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Abstract—This paper proposes a combination of particle swarm optimization (PSO) and Q-value based 

safe reinforcement learning scheme for neuro-fuzzy systems (NFS). The proposed Q-value based particle swarm 

optimization (QPSO) fulfills PSO-based NFS with reinforcement learning; that is, it provides PSO-based NFS 

an alternative to learn optimal control policies under environments where only weak reinforcement signals are 

available. The reinforcement learning scheme is designed by Lyapunov principles and enjoys a number of 

practical benefits, including the ability of maintaining a system's state in a desired operating range and efficient 

learning. In the QPSO, parameters on a NFS are encoded in a particle evaluated by Q-value. The Q-value 

cumulates the reward received during a learning trial and is used as the fitness function for PSO evolution. 

During the trail, one particle is selected from the swarm; meanwhile, a corresponding NFS is built and applied 

to the environment with an immediate feedback reward. The applicability of QPSO is shown through 

simulations in single-link and double-link inverted pendulum system. 

 

Keywords- Neuro-fuzzy system,  particle swarm optimization, reinforcement learning, Q-learning. 

I.  INTRODUCTION  
In recent years, the application of neuro-fuzzy systems in control engineering has become a popular research 

topic [1]-[3]. In general, the way of tuning the parameters on a NFS can be divided into two categories: 
supervised learning [4] and reinforcement learning [5].  

First, supervised learning is a machine learning technique for updating its parameters from training data. The 
training data is composed of pairs of inputs, and desired outputs. The object of the supervised learning is to 
predict the output value of the NFS for any valid input data after its parameters have been trained by a number of 
training data. However, for many control tasks, training data are usually difficult or too costly, or even not 
accessible. As a result, reinforcement learning is more practicable than supervised learning in many occasions.  
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In reinforcement learning, the agent receives from its environment a reinforcement signal at each time step. 
This signal could be either a reward or a punishment. Meanwhile, the agent explores actions from the action set, 
and finds out which action yields the greatest reward. To solve reinforcement problem, temporal difference (TD) 
[6]-[8] is one of the most common method. In TD learning, learners don’t have to wait until the end of a trial; 
instead, TD methods need wait only one time step. This is crucial for applications that have very long trials or 
tasks that are continuous and have no trials at all. Q-learning [9] is a powerful and easy-implementing TD-based 
approach. It is a reinforcement learning technique that works by updating a simple action-value iteration function. 
This function gives the measurement of taking a given action in a given state. 

Besides TD methods, many evolutionary algorithms such as PSO [10]-[12], genetic algorithm (GA) [13], 
evolutionary programming [14], and evolution strategies [15], are popular for solving reinforcement learning 
tasks. These learning procedures are based on populations made of individuals with specific behaviors similar to 
certain biological phenomena. Individuals keep exploring the solution space and exploiting information between 
individuals while evolution proceeding. In general, by means of exploring and exploiting, evolutionary 
algorithms are less likely to be trapped at the local optimum. Many researches on using evolutionary algorithm 
for solving reinforcement learning tasks have been proposed recently [16]-[17]. In [16], authors propose a swarm 
intelligence based reinforcement learning (SWIRL) method to train artificial neural networks (ANN). Authors 
apply ant colony optimization to select ANN topology and apply the PSO to adjust ANN connection weights. In 
[17], Lin and Hsu present a reinforcement hybrid learning algorithm (R-HELA) combining the compact GA 
(CGA) [18] and the modified variable-length GA (VGA) [19] on recurrent wavelet-based NFS. A counter is used 
to accumulate the time steps until the control task fails and the accumulated values are fed into individuals as 
fitness functions. Lin and Hsu’s model is very effective; however, its fitness function only indicates how long can 
the controller work well instead of measuring how soon the system can meet the control goal, which is also very 
important in reinforcement learning. There is also a growing interest in combining the advantages of evolutionary 
algorithms and TD-based reinforcement learning [20]-[21]. In [20], a TD and GA based reinforcement learning 
(TDGAR) is proposed. Authors propose a neural structure composed of two feedforward networks for 
reinforcement learning, the critic network and the action network. The critic network predicts the external signal 
provides a more informative internal signal to the action network. The action network uses GA to determine the 
output of the learning system. The weight update rule for the hidden layer of the critic network is based on error 
backpropagation. In [21], an on-line clustering and Q-value based GA reinforcement learning for fuzzy system 
(CQGAF) is proposed. In one generation CQGAF learning, one individual is applied to the environment to 
estimate the fitness function, Q-value, and Q-values of other individuals are updated by eligibility trace. The GA 
operation is performed by the end of each trial and creates a new generation of individuals. In [22], authors 
proposed a recurrent wavelet-based NFS with a reinforcement group cooperation-based symbiotic evolution (R-
GCSE) algorithm. In [22], a population is divided to several groups. The R-GCSE has a good ability of parameter 
learning by adopting the concept that each group formed by a set of chromosomes cooperates with other groups 
to generate better chromosomes.  

