
GA Based Test Case Generation Approach
for Formation of Efficient Set of Dynamic

Slices
Debasis Mohapatra

Dept. of CSE
PMEC(A constituent college of B.P.U.T)

Berhampur,India
devdisha@gmail.com

Abstract:-Automated test case generation is an efficient approach for software testing. Slicing of program
provides ease to testability and enhances debugging capacity. To generate the dynamic slice, slicing criterion
is required in which the input data parameter is the essential component. Most of the research work focuses
on deriving the input by random consideration but it simply takes a longest period of time to generate slices
that provides the path coverage of Unit Under Test (UUT). This paper generates the optimal test cases by
using Genetic Algorithm (GA) and Control Flow Graph (CFG), these test cases cover all the independent
path present in the CFG. The optimal test cases are supplied as input component of the dynamic slicing
criteria. So the dynamic slice criteria that use these optimal test cases as the input generates the efficient
dynamic slice set that is helpful in efficient testing and efficient debugging. Here two approaches, first the
dynamic slice using node marking and the second by using relevant sets are discussed according to optimal
test cases as input component.

Keywords: Automated test case generation, Dynamic slicing, Genetic Algorithm, Test suite, Sampling

I. INTRODUCTION

Automation is the most emerging trend in software engineering that reduces the effort in a huge factor. Testing is an
important part in software development. Test case generation is a prime step to achieve testing of the Software
Under Test (SUT). Automation in test case generation reduces the effort involved in testing. A good test suite
uncovers all most all bugs present in the software. Automated testing is a key factor to attain a high level of
reliability. Evolutionary approach like GA is an optimization technique used to generate optimal test cases of the
UUT[7,22,24]. This paper focuses on the generation of optimal test cases by using Genetic Algorithm for a control
flow graph representation of UUT. As the cyclomatic complexity represents the possible independent path of the
CFG [1], it is used here to find out the probability of getting successful test suite. The dynamic slices are usually
evaluated at the end point of the program [14,15,16] but the input parameter is always considered as a random
choice[9,10,19]. Rather considering the input parameter as random, the optimal test cases are taken as input
parameter that reduces the time complexity of finding out effective set of slices that covers all paths according to
different variables of program. This efficient dynamic slice set provides a high degree of testability and debugging.
Program slicing is used in various applications like refactoring, parallelization of program, regression testing,
maintenance, program verification [19]. Node marking method is used in this paper to find out the dynamic slices
that use Program Dependence Graph (PDG) and relevant sets method is used that takes the help of execution history
to find out dynamic slices.

Debasis Mohapatra / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 9 September 2011 3265

II. TEST HARNESS

Test harness Patterns are used to provide automation in generating test cases[20]. Binder explains different test
harness pattern in which test cases, test control, test drivers, test framework are the important components[20]. The
pattern that is adopted in this paper uses Test case/suite method.

III STEPS OF GENETIC ALGORITHM

Genetic Algorithm is an evolutionary optimization Technique. Now a day there is a huge applications of
evolutionary approaches is noticed in the field of Software Engineering. Most of the testing problems can be solved
by simulating the problem as a search based problem. And the Evolutionary approaches like Genetic Algorithm is
an efficient method for solving this type of problem. Path testing is a white box testing technique that is converted to

 Fig.1 GA steps

the search based problem and solved by GA. Fig.1 depicts all the steps of GA and the links show the order of
execution of steps.
A) Initialization: This genetic operator creates an initial population of chromosomes, at the beginning of the genetic
algorithm execution. Usually initialization is random.
B) Selection: The selection operator is used to choose chromosomes from a population for mating. This mechanism
defines how these chromosomes will be selected, and how many offspring each will create. The expectation is that,
like in the natural process, chromosomes with higher fitness will produce better offspring. Selection has to be
balanced: too strong selection means that best chromosomes will take over the population reducing its diversity
needed for exploration; too weak selection will result in a slow evolution. Classic selection methods are Roulette-
wheel, Rank based, Tournament, Uniform, and Elitism.
C) Crossover: The crossover operator is practically a method for sharing information between two chromosomes; it
defines the procedure for generating an offspring from two parents. The crossover operator is considered the most
important feature in Genetic Algorithm; especially where building blocks exchange is necessary. One of the most
common crossover operators is Single-point crossover in which position is chosen at random and the elements of the
two parents before and after the crossover position are exchanged.
D) Mutation: The mutation operator alters one or more values of the allele in the chromosome in order to increase
the structural variability. This operator is the major instrument of any particular area of the entire search space.
E) Survival: Survival step is required to choose the chromosomes for next generation. It is not always mandatory to
work out this phases. This phase is needed for selecting the chromosomes from parent population as well as children
population by fitting some random numbers.

