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Abstract:-Automated test case generation is an efficient approach for software testing.  Slicing of program 
provides ease to testability and enhances debugging capacity. To generate the dynamic slice, slicing criterion 
is required in which the input data parameter is the essential component. Most of the research work focuses 
on deriving the input by random consideration but it simply takes a longest period of time to generate slices 
that provides the path coverage of Unit Under Test (UUT). This paper generates the optimal test cases by 
using Genetic Algorithm (GA) and Control Flow Graph (CFG), these test cases cover all the independent 
path present in the CFG.  The optimal test cases are supplied as input component of the dynamic slicing 
criteria. So the dynamic slice criteria that use these optimal test cases as the input generates the efficient 
dynamic slice set that is helpful in efficient testing and efficient debugging.  Here two approaches, first the 
dynamic slice using node marking and the  second by using relevant sets are discussed according to optimal 
test cases as input component. 
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I. INTRODUCTION 

Automation is the most emerging trend in software engineering that reduces the effort in a huge factor. Testing is an 
important part in software development. Test case generation is a prime step to achieve testing of the Software 
Under Test (SUT). Automation in test case generation reduces the effort involved in testing. A good test suite 
uncovers all most all bugs present in the software. Automated testing is a key factor to attain a high level of 
reliability. Evolutionary approach like GA  is an optimization technique used to generate optimal test cases of the 
UUT[7,22,24]. This paper focuses on the generation of optimal test cases by using Genetic Algorithm for a control 
flow graph representation of UUT. As the cyclomatic complexity represents the possible independent path of the 
CFG [1], it is used here to find out the probability of getting successful test suite.  The dynamic slices are usually 
evaluated at the end point of the program [14,15,16] but the input parameter is always considered as a random 
choice[9,10,19]. Rather considering the input parameter as random, the optimal test cases are taken as input 
parameter that reduces the time complexity of finding out effective set of slices that covers all paths according to 
different variables of program. This efficient dynamic slice set provides a high degree of testability and debugging. 
Program slicing is used in various applications like refactoring, parallelization of program, regression testing, 
maintenance, program verification [19]. Node marking method is used in this paper to find out the dynamic slices 
that use Program Dependence Graph (PDG) and relevant sets method is used that takes the help of execution history 
to find out dynamic slices.  
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II. TEST HARNESS 

Test harness Patterns are used to provide automation in generating test cases[20]. Binder explains different test 
harness pattern in which test cases, test control, test drivers, test framework are the important components[20]. The 
pattern that is adopted in this paper uses Test case/suite method. 

III  STEPS OF GENETIC ALGORITHM 
 
Genetic Algorithm is an evolutionary optimization Technique. Now a day there is a huge applications of 
evolutionary approaches is noticed in the field of Software Engineering. Most of the testing problems can be solved 
by simulating the problem as a search based problem.   And the Evolutionary approaches like Genetic Algorithm is 
an efficient method for solving this type of problem. Path testing is a white box testing technique that is converted to  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     Fig.1 GA steps 

 
the search based problem and solved by GA.  Fig.1 depicts all the steps of GA and the links show the order of 
execution of steps.  
A) Initialization: This genetic operator creates an initial population of chromosomes, at the beginning of the genetic 
algorithm execution. Usually initialization is random. 
B) Selection: The selection operator is used to choose chromosomes from a population for mating. This mechanism 
defines how these chromosomes will be selected, and how many offspring each will create. The expectation is that, 
like in the natural process, chromosomes with higher fitness will produce better offspring. Selection has to be 
balanced: too strong selection means that best chromosomes will take over the population reducing its diversity 
needed for exploration; too weak selection will result in a slow evolution. Classic selection methods are Roulette-
wheel, Rank based, Tournament, Uniform, and Elitism. 
C) Crossover: The crossover operator is practically a method for sharing information between two chromosomes; it 
defines the procedure for generating an offspring from two parents. The crossover operator is considered the most 
important feature in Genetic Algorithm; especially where building blocks exchange is necessary. One of the most 
common crossover operators is Single-point crossover in which position is chosen at random and the elements of the 
two parents before and after the crossover position are exchanged. 
D) Mutation: The mutation operator alters one or more values of the allele in the chromosome in order to increase 
the structural variability. This operator is the major instrument of any particular area of the entire search space. 
E) Survival: Survival step is required to choose the chromosomes for next generation. It is not always mandatory to 
work out this phases. This phase is needed for selecting the chromosomes from parent population as well as children 
population by fitting some random numbers. 
 