Although the aforementioned reinforcement learning methods work well in many applications, there is an 
issue remains to be solved. No fitness function in these methods indicates how soon the learning agents can 
control the system's state into a set of goal states. Sure there is no need to define the fitness function that way if 
there is no guidance provided to the controller of how to maintain the system's state in a desired operating range. 
As a result, in the proposed QPSO, we use the concept of Lyapunov design [23] for constructing safe 
reinforcement learning agents. We also manipulate our fitness function so that it can indicate how soon the 
controller achieves its control goal. In our method, a TSK-type NFS [24] is incorporated in the learning system 
for solving control tasks. The Q-learning is adopted while a particle is applied to the environment for a learning 
trial. In one generation of the QPSO learning, if there are s particles, s trials are taken to compute the 
corresponding Q-value of each particle. It allows each particle to fully exploit the information carried on other 
particles in one generation.  

To conclude, the advantages of the QPSO can be shown from that it provides an alternative for Q-learning to 
solve reinforcement learning problem in one hand, and it extends the applicability of the PSO into reinforcement 
environment on the other. Moreover, another advantage of the QPSO can be seen from the reliable initial learning 
performance due to the Lyapunov design of learning agents. These advantages will be verified through 
simulations. 

This paper is organized as follows. Section II presents an overview of the TSK-type NFS, the PSO and the Q-
learning. In section III we describe the Lyapunov design for the reinforcement learning agents. This is followed 
by the algorithm of the QPSO in section IV. In section V, the QPSO is applied to single-link and double-link 
inverted pendulum system. Finally, conclusions are summarized in section VI. 
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II. RELATED WORKS  
Basic concepts of a TSK-type NFS are first introduced first at section II.A. Followed by the introduction of 

original PSO and some of its improvement at section II.B. The convergence of PSO is also shown here. The 
concepts of Q-learning are introduced at section II.C. 

A. TSK-Type Neuro-Fuzzy System 

A TSK-type NFS is composed of fuzzy IF-THEN rules that can be presented in the following general the 
form:  

1  1 1 1 2  2 2 2  

0 1 1

IF   is ( ,   ) and  is ( ,  ) ... and  is ( ,  ),

THEN  ' ... .
j j j j j j n nj nj nj

j j nj n

x A m x A m x A m

y w w x w x

σ σ σ
= + + +

                 (1) 

where mij and σij represent the mean and deviation of a Gaussian membership function for i-th dimension 
and j-th rule node. It’s a four-layer structure described as follows: 
Layer 1 (Input Node): No function is performed in this layer. The node only transmits input values to layer 2: 

 (1)
i iu x= .                                                                          (2) 

Layer 2 (Membership Function Node): Nodes in this layer calculate the membership value specifying the 
degree to which an input value belongs to a fuzzy set. For an external input, the Gaussian membership is defined 
by: 

 

2(1)
(2) exp ,2

u mi ij
uij

ijσ

  −    = −
 
 
 