Initial Population Selection

Crossover

Mutation

 Stop?

survival

Answer

Debasis Mohapatra / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 9 September 2011 3266

IV. APPLICATION OF GA IN SOFTWARE TESTING

Zhao and Shanshan have developed a model by using neural networks that simulates the functionality of SUT. They
have devised an efficient algorithm to find corresponding inputs of particular output[28]. Gupta and Rohil have
proposed a new approach for test case generation of object oriented software using GA[29]. Last, Eyal and kandel
have proposed a new computationally intelligent approach to generation of effective test cases based on a novel,
Fuzzy-Based Age Extension of Genetic Algorithms (FAexGA)[30]. Phil McMinn, Mark Harman, David Binkley
and Paolo Tonella have employed a verification and validation technique by the help of GA[31].

V. BASIS PATH TESTING

Tom Mc-Cabe first proposed basis path testing approach. The basis path method is a white box testing technique and
helps the test case designers to derive a logical complexity measure of a procedural design and use this measure as a
guide for defining a basis set of execution paths. Test cases derive to exercise the basis set are guaranteed to execute
every statement in the program at least one time during testing.
A) Control Flow graph:- Control Flow Graph is the graphical notation G(N,E) in which N is the set of nodes that

represent the statements and E is the set of edges that represents transfer of control between nodes.

B) Cyclomatic Complexity: The logical complexity of the program can be estimated by using cyclomatic
complexity[1]. In case of basis path testing, cyclomatic complexity defines the number of independent path in
the basis set of a program and provides an upper bound for the number of test that must be conducted to ensure
that all statements is to be executed at least once. An independent path is any path through the program that
includes at least a new processing statement or a new condition. When stated in terms of a flow graph, an
independent path must move along at least one edge that has not been traversed before the path is defined.
Cyclomatic complexity has a foundation in graph theory and provides us with extremely useful software
metric. Cyclomatic complexity is computed by using the following formulae [26].

Cyclomatic complexity for a graph G is defined as:
CC (G) = E -N + 2 (i)

Where 'E' is the number of graph edges and 'N' is the number of graph nodes.
CC(G) = P + 1 (ii)

Where 'P' is the number of predicate nodes contained in the graph G.

VI. MEASURING PROBABILITY OF GETTING SUCCESSFUL TEST SUITE

A successful test suite in path testing is the test suite that covers all the independent paths of the CFG else called
unsuccessful test suite.

A) Stratified Sampling: In Stratified Sampling all the data are grouped according to there satisfaction of group

criterion[27]. Here the data are equivalent to test cases and the group criteria are equivalent to conditions of the
UUT. Let us consider ‘ n’ independent paths are present in CFG. Each with M1, M2… Mn numbers of test
cases.

Independent path<1> Independent Path<2> ………………………………… Independent Path<n>
M1(test cases) M2(test cases) Mn(test cases)

Total number of successful test suites=M1*M2*………….*Mn (iii)

B) Random Sampling: In case of random sampling the sample units (test cases) are selected at random and the

drawback of purposive sampling is completely overcome[27]. A random sample is one in which each unit of
population has an equal chance of being included in it. Suppose we take a sample of size’ n’ from a finite
population of size N. Then there are C(N,n) possible samples. A sampling technique in which each of the
C(N,n) samples has an equal chance of being selected is known as random sampling and the sample obtained
by this technique is termed as a random sample. We have used random sampling for extracting different test
set from the optimized test cases generated by genetic algorithm, having the sample size equal to the
cyclomatic complexity.