 

Initial Population Selection 

Crossover 

Mutation 

   Stop? 

survival 

Answer 
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IV. APPLICATION OF GA IN SOFTWARE TESTING 
 

Zhao and Shanshan have developed a model by using neural networks that simulates the functionality of SUT. They 
have devised an efficient algorithm to find corresponding inputs of particular output[28]. Gupta and Rohil  have 
proposed a new approach for test case generation of object oriented software using GA[29]. Last, Eyal and kandel 
have proposed a new computationally intelligent approach to generation of effective test cases based on a novel, 
Fuzzy-Based Age Extension of Genetic Algorithms (FAexGA)[30]. Phil McMinn, Mark Harman, David Binkley 
and Paolo Tonella have employed a verification and validation technique by the help of GA[31]. 
 

V.  BASIS PATH TESTING 
 

Tom Mc-Cabe first proposed basis path testing approach. The basis path method is a white box testing technique and 
helps the test case designers to derive a logical complexity measure of a procedural design and use this measure as a 
guide for defining a basis set of execution paths. Test cases derive to exercise the basis set are guaranteed to execute 
every statement in the program at least one time during testing. 
A) Control Flow graph:- Control Flow Graph is the graphical notation G(N,E) in which N is the set of nodes that 

represent the statements and  E is the set of edges that represents transfer of control between nodes. 
 

B) Cyclomatic Complexity: The logical complexity of the program can be estimated by using cyclomatic 
complexity[1]. In case of basis path testing, cyclomatic complexity defines the number of independent path in 
the basis set of a program and provides an upper bound for the number of test that must be conducted to ensure 
that all statements is to be executed at least once. An independent path is any path through the program that 
includes at least a new processing statement or a new condition. When stated in terms of a flow graph, an 
independent path must move along at least one edge that has not been traversed before the path is defined. 
Cyclomatic complexity has a foundation in graph theory and provides us with extremely useful software 
metric. Cyclomatic complexity is computed by using the following formulae [26]. 

 
Cyclomatic complexity  for a  graph G is defined as: 
CC (G) = E -N + 2   (i) 

Where 'E' is the number of graph edges and 'N' is the number of graph nodes. 
CC(G) = P + 1   (ii) 

Where 'P' is the number of predicate nodes contained in the graph G.  
 

VI. MEASURING PROBABILITY OF GETTING SUCCESSFUL TEST SUITE 
 

A successful test suite in path testing is the test suite that covers all the independent paths of the CFG else called 
unsuccessful test suite. 
 
A) Stratified Sampling: In Stratified Sampling all the data are grouped according to there satisfaction of group 

criterion[27]. Here the data are equivalent to test cases and the group criteria are equivalent to conditions of the 
UUT. Let us consider ‘ n’ independent paths are present in CFG. Each with M1, M2… Mn numbers of test 
cases. 

   
Independent path<1> Independent Path<2> ………………………………… Independent Path<n> 
M1(test cases) M2(test cases)  Mn(test cases) 

 
Total number of successful test suites=M1*M2*………….*Mn   (iii) 

 
B) Random Sampling: In case of random sampling the sample units (test cases) are selected at random and the 

drawback of purposive sampling is completely overcome[27]. A random sample is one in which each unit of 
population has an equal chance of being included in it. Suppose we take a sample of size’ n’ from a finite 
population of size N. Then there are C(N,n) possible samples. A sampling technique in which each of the 
C(N,n) samples has an equal chance of being selected is known as random sampling and the sample obtained 
by this technique is termed as a random sample. We have used random sampling for extracting different test 
set from the optimized test cases generated by genetic algorithm, having the sample size equal to the 
cyclomatic complexity. 
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Number of test suite with T number of test cases  is  Q=C(N,T)  (iv) 
Where  N=number of optimized test cases 

