
Data Encryption and Decryption process
Using Bit Shifting and Stuffing (BSS)

Methodology

B. Ravi Kumar1, Dr.P.R.K.Murti2
1, 2 Department of Computer and Information Sciences,

 University of Hyderabad,
P.O. Central University, Gachibowli, Hyderabad- 500046, India.

Email:1ravi_budithi@yahoo.com & 2murti.poolla@gmail.com

Abstract—Commonly in encryption or decryption process some of the characters are inter changed by
using some encryption and decryption algorithms (like DES, IDEA) with key. But in Bit Shifting and
Stuffing (BSS) system to represent a printable character it needs only seven bits as per its ASCII value. In
computer system to represent a printable character it requires one byte, i.e. 8 bits. So a printable
character occupies 7 bits and the last bit value is 0 which is not useful for the character. In BSS method
we are stuffing a new bit in the place of unused bit which is shifting from another printable character. So
in this BSS methodology after encryption, for every eight bytes of plain text it will generate seven bytes
cipher text and in decryption, for every seven bytes of cipher text it will reproduce eight bytes of plain
text.

Keywords- Encryption, Decryption, Bit Shifting and Stuffing

I. INTRODUCTION

Data transmitted over the Internet passes through many servers and/or routers and there are many
opportunities for third parties to intercept that transmission. Preventing interception is impossible; instead, the
data must be made unreadable (encrypted) during transmission, with a way for the intended recipient to be able
to transform the received transmission back to its readable form (decryption process) [1]. Encryption is a
mechanism by which a message is transformed so that only the sender and recipient can see. When a message is
encrypted, that means that it is transformed into a form when the data is passed through some substitute
technique, shifting technique, table references or mathematical operations. All those processes generate a
different form of that data and that is not readable; the encrypted form often looks like random characters or
gibberish. When a message is decrypted, it is returned to its original readable form. Encryption can provide
strong security for data to give sensitive data the highest level of security. As a general term, cryptography is
used in order to keep crucial or secret information from unauthorized access. Encryption, a cryptographic
implementation, is the conversion of data into a seemingly incomprehensible mixture of characters that, when
viewed, cannot be read as simple text. Simple text is defined as standard written text, such as this document. The
algorithm used to encrypt data is called a cipher, or cipher text which is representation of the original data in a
difference form [2], while unencrypted data is called plaintext. Decryption is the process of converting
encrypted data (ciphertext) back into its original form (plaintext), so it can be understood. The goal of
encryption is to make data unintelligible to unauthorized readers and extremely difficult to decipher when
attacked. The security of encrypted data depends on several factors like what algorithm is used, what is the key
size and how was the algorithm implemented in the product.

A. DES

The DES algorithm is a popular algorithm that has been used by the U.S. Government as the standard
encryption algorithm, adopted in 1977, DES is based on a conventional or secret key system in which, the
sender and the receiver use a single key to encrypt and decrypt the data. The sender uses the key to convert the
data to scrambled format according to a complex mathematical algorithm, and only users with the correct key
can successfully decrypt the data. The DES is an example of a block cipher, which operates on blocks of 64 bits
at a time, with an input key of 64 bits. The key length of 64 bits in it is effectively reduced to 56 bits [3, 4] are

B. Ravi Kumar et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 7 July 2011 2818

used as a key, while the remaining eight are used to check for errors. The DES algorithm will encrypt data in the
same amount of space used by the original data.

The user selects which one of more than 72 quadrillion transformation functions are to be used by selecting a
56-bit key. The theory behind the security of DES has been that, short of trying all 72 quadrillion combinations,
there is no way to "break" the algorithm. DES has many variants (Triple DES, DESX).

B. IDEA

International Data Encryption Algorithm (IDEA) came into picture in 1990[6]. This Algorithm offers very
good performance (twice as fast as DES) and high security. It is often considered as the quickest and most
secure algorithm available to the public today. IDEA uses a 128 bit key which is double the key size of DES.
Thus, making it highly immune to attacks. The code is public, but commercial use is subject to license. The
strength of IDEA lies in it’s modulo multiplication operations.

 In our proposed BSS methodology after encryption, for every eight bytes of plain text it will generate seven
bytes cipher text and in decryption, for every seven bytes of cipher text it will reproduce eight bytes of plain
text.