Debasis Mohapatra / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 9 September 2011 3267

Number of test suite with T number of test cases is Q=C(N,T) (iv)
Where N=number of optimized test cases

T= Cyclomatic complexity
Probability of getting successful test suite=(M1*M2*………*Mn)/Q (v)

Where Q=C((M1+M2+…….+Mn),T)

VII. DYNAMIC SLICING

Program slice (p’) is a part of the program(p) that executes independently. Program slice is projected from the
program according to the slicing criterion. Dynamic slice of an UUT is based on the slicing criterion<S, V, I>. Here
‘S’ represents statement number, ‘V’ represents variable name and ‘I’ represents input test case. The dynamic slice
is evaluated for a particular execution so it is a subset of static slice with same S and V[9,15]. Program Dependence
Graph (PDG) and Dynamic Dependence Graph (DDG) are two imperative tools used in dynamic slicing [17]. Node
making, Edge marking are the methods that are used in PDG or DDG [15]. Relevant sets method derives static slice
but here it is used in deriving dynamic slice. The terminologies and their descriptions are defined that are used in
this paper.

A) Program Dependence Graph (PDG): PDG is a directed graph(V,E) where ‘V’ represents vertices of a graph

that in turn a statement of the program and ‘E’ represents control or data dependency between the nodes that
is a graphical representation of control and data dependency between the statements.

B) Node Marking method: In node marking method the projection of the PDG with respect to nodes is taken
according to the execution history then set of the statements are taken that are reachable from the considered
node for slicing. It obeys a backward slicing approach.

C) Relevant sets method for dynamic slicing: In this method first the projection of the program is taken
according to the execution history then RF(n),DF(n),Control(n)and Relevant(n) are measured. Relevant (n)
varies according to the variables.
RF(n)-The set of variables that are used/referenced in statement ‘n’.
DF(n)- The set of variables that are defined in statement ‘n’.
Relevant(n)- if ‘x’ is the predecessor statement of ‘y’ then Relevant(x)={Relevant(y)-DF(x)}U{RF(x) if
Relevant(y)∩DF(x)≠ ǿ} .
It is also a backward slicing method. It starts form the last statement and include all those statements that
defines it relevant set variable, the process continues until the first statement reach. All included statements
combine to construct the dynamic slice with respect to criterion<S, V, I>.

VIII. PROPOSED STRUCTURE

 Fig.2-Proposed Structure

Genetic Algorithm

Program Equivalent of
CFG

Initial Random
Test cases

Optimal Test Cases Optimal Test Suite Efficient Dynamic Slicing
Criterions

Unit Under Test (UUT) Efficient Set of Dynamic
Slices

Debasis Mohapatra / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 9 September 2011 3268

The structure [Fig. 2] depicts the work flow of the approach adopted to generate an efficient set of dynamic slices.
Initial process starts with randomness by supplying random test cases to Genetic Algorithm. The GA compares the
test cases with the path conditions of the CFG and going on modifying the test cases until getting the test cases that
discover all the paths of the CFG called as optimal test cases. The optimal test suites are created from the optimal
test cases by applying stratified sampling statistics. Efficient Dynamic Slicing Criteria are formulated from one of
the optimal test suite. These set of criteria are implemented on the UUT to yield an efficient set of dynamic slices.

IX. PROPOSED ALGORITHM FOR OPTIMAL TEST SUITE GENERATION

Optigenetic(n, Fm, popsize , Imax ,Pc,Pm, t,)
{Input:
the function mlodel Fm
Number of input variables n
population size popsize
Maximum iteration number Imax
Crossover probability Pc
Mutation probability Pm
Number of leaf nodes t
Output:
optimal test suites
I=0;
Popx[i]←TestHarness(popsize);
c=0;
while(i!=Imax|| kc == t)
{
Choosesrv();
Boolean X= graphequi(srv);
if(X==true)
{
c++;
Changesrv();
}
else
{
Fitness[i] fitnesseval(popx[i]);
Population select(popx[i]; fitness[i]);
Popx[i] crosssover(population; fitness; Pc);
Popx[i] mutate(population; fitness; Pm);
}i++;
}Optimal(popx[i]);
}

 CFG is represented by an equivalent program (graphequi(srv)) and the search node as input that is the one of the
leaf node. GA optimizes the test cases to satisfy the search nodes one by one. It is applied on the program structure
where the paths obey the property of trichotomy. Some of the test cases are passed to the test harness that in turn
passes all the test cases to the genetic algorithm as initial population. The genetic algorithm then optimizes the test
cases by using selection, crossover and mutation operators. The optimized test cases are then passed through
stratified sampling (optimal(popx[i])) to derive the optimal test suites.