T= Cyclomatic complexity 
Probability of getting successful test suite=(M1*M2*………*Mn)/Q  (v) 

Where Q=C((M1+M2+…….+Mn),T) 
 

VII. DYNAMIC SLICING 
 

Program slice (p’) is a part of the program(p) that executes independently. Program slice is projected from the 
program according to the slicing criterion. Dynamic slice of an UUT is based on the slicing criterion<S, V, I>.  Here 
‘S’ represents statement number, ‘V’ represents variable name and ‘I’ represents input test case. The dynamic slice 
is evaluated for a particular execution so it is a subset of static slice with same S and V[9,15]. Program Dependence 
Graph (PDG) and Dynamic Dependence Graph (DDG) are two imperative tools used in dynamic slicing [17]. Node 
making, Edge marking are the methods that are used in PDG or DDG [15]. Relevant sets method derives static slice 
but here it is used in deriving dynamic slice. The terminologies and their descriptions are defined that are used in 
this paper. 
 
A) Program Dependence Graph (PDG): PDG is a directed graph(V,E) where ‘V’ represents vertices of a graph 

that in turn a statement of the program and ‘E’ represents control or data dependency between the nodes that 
is a graphical representation  of control and data dependency between the statements.   

B) Node Marking method: In node marking method the projection of the PDG with respect to nodes is taken 
according to the execution history then set of the statements are taken that are reachable from the considered 
node for slicing. It obeys a backward slicing approach. 

C) Relevant sets method for dynamic slicing: In this method first the projection of the program is taken 
according to the execution history then RF(n),DF(n),Control(n)and Relevant(n)  are measured. Relevant (n) 
varies according to the variables. 
RF(n)-The set of variables that are used/referenced  in statement ‘n’. 
DF(n)- The set of variables that are defined in statement ‘n’. 
Relevant(n)- if ‘x’ is the predecessor statement of ‘y’ then Relevant(x)={Relevant(y)-DF(x)}U{RF(x) if 
Relevant(y)∩DF(x)≠ ǿ} . 
It is also a backward slicing method. It starts form the last statement and include all those statements that 
defines it relevant set variable, the process continues until the first statement reach. All included statements 
combine to construct the dynamic slice with respect to criterion<S, V, I>.   

  
VIII. PROPOSED STRUCTURE 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     Fig.2-Proposed Structure 

Genetic Algorithm 
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The structure [Fig. 2] depicts the work flow of the approach adopted to generate an efficient set of dynamic slices. 
Initial process starts with randomness by supplying random test cases to Genetic Algorithm. The GA compares the 
test cases with the path conditions of the CFG and going on modifying the test cases until getting the test cases that 
discover all the paths of the CFG called as optimal test cases. The optimal test suites are created from the optimal 
test cases by applying stratified sampling statistics. Efficient Dynamic Slicing Criteria are formulated from one of 
the optimal test suite. These set of criteria are implemented on the UUT to yield an efficient set of dynamic slices.     
 

IX. PROPOSED ALGORITHM FOR OPTIMAL TEST SUITE GENERATION  
 
 
Optigenetic(n, Fm, popsize , Imax ,Pc,Pm, t,) 
{Input: 
the function mlodel Fm 
Number of input variables n 
population size popsize 
Maximum iteration number Imax 
Crossover probability Pc 
Mutation probability Pm 
Number of leaf nodes t 
Output: 
optimal test suites 
I=0; 
Popx[i]←TestHarness(popsize); 
c=0; 
while(i!=Imax|| kc == t) 
{ 
Choosesrv(); 
Boolean X= graphequi(srv); 
if(X==true) 
{ 
c++; 
Changesrv(); 
} 
else 
{ 
Fitness[i]   fitnesseval(popx[i]); 
Population   select(popx[i]; fitness[i]); 
Popx[i]   crosssover(population; fitness; Pc); 
Popx[i]   mutate(population; fitness; Pm); 
}i++; 
}Optimal( popx[i]); 
} 
 
  CFG is represented by an equivalent program (graphequi(srv)) and the search node as input that is the one of the 
leaf node. GA optimizes the test cases to satisfy the search nodes one by one. It is applied  on the program structure 
where the paths obey the property of trichotomy.   Some of the test cases are passed  to the test harness that in turn 
passes all the test cases to the genetic algorithm as initial population. The genetic algorithm then optimizes the test 
cases by using selection, crossover and mutation operators. The optimized test cases are then passed through 
stratified sampling (optimal(popx[i]))  to derive the optimal test suites. 
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X. IMPLEMENTATION DETAIL AND RESULT 
 
A)  Schematic Representation of UUT: Schematic representation of the program a program where all the actual 

functions are not called rather a schema is called like f1(a,b),g1(a,b) etc.   
 

