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Abstract--We discussed in this paper the modeling behavior of the cloud computing communication network 
through which processors exchange their messages. The goal is to develop an abstract description of a 
communication network that effectively enforces a TDMA-style access to the communication medium by 
avoiding that a “babbling idiot” can interfere with another processor’s message broadcast. This ensures that a 
non-faulty processor will receive the message that was sent by the sender of a given slot. To prevent a faulty 
processor from speaking outside its designated slots an independent component is necessary that controls the 
access to the communication medium. In TTP/C, this component is called the guardian. There are two common 
implementations of a guardian: in a bus topology, every processor is equipped with its own local guardian, 
whereas in a star topology there is one central guardian per channel. 
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I. INTRODUCTION 

             Cloud Computing can be thought of as a way to make the world of computer resources seamlessly 
scalable. "Cloud Computing Services" can involve "a software and server framework (usually based on 
virtualization)" that uses "many servers for a single software-as-a-service style application or to host many such 
applications on a few servers." Cloud Computing Services are an emerging network architecture where 
applications reside on third party servers, managed by private firms that provide remote access through web-
based devices. Customers generally do not own the infrastructure. This model of service delivery is in contrast 
to an architecture in which data and applications typically reside on servers or computers within the control of 
the end user. Such type of model, which aims at offering distributed, virtualized, and elastic resources as utilities 
to end users, has the potential to support full realization of “computing as a utility” in the near future [1][2]. 
Along with the advancements of the Cloud technology, new possibilities for Internet-based applications 
development are emerging. These new application models can be grouped in to two parties: on one side, there 
are the cloud service providers that are willing to provide large-scale computing infrastructure at a price based 
primarily on usage patterns. It eliminates the initial high-cost for application developers of environment set up 
an application deployment. On the other side there are large-scale software systems providers, which develop 
applications such as social networking sites and e-commerce, which are gaining popularity on the Internet. 
These applications can benefit greatly of Cloud infrastructure services to minimize costs and improve service 
quality to end users.   

Previously, development of such applications required acquisition of servers with a fixed capacity able to handle 
the expected application peak demand, installation of the whole software infrastructure of the platform 
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supporting the application, and configuration of the application itself. But the servers were underutilized most of 
the time because peak traffic occurs only at specific short time periods. With the advent of the Cloud, 
deployment and hosting became cheaper and easier with the use of pay-per-use, flexible elastic infrastructure 
services provided by Cloud providers. Figure 1 shows the hardware and software infrastructure for cloud 
computing. When these two ends are brought together, several factors that impact the net benefit of Cloud can 
be observed. Some of these factors include geographic distribution of user bases, capabilities of the Internet 
infrastructure within those geographic areas, dynamic nature of usage patterns of the user bases, and capabilities 
of Cloud services in terms of adaptation or dynamic reconfiguration, among others.  A comprehensive study of 
the whole problem in the real Internet platform is extremely difficult, because it requires interaction with several 
computing and network elements that cannot be controlled or managed by application developers. Furthermore, 
network conditions cannot be predicted nor controlled, and it also impacts quality of strategy evaluation.  Study 
of such dynamic and massively distributed environments in a controlled and reproducible manner can be 
achieved with the use of simulation. CloudSim [3] allows modeling and simulation of infrastructures containing 
Data Centers, users, user workloads, and pricing models. It enables modeling and simulation of typical Cloud 
infrastructures, even though it has been developed without focusing any specific Cloud provider. Cloud Analyst, 
Figure 2 built on top of CloudSim, allows description of application workloads, including information of 
geographic location of users generating traffic and location of data centers, number of users and data centers, 
and number of resources in each data center. Using this information, Cloud Analyst generates information about 
response time of requests, processing time of requests, and other metrics.  By using Cloud Analyst, application 
developers or designers are able to determine the best strategy for allocation of resources among available data 
centers, strategies for selecting data centers to serve specific requests, and costs related to such operations. 

