many attempts to create estimating models. Software engineering teams are typically very good
at collecting lists of bugs, but notoriously bad at gathering meaningful historical or statistically significant
metrics useful in predicting future projects.
One after one three models of COCOMO given by Barry Boehm:

A. Simple COCOMO.
B. Intermediate COCOMO.
C. Advance COCOMO

A. Simple COCOMO: - It was the first model suggested by Barry Boehm, which Follows following formula:

Efforts= a*(KLOC) b

Here a and b are complexity factor.

Chetan Nagar / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 10 October 2011 3337

TABLE I

Complexity Factors
Model A B
Organic (simple in terms of size and
complexity

3.2 1.05

Semi-ditched (average in terms of

size and complexity

3.0 1.12

Embedded (Complex) 2.8 1.20

B. Intermediate COCOMO:-Previous model does not include the factors which can affect the efforts.

Intermediate COCOMO includes 17 factors that can affect the efforts estimation.

Efforts= a*(KLOC) b *EAF
Here a and b are complexity factor.

TABLE III

Complexity Factors
Model A B
Organic (simple in terms of size and
complexity

3.2 1.05

Semi-ditched (average in terms of

size and complexity

3.0 1.12

Embedded (Complex) 2.8 1.20

Following are Efforts Adjustment Factors used in Intermediate COCOMO. Typical values for EAF range

from 0.9 to 1.4.

TABLE IIIII
Efforts Adjustment Factors used in Intermediate COCOMO

Cost Driver Sample Project Value Description

DATA Database size.
CPLX Product complexity.
TIME Execution time constraint.
STOR Main storage constraint.
RUSE Required reusability.
DOCU Documentation match to life-cycle needs.
PVOL Platform volatility.
SCED Scheduling factor.
RELY Required reliability.
TOOL Use of software tools.
APEX Application experience.
ACAP Analyst capability.
PCAP Programmer capability.
PLEX Platform experience.
LTEX Language and tools experience.
PCON Personnel continuity.
SITE Multisite development.

C. Advance COCOMO:-In advance COCOMO model no of efforts adjustment factors are increases, now it
become 22.

Efforts= a*(KLOC) b *EAF
Here a and b are complexity factor.

Chetan Nagar / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 10 October 2011 3338

TABLE IVV
USE CASE CALCULATION

Model A B
Organic (simple in terms of size and
complexity

3.2 1.05

Semi-ditched (average in terms of

size and complexity

3.0 1.12

Embedded (Complex) 2.8 1.20

Following parameters not included in intermediate COCOMO:

TABLE V

Efforts Adjustment Factors used in Advance COCOMO other than Intermediate COCOMO

Scale
Factor

Sample Project
Value

Description

PREC nominal Precedence.

PMAT
CMM Level I
(upper)

Process maturity.

TEAM nominal Team cohesion.

FLEX nominal
Development
flexibility.

RESL little (20%)
Architecture and risk
resolution.

In the mid-1990s, Jim Rum Baugh, Grady Booch and Ivar Jacobson of Rational Software Corporation
developed the Unified Modeling Language (UML) as notation and methodology for developing object-oriented
software. UML was incorporated into the Rational Unified Process (RUP) by Rational Software. Within UML is
the concept of defining the requirements for software products with Use Cases. Around the same time, Gustav
Karner, also of Rational Software Corporation, created a software project estimating technique based on Use
Case Points, much the way that FPA assigns points to functions, and including statistical and weighted
modifiers. Karner’s technique is now incorporated into RUP. Use Cases, as defined by UML, describe the things
actors want the system to do and have proven to be an easy method for capturing the scope of a project early in
its lifecycle. For their use, the case study team liked being able to create estimates early in the project lifecycle
as a way to respond to the needs of their customers. Additionally, they find Use Cases to be a more consistent
artifact then functions upon which to base an early project estimate. However, like FPA and COCOMO, the
accuracy of estimates created using the RUP UCP estimating technique is largely dependent on a sizable volume
of relevant historical data.

In UCP approach estimation divided into three parts

A. Calculate no of Actors.
B. Calculate no of Use Cases
C. Calculate TCF and EF

A. Calculate no of Actors:-We use following table to calculate no of Actors used in project

TABLE VV
Actor Calculation

Actor
Type

Description Quantity Weight
Factor

Subtotal

Simple Defined
API

 1

Chetan Nagar / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 10 October 2011 3339

Average Interactive
or protocol
driven
interface

 2

Complex Graphical
user
interface

 3

Total Actor Points

B. Calculate no of Use Cases:-We use following table to calculate no of Use Cases used in project

TABLE VIVI

Use Case Calculation
Use
Case
Type

Description Quant
ity

Weight
Factor

Subtotal

Simple Up to 3
transactions

 5

Average 4 to 7
transactions

 10

Complex More than 7
transactions

 15

Total Use Cases

UUCP =Weighted Actors + Weighted Use Cases
UCP=UUCP*TCF*EF
Calculate TCF (Technical Complexity Factor)
List of Technical factors where weight factor rate from 0-2 and project rating rate from 0-5

TABLE VIIVII
Technical Complexity Factors

Technic
al
Factor

Factor
Description

Wight
Factor

Project
Rating

Sub
Total

T1 Must have a 2

Chetan Nagar / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 10 October 2011 3340

distributed
solution

T2 Must Respond
to specific
performance
objective

1

T3 Must meet end
user efficiency
desired

1

T4 Complex
internal
processing

1

T5 Code must
reusable

1

T6 Must be easy
to install

0.5

T7 Must be easy
to use

0.5

T8 Must be
portable

2

T9 Must be easy
to change

1

T10 Include special
security
feature

1

T11 Must provide
direct access to
third parties

1

T12 Requires
special user
training
facilities

1

T13 Must allow
concurrent
user

1

TOTAL

TCF= (0.01 * TC factor) + 0.6
Calculate EF (EXPERIENCE FACTOR)