                                                                (3) 

where uij
(2) is the output of second layer with i-th input dimension and j-th rule node; mij and σij are , 

respectively, the mean and the deviation of the Gaussian membership function with j-th rule node and i-th input 
dimension. 
Layer 3 (Rule Node): The objective of this layer is performing fuzzy AND operation. The product operation is 
utilized to determine the firing strength of each rule. The function of each rule is: 

          (3) (2)
j ij

i

u u= ∏ .                                                                          (4) 

Layer 4 (Consequent Node): The input to a node in layer 4 is the output delivered from layer 3 and other inputs 
from layer 1. The function of each node is: 

             (4) (3)
0

1
( )

n

j j j ij i
i

u u w w x
=

= + .                                                                 (5) 

where wij  are the corresponding parameters of the consequent part and Mk is the number of fuzzy rules. 
Layer 5 (Output Node): Nodes in this layer correspond to output variables. Each node integrates all the outputs 
layer 3 and 4 and acts as a defuzzifier with 

           
(4) (3)

0
1 1 1(5)

(3) (3)

1 1

( )
k k k

k k

M M M

j j j ij i
j j i

M M

j j
j j

u u w w x

y u

u u

= = =

= =

+
= = =

  

 
.                                                        (6) 

B. Particle Swarm Optimization 

PSO is first introduced by Kennedy and Eberhart in 1995 [10]. It’s one of the most powerful methods for 
solving global optimization problems. The algorithm searches an optimal point in a multi-dimensional space by 
adjusting the trajectories of its particles. The individual particle updates its position and velocity based on its 
previous best performance and previous best performance of other particles which denote pbest and gbest 
respectively. The position d

iX  and velocity d
iV  of the d-th dimension of i-th particle are updated as follows: 

    1 1 2 2( ) ( )d d d d d d
i i i i iV V c rand pbest X c rand gbest X← + ⋅ ⋅ − + ⋅ ⋅ − ,                              (6) 

   d d d
i i iX X V← + ,                                                                                                           (7) 

pbesti represents the previous best position yielding the best performance of the i-th particle; gbest is the best 
position of all particles. c1 and c2 denote the acceleration constants describing the weighting of each particle 
been pulled toward pbest and gbest respectively. rand1 and rand2 are two random numbers in the range [0, 1]. 
Let s denote the swarm size and f() denote the fitness function evaluating the performance yielded by a particle. 

After (6) and (7) are manipulated, the personal best position pbest of each particle is updated as follows 
,  if  ( ) ( ),

,        if  ( ) ( ),

i i
ii

i i
i

pbest f X f pbest
pbest

X f X f pbest

 ≥= 
<

                                                          (8) 

and the global best position gbest is found by  
arg min ( ),  for 1

i
ipbest

gbest f pbest i s= ≤ ≤ .                                                    (9)   
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In 2002, Clerc [12] confirms the convergence of PSO by using a constriction factor which greatly enhances 
the applicability of PSO. The implementation of the constriction factor is shown in (10)-(11) and this is the form 
used in this paper: 

1 1 2 2[ ( ) ( )]d d d d d d
i i i i iV V c rand pbest X c rand gbest Xχ← + ⋅ ⋅ − + ⋅ ⋅ − ,                         (10) 

where  

 
2

2

2 4
χ

φ φ φ
=

− − −
,                                                                     (11) 

and                  
1 2 ,  4c cφ φ= + > .                                                                       (12) 

C. Q-Learning 

Reinforcement learning is the problem of learning a policy from trial-and-error interactions. The learner is 
called the agent and a policy defines the agent’s learning strategy at a given time step. In general, the objective 
of reinforcement learning is to maximize the expected return 

( ) ( ) ( 1) ... ( )R t r t r t r tγ γ Τ= + ⋅ + + + ⋅ + Τ ,                                             (13) 
where γ (0 ≤ γ ≤ 1) is the discount rate and T is the terminal time step. T usually refers to the end of an trial or, 
in a non-episodic task, infinity. The structure of Q-learning is shown in Fig. 1. An agent applies an action a(t) to 
the environment at a particular state x(t), causing a transition from x(t) to x(t+1) with an immediate reward 
r(t+1) in return. Then, the Q-function estimates the cumulative reward and is denoted by the Q-value of state-
action pair (x(t), a(t)). The Q-value of each state-action pair is updated as follows:  