In section 2 we have discussed about the proposed system methodology, in section 3 we have given the
algorithms for encryption and decryption for the proposed system, in section 4 implementation results with
discussions, section 5 conclusions and future work.

II. METHODOLOGY

 The system deals with security of data by using BSS encryption and decryption.

A. Encryption process

In this process every eight bytes of plain text becomes seven bytes of cipher text. So another advantage of
this method is when it encrypts it reduces the size of the data.

In this process let us consider I1 , I2 , I3 , I4 , I5 , I6 , I7 and I8 represents 8 printable characters of plain text and

the values in the boxes represents the byte equivalent values of each character. i.e. a1 a2 a3 a4 a5 a6
a7 represents 7bits of character I1 and their value may be either 0 or 1. Similarly remaining character bits are
represented in boxes as shown in figure 1. In this process the last character I8 bits h1 , h2 , h3 , h4 , h5 , h6 , h7 are
shifted and stuffed in to the characters I7 , I6, I5 , I4 , I3 , I2 , I1 respectively as shown in figure 2.

Figure 1: Before Encryption

I5: 0 e1 e2 e3 e4 e5 e6 e7

I6: 0 f1 f2 f3 f4 f5 f6 f7

I7: 0 g1 g2 g3 g4 g5 g6 g7

I8: 0 h1 h2 h3 h4 h5 h6 h7

I4: 0 d1 d2 d3 d4 d5 d6 d7

I3: 0 c1 c2 c3 c4 c5 c6 c7

I2: 0 b1 b2 b3 b4 b5 b6 b7

I1: 0 a1 a2 a3 a4 a5 a6 a7

Figure 2: After Encryption

I1: h7 a1 a2 a3 a4 a5 a6 a7

I2: h6 b1 b2 b3 b4 b5 b6 b7

I3: h5 c1 c2 c3 c4 c5 c6 c7

I5: h3 e1 e2 e3 e4 e5 e6 e7

I4: h4 d1 d2 d3 d4 d5 d6 d7

I6: h2 f1 f2 f3 f4 f5 f6 f7

I7: h1 g1 g2 g3 g4 g5 g6 g7

B. Ravi Kumar et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 7 July 2011 2819

For example the eight characters are a, b, c, d, e, f, g and h. i.e. I1 = A, I2 = B, I3 = C, I4 = D, I5 = E, I6 = F, I7 = G,
and I8=H.

The equivalent byte values of these characters before encryption are as follows:

I1 ASCII value 65 and its bits: 01000001, i.e. a1 = 1, a2 = 0, a3 = 0, a4 = 0, a5 = 0, a6 = 0, a7 = 1.
I2 ASCII value 66 and its bits: 01000010, i.e. b1 = 1, b2 = 0, b3 = 0, b4 = 0, b5 = 0, b6 = 1, b7 = 0.
I3 ASCII value 67 and its bits: 01000011, i.e. c1 = 1, c2 = 0, c3 = 0, c4 = 0, c5 = 0, c6 = 1, c7 = 1.
I4 ASCII value 68 and its bits: 01000100, i.e. d1 = 1, d2 = 0, d3 = 0, d4 = 0, d5 = 1, d6 = 0, d7 = 0.
I5 ASCII value 69 and its bits: 01000101, i.e. e1 = 1, e2 = 0, e3 = 0, e4 = 0, e5 = 1, e6 = 0, e7 = 1.
I6 ASCII value 70 and its bits: 01000110, i.e. f1 = 1, f2 = 0, f3 = 0, f4 = 0, f5 = 1, f6 = 1, f7 = 0.
I7 ASCII value 71 and its bits: 01000111, i.e. g1 = 1, g2 = 0, g3 = 0, g4 = 0, g5 = 1, g6 = 1, g7 = 1.
I8 ASCII value 72 and its bits: 01001000, i.e. h1 = 1, h2 = 0, h3 = 0, h4 = 1, h5 = 0, h6 = 0, h7 = 0.

After encryption by using BSS method the equivalent byte values of these characters are as fallows.