Cyber Infrastructure: Hardware And Software 

 

 

Figure 1.  General View of Cloud Computing 

 

Cloud computing is defined as “a type of parallel and distributed system consisting of a collection of 
inter-connected and virtualized computers that are dynamically provisioned and presented as one or more 
unified computing resources based on service-level agreements established through negotiation between the 
service provider and consumers “One of the most useful features of cloud infrastructures is the ability to 
automatically scale an infrastructure vertically and horizontally with little or no impact to the applications 
running in that infrastructure. In truth, useful is an understatement. This feature fundamentally alters IT 
managers’ relationships to their infrastructures and changes the way finance managers look at IT funding. But 
the feature is a double-edged sword. 
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Figure 2.   Cloud communication Net 

 
 
 
The name cloud computing comes from the fact that in network designs large parts of a network are 

drawn as a cloud. For example the Internet is most often displayed as clouds. It is displayed like this because I 
am not sure what is in there, and have no control over it. But when put some data in I get some data out. This is 
the same with cloud computing, Cloud computing has several layers in which I can operate. The more basic 
(and most used) layers are: software, platform and infrastructure.  

 
The ability of communication networks to transfer communication at extremely high speed is used to 

gather information in large volumes nearly instantaneously and, with the aid of computers, to almost 
immediately exercise action at a distance. These two unique capabilities form the basis for many existing 
services and an unlimited number of future network –based services. As we know cloud is shower of multi 
communication task in the multi field like business, IT-sectors, E-commerce, BIO-tasking, life-science, etceteras 
touching with computing system, so we called cloud computing. The process of formal analysis can roughly be 
divided into two tasks: building a formal model of the object under study and formulating adequate correctness 
requirements, and carrying out the formal proofs that the properties hold for the model. As we are interested in 
analyzing the fault-tolerant algorithms of TTP/C, a central aspect of the work is the development of a formal 
model for TTP/C. The starting point is the high-level specification document [4] [5] of TTP/C, which consists of 
English text, tables, graphics, and some formulae. When developing formal models, a major question to be 
solved is which details should be part of the model, and which should not. On the one hand, any formal model 
should reflect the real world as closely as possible. On the other hand, if one tries to map every single aspect 
into the model, one will most likely fail to do any interesting formal analysis, because the many details would 
impede focusing on the main aspects.   
 

II. ABSTRACT MODEL OF COMMUNICATION 
 

In order to state the requirements that a guardian needs to satisfy as generally as possible, we introduce 
an abstract model, which does not restrict the type of the guardian used in the communication network. We split 
the description of the abstract model into two parts. First, we present a model that describes an ideal 
communication through a single channel that is controlled by a single guardian. The latter is modeled as an 
abstract, un-interpreted entity for which certain properties are required to hold. From these properties we prove 
the central fact for communication: provided that the guardian is non-faulty, all non-faulty processors receive 
the message sent by the sender of a given slot. In a second step the single-channel model is refined to a model 
that introduces multiple channels for communication in order to provide fault tolerance. In this model, the 
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guardian, too, is replicated such that there is a separate guardian for each channel. For this model we need to 
introduce further items that model how the messages that are transported through the various channels result in a 
single, agreed broadcast. We then show that the abstract requirements stated for the single-channel model hold 
for the multi-channel refinement. This allows to inherit the main communication property – messages sent are 
received as long as there is no fault – from the single-channel model [3][4]. 
 
A. Single-Channel Communication 
 

The message that is transported through the communication network in a given slot t is denoted by an 

abstract function )(tbroadcast . Furthermore, for the abstract guardian g we write  gNF t  to denote that the 

guardian is non-faulty in slot t. The main requirement a non-faulty guardian has to fulfill is that the message sent 
by the sender of the current slot is broadcast through the communication medium. This also means that a 
guardian cannot actively generate messages itself, but only forward the message of the sending processor.  
 