   
*

*

' ( ( 1))

( ( ),  ( )) ( ( ),  ( )) [ ( 1) ( ( 1)) ( ( ),  ( ))],
( ( 1)) max ( ( 1),  '),

a A x t

Q x t a t Q x t a t r t Q x t Q x t a t

Q x t Q x t a

α γ

∈ +

← + + + + −
+ = +

                 (14) 

where A(x(t+1)) is the set of candidate actions in state x(t+1) and α (0 ≤ α ≤ 1) is the learning rate.  

 
Figure 1. Structure of Q-learning. 

III. LYAPUNOV DESIGN OF LEARNING AAGGENTS 
Lyapunov design methods are widely used to achieve some commonly stated goals for controlling a 

system, such as stabilizing a system or maintaining a system's state in a desired operating range. Lyapunov 
function is a scalar function of the system state and it often corresponds to some real, natural notion of energy in 
physical systems. The basic concept of Lyapunov function has been extended to reinforcement learning 
problems by Perkins and Barto [23]. The purpose of [23] is to guide the system to reach and remain in a set of 
goal states.  

The proposed QPSO conducts one Lyapunov-style theorem proposed in [23], which provides a criterion for 
designing the reinforcement learning agent. The theorem is listed below. Let :L S →  denotes a function 
positive on Tc=S-T, and Δ denotes a fixed real number.  
Theorem 1 If s T∀ ∉ , actions a∈A(s), all possible next state s' (either 's T∈  or ( ) ( ')L s L s− ≥ Δ ), then from 

any ts T∉ , the environment enters T within ( ) /tL s Δ    time steps. 
The proof of theorem 1 can be found in [23]. Theorem 1 provides a guarantee of a plant's meeting the goal 

state, if the controller is designed such that it reduces the Lyapunov function of the plant in each time step. 
Therefore, the central task of the proposed QPSO is to identify a Lyapunov function of a control plant then 
design the action choices so that the reinforcement learning satisfies the above theorem. We also modify the 
original Q-learning algorithm into (15) so that the Q-value of a particle can indicate how soon the system's state 
entering the goal state: 
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*

*

' ( ( 1))

1( ( ),  ( )) ( ( ),  ( )) [ ( ( 1)) ( ( ),  ( ))],

( ( 1)) max ( ( 1),  ').
a A x t

Q x t a t Q x t a t Q x t Q x t a t
t

Q x t Q x t a

α γ

∈ +

← + − + + −

+ = +
                  (15) 

IV. THE LEARNING ALGORITHM OF QPSO 
Thorough learning algorithm of QPSO is described in this section. The architecture is shown in Fig.2. The 

whole learning process can be roughly divided into two parts: the Q-value and PSO operation part. The learning 
strategy for Q-values of particles is detailed in section IV.A while the PSO operation and the flowchart of QPSO 
are described in section IV.B. 

 
Figure 2.  Architecture of QPSO 

 
Finally, complete content and organizational editing before formatting. Please take note of the following items 

when proofreading spelling and grammar: 

A. Learning Q-values of Particles 

In QPSO learning, if there are s particles in the swarm, s trials are taken in one generation. The agent applies 
in each trial an action to the environment by selecting a particle based on its Q-value. Every time a particle is 
selected, the Q-value of the selected particle is updated based on the system’s reward. As derived in (15), if the 
i -th particle is selected, its Q-value qi is updated as  

*1( ) ( ) [ ( ( 1)) ( )],  for 1, , ,  i i iq t q t Q x t q t i s
t

α γ= + − + + − =                          (16) 

where 
*

*

' ( ( 1)) 1... 1...
( ( 1)) max ( ( 1),  ') max ( ( 1),  ) max ( ) ( )i i ia A x t i s i s

Q x t Q x t a Q x t p q t q t
∈ + = =

+ = + = + = = ;                   (17) 

that is, 

*

1( ) ( ) [ ( ) ( )] ( ) ( ),  for 1, , ,i i i i ii
q t q t q t q t q t t i s

t
α γ αδ= + − + − = + =                       (18) 

where δi(t) is regarded as TD error. 
The new Q-values of all particles calculated from (18) are subsequently adopted as the fitness values for PSO 
evolution. 