I1 bits: 01000001, i.e. h7 = 0, a1 = 1, a2 = 0, a3 = 0, a4 = 0, a5 = 0, a6 = 0, a7 = 1.
I2 bits: 01000010, i.e. h6 = 0, b1 = 1, b2 = 0, b3 = 0, b4 = 0, b5 = 0, b6 = 1, b7 = 0.
I3 bits: 01000011, i.e. h5 = 0, c1 = 1, c2 = 0, c3 = 0, c4 = 0, c5 = 0, c6 = 1, c7 = 1.
I4 bits: 11000100, i.e. h4 = 1, d1 = 1, d2 = 0, d3 = 0, d4 = 0, d5 = 1, d6 = 0, d7 = 0.
I5 bits: 01000101, i.e. h3 = 0, e1 = 1, e2 = 0, e3 = 0, e4 = 0, e5 = 1, e6 = 0, e7 = 1.
I6 bits: 01000110, i.e. h2 = 0, f1 = 1, f2 = 0, f3 = 0, f4 = 0, f5 = 1, f6 = 1, f7 = 0.
I7 bits: 11000111, i.e. h1 = 1, g1 = 1, g2 = 0, g3 = 0, g4 = 0, g5 = 1, g6 = 1, g7 = 1.

B. Decryption process

In decryption process every seven bytes of cipher text produces eight characters of plain text. So after
decryption process the decrypted data will automatically get its original size. The fallowing figure 3 shows data
before decryption, and figure 4 shows the data after decryption.

Figure 4: After Decryption

I3: 0 c1 c2 c3 c4 c5 c6 c7

I8: 0 h1 h2 h3 h4 h5 h6 h7

I4: 0 d1 d2 d3 d4 d5 d6 d7

I2: 0 b1 b2 b3 b4 b5 b6 b7

I1: 0 a1 a2 a3 a4 a5 a6 a7

I5: 0 e1 e2 e3 e4 e5 e6 e7

I6: 0 f1 f2 f3 f4 f5 f6 f7

I7: 0 g1 g2 g3 g4 g5 g6 g7

Figure 3: Before Decryption

I1: h7 a1 a2 a3 a4 a5 a6 a7

I2: h6 b1 b2 b3 b4 b5 b6 b7

I5: h3 e1 e2 e3 e4 e5 e6 e7

I6: h2 f1 f2 f3 f4 f5 f6 f7

I7: h1 g1 g2 g3 g4 g5 g6 g7

I3: h5 c1 c2 c3 c4 c5 c6 c7

I4: h4 d1 d2 d3 d4 d5 d6 d7

B. Ravi Kumar et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 7 July 2011 2820

III. BSS ALGORITHMS

A. Encryption Algorithm:

Step 1: Take first 8 characters from the given text file (say “file.txt”) into I1, I2, I3, I4, I5, I6, I7, I8 .
Let the characters be as shown in figure 1 in binary format.

Step 2: If the number of characters less than 8 then write all the characters from text file to the encrypted file

(Say “file.cmp”).

Step 3: Else

Let T, T2 be the characters.

(a) T  128 i.e. T = 10000000 (in binary form)
 T2 0 i.e. T2 = 00000000 (in binary form)

(b) Take 7th bit from I8, into “T” by doing the fallowing shifting and bit wise operations .

T2 = I8 << 1 (left shift)
T = T & T2 (bit wise “And” operation)

(c) Place this 7th bit of I8, into the 8th bit position of I7, as fallows

I7 = T | I7 (bit wise “Or” operation)

Step 4:

 (a) T= 128, T2 = 0;

 (b) Take the 6th bit from I8 into “T” by doing the fallowing shifting and bit wise operations .

T2 = I8 << 2 (left shift)
T = T & T2 (bit wise “And” operation)

(c) Place this 6th bit of I8, into the 8th bit position of I6, as fallows

I6 = T | I6 (bit wise “Or” operation)

Step 5:

 (a) T = 128, T2 = 0;

 (b) Take the 5th bit from I8 into “T” by doing the fallowing shifting and bit wise operations .

T2 = I8 << 3 (left shift)
T = T & T2 (bit wise “And” operation)

T: h1 0 0 0 0 0 0 0

I7: h1 g1 g2 g3 g4 g5 g6 g7

T: h2 0 0 0 0 0 0 0

I6 : h2 f1 f2 f3 f4 f5 f6 f7

T: h3 0 0 0 0 0 0 0

B. Ravi Kumar et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 7 July 2011 2821

(c) Place this 5th bit of I8, into the 8th bit position of I5, as fallows

I5 = T | I5 (bit wise “Or” operation)

Step 6:

(a) T = 128, T2 = 0;
(b) Take the 4th bit from I8 into “T” by doing the fallowing shifting and bit wise operations.