1. Read(a,b); 
2. if(a<b) 
3.    y=f1(a,b); 
4.    x=g1(a,b); 
5. else if(a==b) 
6.    y=f2(a,b); 
7.   x=g2(a,b); 
8. else 
9.    y=f3(a,b); 
10.    x=g3(a,b); 
11. write(x); 
12. write(y); 

 
B) Contol flow graph of UUT 
 
      
 
 

 
 
 
 
 

 
 

 

 

 

 

 

 

 

    Fig.3 CFG of UUT  

C) Program equivalent of CFG: 

 if(a<b) 
    printf(“1,2,3,4,11,12”); 
 else if(a==b) 
    printf(“1,2,5,6,7,11,12”); 
 else 
     printf(“1,2,5,8,9,10,11,12”);  
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D) Selecting Operators of  GA: 
Fitness evaluation (F): F(a,b)=1/(|a-b|+.04)^3 Where a, b are the parameters of test condition. Constant .04 is added 
to provide a value for equal condition. 
Selection procedure:- One of the parents is selected from the chromosomes having highest fitness value and another 
from lower fitness values. 
Crossover operator:- Here, we have used the single crossover operator. Crossover probability (Pc) is considered as   
0.4. 
 Mutation:- In a binary code,  mutation simply means changing the state of gene from 0 to 1 or vice versa. Here 
mutation probability (Pm) is considered as 0.3. 
 
E) Optimal Test cases 

 
   Population Table(Evaluated  in %15) 

INITIAL POPULATION FINAL POPULATION 
a b Chromosome Fitness Path/cond a b Chromosome Fitness Path/cond 
12 4 11000100 0.0155 1,2,5,8,9,10,11,12 

/a>b 
1 1 00010001 2500 1,2,5,6,7,11,12 

/a==b 
111 45 01100000 0.0276 1,2,5,8,9,10,11,12 

/a>b 
111 45 01100000 0.0276 1,2,5,8,9,10,11,12 

/a>b 
120 3 00000011 0.1096 1,2,3,4,11,12 

/a<b 
11 2 10110010 0.0123 1,2,5,8,9,10,11,12 

/a>b 
11 7 10110111 0.0619 1,2,5,8,9,10,11,12 

/a>b 
2 3 00100011 0.9612 1,2,3,4,11,12 

/a<b 
 

F) Optimal Test Suites  

    Stratified sampling Table 

Independent path1 
1,2,5,8,9,10,11,12/a>b 

Independent path2 
1,2,3,4,11,12/a<b 

Independent Path3 
1,2,5,6,7,11,12/a==b 

<111,45> 
<11,2> 

<2,3> <1,1> 

 

Number of Successful test suites Probability of getting successful test 
suite 

Optimal Test Suites 

2*1*1=2 2/C((2+1+1),3)=2/4=.5 Test Suite1-<1,1><111,45><2,3> 

Test Suite2-<1,1><11,2><2,3> 

 

G) Efficient Dynamic slice criteria 

Efficient Dynamic Slice criterion can be constructed by taking any one test suite .Let us consider the test suite 
as<1,1><111,45><2,3> 

<x,11,a=1,b=1> 
<x,11,a=111,b=45> 
<x,11,a=2,b=3> 

<y,12,a=1,b=1> 
<y,12,a=111,b=45> 
<y,12,a=2,b=3> 
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H) Efficient dynamic slice formation by using Node marking in PDG: 

 

 

    Fig.4 PDG of UUT 

 