B. Q-value Based PSO 

The PSO operation used in QPSO consists of two major steps: swarm initialization and Q-valued base PSO 
evolution. Details of these two steps are described step-by step as follows. 

• Swarm initialization 

The particle swarm is composed of particles encoded by the parameters on a NFS. Each particle is 
encoded by the mean, deviation of Gaussian membership functions and the weightings for output 
action strength. The number of fuzzy rules determines the length of each particle. After the number of 
rules is set, the initial particles are generated according to the following equations:  

[ ] [ ]min maxMean: , ,ip n random m m=                                                   (19) 

where n=1,3,…,2NR-1; i=1,2, …,s. 
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[ ] [ ]min maxDeviation: , ,ip n random σ σ=                                             (20) 

where n=2,4,…,2NR. 

[ ] [ ], min maxWeight: , ,g cChr n random w w=                                        (21) 

where n=2NR, 2NR+1,…,D. 

pi represents the i-th particle in the swarm; N represents the input dimension; R represents the number 
of fuzzy rules; D represents the size of each particle, usually D equals to (N+1)R in most of cases 
where the dimension of output variable is 1; [mmin,,mmax], [σmin,,σmax] and [wmin,,wmax], are the predefined 
ranges. The above equations result in the coding scheme between a neural fuzzy system and a particle 
shown in Fig. 3. 

         
Figure 3.  Coding scheme between a particle and a TSK-type NFS in QPSO. 

 
• Q-value based PSO evolution 

The Q-values derived in (18) are used as the fitness values for PSO evolution. The Q-value of 
each particle determines the performance of a particle for controlling the system. In the proposed 
QPSO, the Q-value of each particle indicates how soon a particle can guide the system’s state to reach 
the set of goal states. The flowchart of how each particle evolves by the end of each trial is shown in 
Fig. 4 where q() represents the function to estimate a particle’s Q-value and max_gen represents the 
allowance number of generations that PSO evolution runs before meeting the stopping criteria. 
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Fig. 4.  Flowchart of Q-valued based PSO evolution. 

 
The learning processes of III.A and III.B proceeds to new generation until a predefined stop criterion is 
met. The block diagram of whole learning process in QPSO is shown in Fig. 5. 

 

 
Fig. 5.  Block diagram of QPSO. 
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V. ILLUSTRATIVE EXAMPLES 
Two simulations are discussed in this section. The first simulation is the cart-pole balance control [25] and 

the second simulation is the control of a double-link inverted pendulum system [26]. 
Example 1: Control of a Single-link inverted pendulum system  

 
Figure 6.  Single-link inverted pendulum system. 

 
Figure 6 depicts the single-link inverted pendulum system. The state of pendulum is specified by a  pole 

angle θ, which is measured clockwise from upright, and an angular velocity θ . The model of the single-link 
inverted pendulum system can be obtained as follows: 

2 sinml mglθ θ τ= + ,                                                  (22) 
where τ  is a control torque. The mechanical energy of the pendulum including kinetic and potential is given by  

                      ( ) 2 21,  cos
2

E ml mglθ θ θ θ= +  .                                                          (23) 

The purpose of this control task is to determine a sequence of torques to balance the pole upright, and maintains 
the pole as stationary as possible. Hence, we define a goal set comprising near-upright and near-stationary states 
as 

     { }1 ( , ) :  ( , ) 0.01G θ θ θ θ= ≤  .                                                         (24) 

When the state of pendulum is in 1G , according to (23), the total mechanical energy E of the system is mgl. 