TABLE VIIIX

Experience Factors
Experie
nce
factor

Factor
Description

Wight
Factor

Project
Rating

Sub
Total

E1 Familiar with
FTP software

1

Chetan Nagar / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 10 October 2011 3341

Process
E2 Application

Experience
0.5

E3 Paradigm
Experience

1

E4 Lead analyst
capability

0.5

E5 Motivation 0
E6 Stable

Requirements
2

E7 Part time
workers

-1

E8 Difficulty of
programming
Language

-1

TOTAL

EF= (-0.03 *E factor) + 1.4

II. RESEARCH WORK

In our research we are including all factors of COCOMO in to UCP .Some parameters which is included in

COCOMO not included in UCP. These are the parameter that can be including in UCP in our search
1. Database Size.
2. Documentation
3. Scheduling Factors
4. Use of software tools
5. Multi site Development.
6. Programmer Capability
7. Platform Experience
8. Personnel Continuity.
Parameter 1-5 considered as TCF and 6-8 considered as EF.

New Technical Complexity Factors with weight factors is follows:

TABLE X
Extended Technical Factors

Technic
al
Factor

Factor
Description

Wight
Facto
r

Project
Rating

Sub
Total

T1 Must have a
distributed
solution

2

Chetan Nagar / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 10 October 2011 3342

T2 Must Respond to
specific
performance
objective

1

T3 Must meet end
user efficiency
desired

1

T4 Complex internal
processing

1

T5 Code must
reusable

1

T6 Must be easy to
install

0.5

T7 Must be easy to
use

0.5

T8 Must be portable 2
T9 Must be easy to

change
1

T10 Include special
security feature

1

T11 Must provide
direct access to
third parties

1

T12 Requires special
user training
facilities

1

T13 Must allow
concurrent user

1

T14 Database Size.

1

T15 Documentation 1
T16 Scheduling

Factors
-1

T17 Use of software
tools

1

T18 Multi site
Development

-1

New Experience Factors with weight factors is follows:

TABLE XIX
Extended Experience factor

Experie
nce
factor

Factor
Description

Wight
Factor

Project
Rating

Sub
Total

E1 Familiar with
FTP software
Process

1

E2 Application 0.5

Chetan Nagar / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 10 October 2011 3343

Experience
E3 Paradigm

Experience
1

E4 Lead analyst
capability

0.5

E5 Motivation 0
E6 Stable

Requirements
2

E7 Part time
workers

-1

E8 Difficulty of
programming
Language

-1

E9 Programmer
Capability

1

E10 Platform
Experience

1

E11 Personnel
Continuity

1

III. RESULT
We have taken data from a small software development company. First we have estimated efforts by using

old UCP method and estimated the efforts required to build the project. We have seen as usual estimated efforts
were less than actual efforts and deviation (average deviation)) was % Result Shown in below table:

TABLE XIX

Case Study
PROJECT
NO

ESTIMATED
EFFORTS

ACTUAL
EFFORTS

DEVIA
TION
%

A 1320 1584 20
B 880 1039 18
C 1080 1221 13
D 720 800 11

Now we taken same projects and estimated the efforts using our approach. We have seen deviation is fall and

it is % only. So have seen a improvement of % in estimation.

TABLE XIIXI

 Case Study
PROJECT
NO

ESTIMATE
D
EFFORTS

ACTUAL
EFFORTS

DEVIATI
ON %

A 1426 1584 11
B 938 1039 11
C 1130 1221 08
D 758 800 06

Chetan Nagar / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 10 October 2011 3344

IV. CONCLUSION
In this paper we have tried to reduce the % of deviation by using some extra factors. Although efforts

estimation can never become a exact science, but we tried to minimize error of effort estimation. We cane see
from result around 7% deviation is reduces. We have tried to include eight extra factors. We have assigned a
weight factor this parameters, this values are assign on trail and error basis, you can change this values for your
project than you may change.

REFERENCES
[1] Vahid Khatibi, Dayang N. A. Jawawi “Software Cost Estimation Methods: Review”, Journal of Emerging Trends in Computing and

Information Sciences Volume 2 No. 1 January 2011..
[2] Boehm,” Software Engineering Economics”, Prentice Hall, 1981.
[3] Chiu , N.H., Huang, S.J., “The adjusted analogy-based software effort estimation based on similarity distances”, Journal of Systems

and Software 80 (4), 628–640.2007
[4] Cuadrado-Gallego, J. J., Rodri, et al. “Analogies and Differences between Machine Learning and Expert Based Software Project

Effort Estimation”. Software Engineering Artificial Intelligence Networking and Parallel/Distributed Computing (SNPD), 11th ACIS
International Conference

[5] Roger E Masse “An Analysis of the Evolution of COCOMO and Function Point” July 8 1997.
http://www.rogermasse.com/papers/software-metrics/

[6] Edward R Carroll “Estimating Software Based on Use Case Point” October 2005 Companion to the 20th annual ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and applications.

[7] Rum Baugh, J, Jacobson, I., and Booch, G, the Unified Modeling Language Reference Manual, Addison Wesley,Boston, MA, 1999.

Chetan Nagar / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 10 October 2011 3345