Requirement 1.1 (Reception of Messages: fault-free case) 
 
Let p denote the sender of slot t. If no link failure occurs during slot t, all non-faulty processors q receive the 
message sent by p: 
 

 
 

 
Requirement 1.2 (Non-faulty Guardian broadcast) 
If the guardian g is non-faulty then the message that was sent by the sender of the current slot is broadcast: 

 
 
 

 
 
A consequence of this requirement is that in case the guardian is faulty any message might be broadcast. 
 
Now we can describe what is expected from a receiving processor. In order to distinguish between a faulty 
processor that exhibits arbitrary behavior, such as not obeying [5] the TDMA scheme, or generating arbitrary 
messages, from a processor that simply fails to receive a message, we introduce the fault mode of a receive-

faulty processor. We use   to denote the set of processors that are not receive-faulty in slot t. We expect that 
a processor that is not receive-faulty will receive the message that is broadcast. 
 
Assumption 1.1 (Non-faulty receiver) 
In slot t, a processor that is not receive-faulty will receive the message broadcast: 
 

 
 
If the above assumption holds, it is easy to see that all processors that are not receive-faulty will receive the 
message sent by the current sender, provided the guardian is non-faulty. This is the main property that describes 
[6] the functionality of a non-faulty guardian. 
 
 
Theorem 1.1 (Correct broadcast non-faulty guardian) 
If the guardian is non-faulty then all processors p that are not receive-faulty will receive the message sent by the 
sender of the current slot t: 
 

 
Proof: Direct consequence of Assumption 1.1 and Requirement 1.2 
 
Note that this property essentially justifies Req. 1.1 introduced in the description of the synchronous system 
model. 
While so far we have only described the desirable situation where no fault occurs; the remainder of the model 
considers the case when the guardian is faulty. Obviously, in order to achieve the main property that only the 
current sender is allowed to broadcast in a given slot, we must require [7] that all processors are non-faulty in 
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case the guardian suffers from a fault. However, the guardian still can fail in such a way that it does not even 
allow the current sender to send its message. Therefore we state a weaker form of Req. 1.2 and require that 
either the message of the sender is broadcast, or nothing. 
 
Requirement 1.3 (Non-faulty Processors broadcast) 
 
If all of the processors are non-faulty, then the message that is broadcast will either be the one sent by the 
current sender, or null. 
 

 
 
 
In order to provide a reasonable interpretation of message reception we assume that a processor can only receive 
a message that was also actually broadcast. 
 

Assumption 1.2 (Passive Receiver) 
 
The message received by a processor p in slot t is either the one that is broadcast or null. 
 

 
 

Putting the last two properties together we obtain the result that if all processors are non-faulty, then all will 
either receive [8][9] the message sent by the sender, or nothing. 
 

Theorem 1.2 (Correct broadcast non-faulty processors) 
 
If all the processors are non-faulty then all processors will either receive the message sent by the sender of the 
current slot or an empty message. 
 

 
 

Proof: Direct consequence of Assumption 1.2 and Requirement 1.3. 
 
Finally, we want to combine Theorem 1.1 and Theorem 1.2 to yield the main result for the behavior of [10][11] 
the communication network under the single fault hypothesis, which states that a fault does not occur to both the 
guardian and one of the processors.  
 
Definition 1. (Single Fault) 
 
The communication network is said to satisfy the single fault hypothesis if either the guardian is non-faulty, or 
all processors are non-faulty. 
 
Under the single fault hypothesis the communication network guarantees that all processors will either receive 
the message sent by the current sender, or nothing. 
 
Theorem 1.3 (Correct broadcast single fault) 
 
If the communication network satisfies the single fault hypothesis then all processors will either receive the 
message sent by the sender of the current slot or an empty message. 
 

 
 
Proof: Direct consequence of Theorem 1.1 and Theorem 1.2. 
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B. Multi-Channel Communication 
 

Now we are going to refine the single-channel model and introduce multiple channels, each controlled 
by a separate guardian. Consequently, g(c) denotes the guardian of channel c, and the function broadcast(t, c) is 
used to denote the message that is broadcast in channel c in slot t. [12] [13] TTP/C uses two redundant channels; 
the model, however, does not restrict the number of channels.  