Defining a Lyapunov function ( ) ( ),  ,  L mgl Eθ θ θ θ= −  . The control objective can be also viewed as achieving 

( ),  0L θ θ = . The time derivative of E with respect to time is given by 

( ),  E θ θ θτ=  .                                                                   (25) 

From the derivative, the energy increases if 0θτ > . Hence, a control law for the learning agent based on 
Lyapunov analysis is proposed as follows: 

( )
( )

( ) ,  if ,  < , 

0,  if ,  , 

sgn z E mgl

E mgl

θ θ θ
τ

θ θ


= 

≥

 


                                                      (26) 

where ( ) { 1 if 0, and -1 if 0}sgn x x x= + ≥ <    and z is the output of the NFS limited in [0,10]. This control law, 
parameterized by z, supplies a control torque of magnitude z in the direction of θ  most of the time. 
   Single-link inverted pendulum system parameters are l=1m, m =1kg, g=9.8m/s. In designing the NFS, 
the four controller input ( , , , )x xθ θ   are normalized between 0 and 1, and the output z is limited between 0 and 
10. [mmin,,mmax], [σmin,,σmax] and [wmin,,wmax] are set as [0, 2], [0, 2] and [-30, 30], respectively. In the PSO, the 
swarm size s is set as 20, max_gen is set as 50 and the acceleration constants c1 and c2 are both set as 2.01. The 
parameters for Q-learning are set as α=0.01 and γ=0.9. Learning trials are deemed successful if they bring the 
system state to G1; on the contrary, learning trials are terminated and said to be unsuccessful if they exceeded 
1000 time steps. The fitness value of each particle is defined according to (18). The higher fitness value by the 
end of each trial represents the sooner the plant meets the goal set. When the QPSO is stopped, the best particle 
from the swarm in the final generation is applied to the testing phase of the single-link inverted pendulum 
system.  

In the testing phase of this simulation, 50 runs are carried out and each run executes 100,000 time steps. 
The reason that the number of time steps is longer in the testing phase is to verify the ability of QPSO 
maintaining the environment into goal set. The testing results, which consist of the angle (degree), and the 
angular velocity of the pole (degree/s), are shown in Fig. 7 and 8. Each line in Fig. 7 and 8 represents a single 
run that starts form different initial states. Figure 15 shows the results the first 1,000 of 100,000 control time 
steps while Fig. 16 shows the last 1,000. As shown in Fig. 7, the QPSO successfully brings the environment of 
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single-link inverted pendulum system to goal set G1 in all 50 runs. From Fig. 7 we can see that with the aid of 
Lyapunov design, the QPSO is able to control the single-link inverted pendulum system well under different 
initial conditions. Trajectories shown in Fig. 8 verify the ability of the QPSO marinating the environment into 
G1. 

 

 
                                              (a)                                                                                       (b) 

Figure 7. First 1000 time steps control results of the single-link inverted pendulum system. (a) Angle of the pendulum. (b) Angular 
velocity of the pendulum. 

 
                                            (a)                                                                                       (b) 

Figure 8. Last 1000 time steps control results of the single-link inverted pendulum system. (a) Angle of the pendulum. (b) Angular 
velocity of the pendulum. 

 
 To verify with the performance of the QPSO, the TD and GA based reinforcement learning (TDGAR) 
[20], the on-line clustering and Q-value based GA reinforcement learning (CQGAF) [21] and the recurrent 
wavelet-based NFS with a reinforcement group cooperation-based symbiotic evolution (R-GCSE) algorithm 
[22] are applied to the same control task. In the TDGAR, there are five hidden nodes and five rules in the critic 
network and the action network. The population size is set as 200 and the maximum perturbation is set as 
0.0005. In the CQGAF, after trial-and-error tests, the final average number of rules from 50 runs was 6 by using 
the on-line clustering algorithm. The population size is set as 20. The parameters for Q-learning are set as 
α=0.01, λ=0.9 and γ=0.9. In the R-GCSE, the population size is set as 30 and the mutation rate is set as 0.01. In 
the QPSO and the compared approaches, a trail begins at a near upright state (5°,0, 0, 0) and ends when the 
control goal is met or a failure occurs. The control goal in this performance comparison test is defined as 
“bringing the plant to G1 and maintaining it for 10000 time steps.” A failure learning trial occurs if it exceeded 
100000 time steps or the pendulum deviates beyond the range of ± 12°.  
 