Debasis Mohapatra / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 9 September 2011 3269

X. IMPLEMENTATION DETAIL AND RESULT

A) Schematic Representation of UUT: Schematic representation of the program a program where all the actual

functions are not called rather a schema is called like f1(a,b),g1(a,b) etc.

1. Read(a,b);
2. if(a<b)
3. y=f1(a,b);
4. x=g1(a,b);
5. else if(a==b)
6. y=f2(a,b);
7. x=g2(a,b);
8. else
9. y=f3(a,b);
10. x=g3(a,b);
11. write(x);
12. write(y);

B) Contol flow graph of UUT

 Fig.3 CFG of UUT

C) Program equivalent of CFG:

 if(a<b)
 printf(“1,2,3,4,11,12”);
 else if(a==b)
 printf(“1,2,5,6,7,11,12”);
 else
 printf(“1,2,5,8,9,10,11,12”);

1

2

3 5

8

4

6

7 9

11

12

10

Debasis Mohapatra / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 9 September 2011 3270

D) Selecting Operators of GA:
Fitness evaluation (F): F(a,b)=1/(|a-b|+.04)^3 Where a, b are the parameters of test condition. Constant .04 is added
to provide a value for equal condition.
Selection procedure:- One of the parents is selected from the chromosomes having highest fitness value and another
from lower fitness values.
Crossover operator:- Here, we have used the single crossover operator. Crossover probability (Pc) is considered as
0.4.
 Mutation:- In a binary code, mutation simply means changing the state of gene from 0 to 1 or vice versa. Here
mutation probability (Pm) is considered as 0.3.

E) Optimal Test cases

 Population Table(Evaluated in %15)

INITIAL POPULATION FINAL POPULATION
a b Chromosome Fitness Path/cond a b Chromosome Fitness Path/cond
12 4 11000100 0.0155 1,2,5,8,9,10,11,12

/a>b
1 1 00010001 2500 1,2,5,6,7,11,12

/a==b
111 45 01100000 0.0276 1,2,5,8,9,10,11,12

/a>b
111 45 01100000 0.0276 1,2,5,8,9,10,11,12

/a>b
120 3 00000011 0.1096 1,2,3,4,11,12

/a<b
11 2 10110010 0.0123 1,2,5,8,9,10,11,12

/a>b
11 7 10110111 0.0619 1,2,5,8,9,10,11,12

/a>b
2 3 00100011 0.9612 1,2,3,4,11,12

/a<b

F) Optimal Test Suites

 Stratified sampling Table

Independent path1
1,2,5,8,9,10,11,12/a>b

Independent path2
1,2,3,4,11,12/a<b

Independent Path3
1,2,5,6,7,11,12/a==b

<111,45>
<11,2>

<2,3> <1,1>

Number of Successful test suites Probability of getting successful test
suite

Optimal Test Suites

2*1*1=2 2/C((2+1+1),3)=2/4=.5 Test Suite1-<1,1><111,45><2,3>

Test Suite2-<1,1><11,2><2,3>

G) Efficient Dynamic slice criteria

Efficient Dynamic Slice criterion can be constructed by taking any one test suite .Let us consider the test suite
as<1,1><111,45><2,3>

<x,11,a=1,b=1>
<x,11,a=111,b=45>
<x,11,a=2,b=3>

<y,12,a=1,b=1>
<y,12,a=111,b=45>
<y,12,a=2,b=3>

Debasis Mohapatra / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 9 September 2011 3271

H) Efficient dynamic slice formation by using Node marking in PDG:

 Fig.4 PDG of UUT

Adjacency Matrix Representation of PDG

From/To 1 2 3 4 5 6 7 8 9 10 11 12
1 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 0 0
4 1 1 0 0 0 0 0 0 0 0 0 0
5 1 1 0 0 0 0 0 0 0 0 0 0
6 1 0 0 0 1 0 0 0 0 0 0 0
7 1 0 0 0 1 0 0 0 0 0 0 0
8 0 0 0 0 1 0 0 0 0 0 0 0
9 1 0 0 0 0 0 0 1 0 0 0 0
10 1 0 0 0 0 0 0 1 0 0 0 0
11 0 0 0 1 0 0 1 0 0 1 0 0
12 0 0 1 0 0 1 0 0 1 0 0 0