Adjacency Matrix Representation of PDG 

From/To 1 2 3 4 5 6 7 8 9 10 11 12 
1  0 0 0 0 0 0 0 0 0 0 0 0 
2 1 0 0 0 0 0 0 0 0 0 0 0 
3 1 1 0 0 0 0 0 0 0 0 0 0 
4 1 1 0 0 0 0 0 0 0 0 0 0 
5 1 1 0 0 0 0 0 0 0 0 0 0 
6 1 0 0 0 1 0 0 0 0 0 0 0 
7 1 0 0 0 1 0 0 0 0 0 0 0 
8 0 0 0 0 1 0 0 0 0 0 0 0 
9 1 0 0 0 0 0 0 1 0 0 0 0 
10 1 0 0 0 0 0 0 1 0 0 0 0 
11 0 0 0 1 0 0 1 0 0 1 0 0 
12 0 0 1 0 0 1 0 0 1 0 0 0 
 

Slice Criterion Execution History Dynamic Slices 
<x,11,a=1,b=1> <1,2,5,6,7,11,12> <1,2,5,7,11> 
<y,12,a=1,b=1> <1,2,5,6,7,11,12> <1,2,5,6,12> 
<x,11,a=111,b=45> <1,2,5,8,9,10,11,12> <1,2,5,8,10,11> 
<y,12,a=111,b=45> <1,2,5,8,9,10,11,12> <1,2,5,8,9,12> 
<x,11,a=2,b=3> <1,2,3,4,11,12> <1,2,4,11> 
<y,12,a=2,b=3> <1,2,3,4,11,12> <1,2,3,12> 
 

 

Debasis Mohapatra / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 9 September 2011 3272



I) Efficient dynamic slice formation by using relevant sets method 

Projection from 
program 
according to 
execution 
history<a=1,b=1> 

RF(n) DF(n) Control(n) Relevant(n) 
 
 

w.r.t(x)                         w.r.t(y)   

1.Read(a,b)  a,b    
2. if(a<b) a,b   a,b a,b 
5. else if(a==b) a,b  2 a,b a,b 
6.y=f2(a,b) a,b y 5 a,b a,b 
7.x=g2(a,b) a,b x 5 a,b y 
11.write(x) x   x y 
12.write(y) y    y 
Dynamic Slice w.r.t. x=<1,2,5,7,11> Dynamic Slice w.r.t y=<1,2,5,6,12> 
 

Projection from 
program according to 
execution 
history<a=111,b=45> 

RF(n) DF(n) Control(n) Relevant(n) 
 
 

w.r.t(x)                         w.r.t(y)   
1.Read(a,b)  a,b    
2. if(a<b) a,b   a,b a,b 
5. else if(a==b) a,b  2 a,b a,b 
8.else   5 a,b a,b 
9.y=f3(a,b) a,b y 8 a,b y 
10.x=f3(a,b) a,b x 8 a,b y 
11.write(x) x   x y 
12.write(y) y     
Dynamic Slice w.r.t. x=<1,2,5,8,10,11> Dynamic Slice w.r.t y=<1,2,5,8,9,12> 
 

Projection from 
program 
according to 
execution 
history<a=2,b=3> 

RF(n) DF(n) Control(n) Relevant(n) 
 
 

w.r.t(x)                         w.r.t(y)   

1.Read(a,b)  a,b    
2. if(a<b) a,b   a,b a,b 
3.y=f1(a,b) a,b y 2 a,b a,b 
4.x=g1(a,b) a,b x 2 a,b y 
11.write(x) x   x y 
12.write(y) y    y 
Dynamic Slice w.r.t. x=<1,2,4,11> Dynamic Slice w.r.t y=<1,2,3,12> 
 

XI. CONCLUSION & FUTURE WORK 

This paper describes search based approach for test case generation .Genetic Algorithm decreases the probability of 
being trapped in local optimal values because it uses various chromosomes that works simultaneously. The dynamic 
slices of the program represent different projections of the program. In efficient set of dynamic slices no two slice 
signify the same set of statement coverage. So it is an effective method for automated testing.  Sequential version of 
GA is quite slower in generating the test cases of complex software. This work can be extended to parallel domain 
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by using Parallel Genetic Algorithm and Parallel slicing approach that will reduce the time bound for generating 
efficient set of dynamic slices for complex software. 
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