TABLE I. SUMMARY STATISTICS FOR EXAMPLE 1. 

Methods QPSO TDGAR CQGAF R-GCSE 

% of first 10% trials meeting goal. 96 56 70 78 

% of trials meeting goal. 98 84 90 94 

Time to goal, first 10% trials. 24.2 ± 0.8 200.2 ± 18.1 50.6 ± 7.2 78.9 ± 8.8 

Average Time to goal. 21.6 ± 0.3 169.8 ± 12.9 34.2 ± 6.1 46.1 ± 4.9 

 
The performances of all these compared methods are shown in Table I, from which we can see that the 

QPSO has the successful control rate and requires the least CPU-time cost. The superiority can be seen 
especially from the first 10% learning trials where learning agents are not fully trained yet. This is one of the 
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best benefits of incorporating the Lyapunov design principles. The QPSO is able to apply a safe, reliable control 
result during initial leanings, which is crucial important in many applications. 
Example 2: Control of a Double-link Inverted Pendulum System 

 
Figure 9.  Double-link inverted pendulum system. 

Consider the double-link inverted pendulum system: m1 is the mass of link 1, m2 is the mass of link 2, θ1 is 
the angle that link 1 makes with the horizon, θ2 is the angle that link 2 makes with link 1, l1 and l2 are the lengths 
of link 1 and 2, lc1 is the distance of the center of mass of link 1, lc2 is the distance of the center of mass of link 
2, I1 and I2 are the moments of inertia of link 1 and link 2 about their centroids and τ1 is the only control torque 
applied to the joint of link 1. We introduce the following five parameters: 
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the model of the system can be obtained by using Lagrange’s method: 
( ) ( ) ( ),  D q q C q q q G q τ+ + =   ,                                                          (28) 

where 
1 2 1 2[ ,  ] [ ,  ]T Tq q q θ θ= = ,  1[ ,  0]Tτ τ= ,                                                (29) 
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The potential energy of the double-link inverted pendulum system can be defined as 
4 1 5 1 2( ) sin sin( )P q p g q p g q q= + + ,                                                     (33) 

and the total mechanical energy of the system is given by 
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Therefore, from (30)-(34) we obtain that  
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which shows the derivative of E is proportional to the product of the angular velocity of link 1 and the input 
torque. 
 The control objective is to stabilize the system around its top position, i.e. 1 1 2 2( , , , )q q q q  =(π/2,0,0,0). 
Denote 1 1 / 2q q π= − , another goal set is defined by 

     { }2 1 1 2 2 1 1 2 2( , , , ) :  ( , , , ) 0.01G q q q q q q q q= ≤      .                                     (36) 
When the state of double-link inverted pendulum system is in G2, the total mechanical energy E of the system is 
given by 

E(π/2, 0, 0, 0) = Etop = (p4+p5)g.                                                           (37) 

By defining a Lyapunov function ( ) ( ) 2
top

1,  ,  
2

L q q E q q E = −   , the control objective can be either considered 

as guiding the system state into G2 or achieving ( ),  0L q q = . Hence in this paper, a control law for the learning 
agent in this example is proposed as follows: 

( )
( )

1 top
1

top

( ) ,  if ,  < , 

0,  if ,  , 

sgn q z E q q E

E q q E
τ

= 
≥

 


                                                    (38) 

where z is the output of the NFS limited in [0,10]. Double-link inverted pendulum system parameters are 
L1=1m, L2=2m, m1=1kg, m2=2kg, g=9.8m/s. In designing the NFS, the four controller input ),,,( xx θθ  are 
normalized between 0 and 1, the output z is limited between 0 and 10. [mmin,,mmax], [σmin,,σmax] and [wmin,,wmax] 
are set as [0,2], [0,2] and [-30,30], respectively. In the PSO, the swarm size s is set as 40, max_gen is set as 50 
and the acceleration constants c1 and c2 are both set as 2.01. The parameters for Q-learning are set as α=0.01 and 
γ=0.9. Learning trials are deemed successful if they bring the plant to G2; on the contrary, learning trials are 
terminated and said to be unsuccessful if they exceeded 1000 time steps. When the QPSO is stopped, the best 
particle from the swarm in the final generation is applied to the testing phase of the single-link inverted 
pendulum system.  