Our goal is to inherit the theorems established for the single-channel model. This can be achieved in 
two steps. First, we must provide an interpretation for the abstract entities used in the single-channel model. 
This amounts to describing how the broadcasts of the multiple channels are combined to form a single message 
broadcast, and what it means for the replicated guardians to be non-faulty. In a second step we then have to 
show that the requirements stated for the single-channel model are satisfied by the multi-channel refinement.  
In order to satisfy Requirement 1.2 of the single-channel model we must assume a similar property of the 
replicated guardians. Here we require that a non-faulty guardian of a channel c enables the message sent by the 
sender of the current slot to be broadcast via this channel. 
 
Requirement 1.4 (Non-faulty Guardian broadcast) 
 
If the guardian g(c) of channel c is non-faulty, then channel c will broadcast the message that was sent by the 
sender of the current slot: 
 

 
 

As messages are broadcast through a number of redundant channels we must describe what is meant be the 
message broadcast in a given slot [14][15]. To this end, we need to consider the case where the channels contain 
different messages, either due to a sending fault of the sender, or due to a faulty processor speaking outside its 
slot. The following definition captures the notion of a unique broadcast: all channels either hold one and the 
same message, or nothing. 
 
Definition 2 (Unique broadcast) 
 
We call a message m uniquely broadcast in slot t, denoted , m), if the following two clauses 
hold: 
 
There is a channel c through which m is broadcast in slot t: 
 

 
 
All channels broadcast the same message, or null: 
 

 
 

 
As a simple consequence of this definition we see that if the guardians of all channels are non-faulty then the 
message sent by the sender is uniquely broadcast. 
 
Corollary 1.1 (Non-Faulty guardian unique broadcast) 
 
If the guardians of all channels are non-faulty, then the message sent by the sender in slot t will be uniquely 
broadcast. 
 

 
 
Proof: Simple consequence of Req. 1.4: as the guardians are non-faulty, the message sent by the sender is 
broadcast on all channels and hence is uniquely broadcast. 
 

The above result indicates how the replicated channels and guardians can be combined to form an 
ideal, single-channel model [16][17]. First, we define that a message m is the broadcast of a slot t, denoted 
broadcast(t) = m, if m is uniquely broadcast in slot t. Second, the replicated guardians can be regarded as a 
single component, which is considered non-faulty if all of its constituents are. 
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Definition 3. (Single-Channel Instantiation) 
 
The multi-channel model can be regarded as a single-channel system as follows: 
 
The broadcast in a slot t is that message m that is uniquely broadcast: 
 

 
 
The system of guardians g is considered non-faulty, if the guardians of all channels are: 
 

 
 
Given these definitions it is straightforward to show that Requirement 1.2 of the single-channel model holds: 
From Corollary 1.1 we have 
 

 
 
This translates using Defn. 3. to 
 

 
 
In a similar way one can prove the other requirement, Req. 1.3 of the single-channel model, if we can assume 
that in case of only non-faulty processors each channel either broadcasts the message sent by the current sender, 
or nothing. 
 
Requirement 1.5 (Non-faulty Processors broadcast) 
 
If all of the processors are non-faulty, then the message that is broadcast through a channel c will either be the 
one sent by the current sender, or null. 
 

 
 
Having established its requirements, we can inherit Theorems 1.1, 1.2, and 1.3 of the single-channel model for 
the multi-channel model. 
 
 
 

 
 
 

CONCLUSION 
 

It is easy to see that all processors that are not receive-faulty will receive the message sent by the 
current sender, provided the guardian is non-faulty. This is the main property that describes the functionality of 
a non-faulty guardian. We have only described the desirable situation where no fault occurs; the remainder of 
the model considers the case when the guardian is faulty. Obviously, in order to achieve the main property that 
only the current sender is allowed to broadcast in a given slot, we must require that all processors are non-faulty 
in case the guardian suffers from a fault. If we can assume that in case of only non-faulty processors each 
channel either broadcasts the message sent by the current sender, or nothing. 
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