Slice Criterion Execution History Dynamic Slices
<x,11,a=1,b=1> <1,2,5,6,7,11,12> <1,2,5,7,11>
<y,12,a=1,b=1> <1,2,5,6,7,11,12> <1,2,5,6,12>
<x,11,a=111,b=45> <1,2,5,8,9,10,11,12> <1,2,5,8,10,11>
<y,12,a=111,b=45> <1,2,5,8,9,10,11,12> <1,2,5,8,9,12>
<x,11,a=2,b=3> <1,2,3,4,11,12> <1,2,4,11>
<y,12,a=2,b=3> <1,2,3,4,11,12> <1,2,3,12>

Debasis Mohapatra / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 9 September 2011 3272

I) Efficient dynamic slice formation by using relevant sets method

Projection from
program
according to
execution
history<a=1,b=1>

RF(n) DF(n) Control(n) Relevant(n)

w.r.t(x) w.r.t(y)

1.Read(a,b) a,b
2. if(a<b) a,b a,b a,b
5. else if(a==b) a,b 2 a,b a,b
6.y=f2(a,b) a,b y 5 a,b a,b
7.x=g2(a,b) a,b x 5 a,b y
11.write(x) x x y
12.write(y) y y
Dynamic Slice w.r.t. x=<1,2,5,7,11> Dynamic Slice w.r.t y=<1,2,5,6,12>

Projection from
program according to
execution
history<a=111,b=45>

RF(n) DF(n) Control(n) Relevant(n)

w.r.t(x) w.r.t(y)
1.Read(a,b) a,b
2. if(a<b) a,b a,b a,b
5. else if(a==b) a,b 2 a,b a,b
8.else 5 a,b a,b
9.y=f3(a,b) a,b y 8 a,b y
10.x=f3(a,b) a,b x 8 a,b y
11.write(x) x x y
12.write(y) y
Dynamic Slice w.r.t. x=<1,2,5,8,10,11> Dynamic Slice w.r.t y=<1,2,5,8,9,12>

Projection from
program
according to
execution
history<a=2,b=3>

RF(n) DF(n) Control(n) Relevant(n)

w.r.t(x) w.r.t(y)

1.Read(a,b) a,b
2. if(a<b) a,b a,b a,b
3.y=f1(a,b) a,b y 2 a,b a,b
4.x=g1(a,b) a,b x 2 a,b y
11.write(x) x x y
12.write(y) y y
Dynamic Slice w.r.t. x=<1,2,4,11> Dynamic Slice w.r.t y=<1,2,3,12>

XI. CONCLUSION & FUTURE WORK

This paper describes search based approach for test case generation .Genetic Algorithm decreases the probability of
being trapped in local optimal values because it uses various chromosomes that works simultaneously. The dynamic
slices of the program represent different projections of the program. In efficient set of dynamic slices no two slice
signify the same set of statement coverage. So it is an effective method for automated testing. Sequential version of
GA is quite slower in generating the test cases of complex software. This work can be extended to parallel domain

Debasis Mohapatra / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 9 September 2011 3273

by using Parallel Genetic Algorithm and Parallel slicing approach that will reduce the time bound for generating
efficient set of dynamic slices for complex software.

 REFERENCES

[1] Roger S. Pressman: “Software Engineering”, A Practitioner’s Approach 5th Edition, Mcgraw Hill, 1997.
[2] DVLN Somayajulu,Ajay Kumar Bothra, Prashant Kumar, Pratyush ,”An Efficient Slicing Approach For Test Case Generation “.
[3] Mitrabinda Ray, Soubhagya Sankar Barpanda, Durga Prasad Mohapatra,”Test Case Design Using Conditioned Slicing Of Activity

Diagram”,International Journal Of Resent Trends In Engineering,Vol.1,No.2,May 2009.
[4] Andreas Leitner,Manuel Oriol,Andreas Zeller,Ilinca Ciupa,Bertrand Meyer,”Efficient Unit Test Case Minimization”, ASE’07, November

4–9, 2007, Atlanta, Georgia, USA.
[5] P. Maragathavalli, M. Anusha, P. Geethamalini, S. Priyadharsini,”Automatic Test-Data Generation For Modified Condition/ Decision

Coverage Using Genetic Algorithm”,International Journal Of Engineering Science And Technology, Vol. 3 No. 2 Feb 2011, Pp-1311-1318.
[6] Premal B. Nirpal And K. V. Kale,”Comparison Of Software Test Data For Automatic Path Coverage Using Genetic Algorithm”,