In the testing phase of this simulation, 50 runs are carried out and each run executes 100,000 time steps. 
The testing results, which consist of the angle (degree) and the angular velocity (degree/s) of link 1 and link 2, 
are shown in Fig. 10 and 11. Figure 10 shows the results the first 1,000 of 100,000 control time steps while Fig. 
11 shows the last 1,000. As shown in Fig. 10, the QPSO successfully brings the environment of double-link 
inverted pendulum system to goal set G2 in all 50 runs under different initial environments. Trajectories shown 
in Fig. 11 verify the ability of the QPSO marinating the environment into G2. 

 
                                         (a)                                                                                (b) 

 
                                          (c)                                                                               (d) 

Figure 10. First 1000 time steps control results of the double-link inverted pendulum system. (a) Angle of link 1. (b) Angular 
velocity of link 1. (c) Angle of link 2. (d) Angular velocity of link 2. 
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(a)                                                                                (b) 

 
(c)                                                                                (d) 

Figure 11. Last 1000 time steps control results of the double-link inverted pendulum system. (a) Angle of link 1. (b) Angular velocity 
of link 1. (c) Angle of link 2. (d) Angular velocity of link 2. 

 
The TD and GA based reinforcement learning (TDGAR), the on-line clustering and Q-value based GA 

reinforcement learning (CQGAF) and the recurrent wavelet-based NFS with a reinforcement group cooperation-
based symbiotic evolution (R-GCSE) algorithm are applied to the same control task to verify the performance of 
the QPSO. In the TDGAR, there are five hidden nodes and five rules in the critic network and the action 
network. The population size is set as 300 and the maximum perturbation is set as 0.0005. In the CQGAF, after 
trial-and-error tests, the final average number of rules from 50 runs was 8. The population size is set as 40. The 
parameters for Q-learning are set as α=0.01, λ=0.9 and γ=0.9. In the R-GCSE, the population size is set as 40 
and the mutation rate is set as 0.01. In the QPSO and the compared approaches, a trail begins at a near upright 
state (85°, 0, 5°, 0) and ends when the control objective is met or a failure occurs. The control objective in this 
performance comparison test is defined as “bringing the plant to G2 and maintaining it for 10000 time steps.” A 
failure learning trial occurs if it exceeded 100000 time steps.  
 

TABLE II. SUMMARY STATISTICS FOR EXAMPLE 2 

Methods QPSO TDGAR CQGAF R-GCSE 

% of first 10% trials meeting goal. 94 38 52 48 

% of trials meeting goal. 96 56 74 84 

Time to goal, first 10% trials. 36.2 ± 0.7 304.2 ± 15.1 100.7 ± 10.9 110 ± 15.7 

Average Time to goal. 33.6 ± 0.4 270.8 ± 9.2 86.2 ± 8.4 90.5 ± 7.5 

 
The performances of all these compared methods are shown in Table II. The results are similar to those 

from Table I which shows that, the QPSO is the most effective and efficient one among these compared 
methods. But one drawback of the QPSO is that it requires the most priori knowledge among these compared 
methods. 

VI. CONCLUSION 
In this paper, we propose a combination of PSO and Q-value based reinforcement learning for neuro-

fuzzy system design. We have extended the PSO to work under reinforcement learning environments where 
only weak reinforcement signals are available. In the reinforcement learning, we use the Lyapunov design 
principles. Instead of training the agent how to switch control policy, we use the Lyapunov domain knowledge 
to derive the sign of action taken at each time step. The magnitude of actions are learned on a neuro-fuzzy 

Yi-Chang Cheng et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 10 October 2011 3488



system trained by PSO. With the assistance of Lyapunov design, the QPSO can enjoy several qualitative 
objectives. The simulations also verify the feasibility and efficiency of the proposed QPSO.   
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