Internationa Journal Of Computer Science & Engineering Technology (IJCSET), Vol. 1 No. 1,Pp 12-16.
[7] Raquel Blanco, Javier Tuya, Belarmino Adenso-Díaz,”Automated Test Data Generation Using A Scatter Search Approach”,Information

And Software Technology,April 2009.
[8] Bruno T. De Abreu1_, Eliane Martins1 , Fabiano L. De Sousa,” Automatic Test Data Generation For Path Testing Using A New Stochastic

Algorithm”.
[9] Durga Prasad Mohapatra, Rajib Mall And Rajeev Kumar,” An Overview Of Slicing Techniques For Object-Oriented

Programs”,Informatica(2006),Pp253-277.
[10] Durga Prasad Mohapatra,Madhusmita Sahu,Rajeev Kumar , Rajib Mall,” Dynamic Slicing Of Aspect-Oriented

Programs”,Informatica(2008),Pp 261-274.
[11] Frank Tip,”A Survey Of Program Slicing Technique”,The Merriam-Webster Dictionary.
[12] Jens Krinke,” Advanced Slicing Of Sequential And Concurrent Programs”,April 2003.
[13] “Dependence Graphs And Program Slicing”, Codesurfer Technology Overview.
[14] David W.Binkley,Keith Brain Callagher,”Program Slicing”.
[15] Keith Gallaghe David Binkley,”Program Slicing”.
[16] Aharon Abadi Ran Ettinger Yishai A. Feldman,”Fine Slicing For Advanced Method Extraction”,IBM Haifa Research Lab,2009/8/27.
[17] Andrea De Lucia,”Program Slicing: Methods And Applications”.
[18] Xiangyu Zhang Rajiv Gupta,” Cost Effective Dynamic Program Slicing”, PLDI’04, June 9–11, 2004, Washington, DC, USA.
[19] Hiralal Agrawal,Joseph R.Horgan,”Dynamic Slicing”,ACM SIGPLAN Notice,Vol.25,No.6,Pp-246-256,June 1990.
[20] Binder R.V,”Testing Object-Oriented System Models, Patterns, And Tools”, Pp. 957-1017.
[21] Ruilian Zhoa, Shanshan Lv,”Neural-Network Based Test Cases Generation Using Genetic Algorithm”, 13th IEEE International Symposium

On Pacific Rim Dependable Computing.2007.
[22] Nirmal Kumar Gupta And Dr. Mukesh Kumarrohil,”Using Genetic Algorithm For Unit Testing Of Object Oriented Software”, First

International Conference On Emerging Trends In Engineering And Technology 2008.
[23] Bruno T.De Abreu, Eliane Martins, Fabiano L.De Sousa “Automatic Test Data Generation For Path Testing Using A New Stochastic

Algorithm”. 2004.
[24] Mark Last1, Shasy Eyal1, And Abraham Kandel“Effective Black-Box Testing With Genetic Algorithms”, 2000.
[25] Paul C. Jorgensen,” A Craftsman’s Approach”, Second Edition, Pp.448-515.2002.
[26] S. C. Gupta, V. K. Kapoor,” Fundamental Of Mathematical Statistics”, Eleventh Edition.,Pp.5.1-5.72, 2002.
[27] Ruilian Zhoa,Shanshan Lv, "Neural-Network Based Test cases Generation using Genetic algorithm",13th IEEE International Symposium

on Pacific Rim Dependable Computing.2007.
[28] Gupta N. K and Rohil M.K, "Using genetic Algorithm For Unit Testing of Object Oriented Software",First International conference on

Emerging Trends in Engineering and Technology,2008.
[29] Mark Last, Shasy Eyal, and Abraham Kandel, "EffectiveBlack-Box Testing with Genetic Algorithms".
[30] Phil McMinn ,Mark Harman, David Binkley and Paolo Tonella, "The Species per Path Approach to SearchBased Test Data Generation",

ISSTA '06, July 17-20,Portland, Maine, USA.

 AUTHORS PROFILE

Debasis Mohapatra is a lecturer in the Dept. Of CSE, in Parala Maharaja Engineering
College(A constituent college of B.P.U.T). His research interest is “application of
evolutionary approach in Software Engineering domain”.

Debasis Mohapatra / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 9 September 2011 3274