T2 = I8 << 4 (left shift)
T = T & T2 (bit wise “And” operation)

(c) Place this 4th bit of I8, into the 8th bit position of I4, as fallows

I4 = T | I4 (bit wise “Or” operation)

Step 7:

(a) T = 128, T2 = 0;
(b) Take the 3rd bit from I8 into “T” by doing the fallowing shifting and bit wise operations .

T2 = I8 << 5 (left shift)
T= T & T2 (bit wise “And” operation)

(c) Place this 3rd bit of I8, into the 8th bit position of I3, as fallows

I3 = T | I3 (bit wise “Or” operation)

Step 8:

 (a) T = 128, T2 = 0;
 (b) Take the 2nd bit from I8 into “T” by doing the fallowing shifting and bit wise operations .

T2 = I8 << 6 (left shift)
T =T & T2 (bit wise “And” operation)

(c) Place this 2nd bit of I8, into the 8th bit position of I2, as fallows

I2 = T | I2 (bit wise “Or” operation)

T : h4 0 0 0 0 0 0 0

I4: h4 d1 d2 d3 d4 d5 d6 d7

T: h5 0 0 0 0 0 0 0

I3: h5 c1 c2 c3 c4 c5 c6 c7

I5 : h3 e1 e2 e3 e4 e5 e6 e7

T: h6 0 0 0 0 0 0 0

I2: h6 b1 b2 b3 b4 b5 b6 b7

B. Ravi Kumar et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 7 July 2011 2822

Step 9

 (a) T = 128, T2 = 0;
 (b) Take the 1st bit from I8 into “T” by doing the fallowing shifting and bit wise operations .

T2 = I8 << 7 (left shift)
T = T & T2 (bit wise “And” operation)

(c) Place this 1st bit of I8, into the 8th bit position of I1, as fallows

I1 = T | I1 (bit wise “Or” operation)

Step 10:

Write these 7 characters I1, I2, I3, I4, I5, I6 and I7 to the encrypted file say “file.cmp”

After process these 7 characters are as shown in fig 2.

B. Decryption algorithm

Step 1:

Take first 7 characters from the given encrypted file (say “file.cmp”) into I1, I2, I3, I4, I5, I6, I7.
Let the binary format of these characters are as shown in figure 3.

Step 2:

If the number of characters less than 7 then write all these characters from encrypted file to the decrypted
text file (say “file.txt”).

Step 3:

Else
Let T, T2, D1, D2, D3, D4, D5, D6, D7, D8 are the characters.

(a) T  127 i.e. T = 01111111 (in binary form)

T2  1 i.e. T2 = 00000001 (in binary form)

(b) Replace 1 to 7 bits of D1 with 1 to 7 bits of I1 respectively and 8th bit of D1 with 0 with the following
operations.

D1I1 & T (bitwise “And” operation)

(c) Replace 1st bit of I1 with 8th bit of I1 and the remaining bits with ‘0’ with the following operations.

 I1  (I1 >> 7) & T2

I1: h7 a1 a2 a3 a4 a5 a6 a7

T: h7 0 0 0 0 0 0 0

0 a1 a2 a3 a4 a5 a6 a7 D1:

 0 0 0 0 0 0 0 h7 I1:

B. Ravi Kumar et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 7 July 2011 2823

Step 4:

(a) T 127 i.e. T = 01111111 (in binary form)
T2 2 i.e.T2=00000010 (in binary form)

(b) Replace 1 to 7 bits of D2 with 1 to 7 bits of I2 respectively and 8th bit of D2 with 0 with the following

operations.

 D I2 & T (bitwise “And” operation)

(c) Replace 2nd bit of I2 with 8th bit of I2 and the remaining bits with ‘0’ with the following operations.

 I2  (I2 >> 6) & T2

Step 5:

 (a) T127 i.e. T = 01111111 (in binary form)
T24 i.e. T2=00000100(in binary form)

(b) Replace 1 to 7 bits of D3 with 1 to 7 bits of I3 respectively and 8th bit of D3 with 0 with the following

operations.

 D3 I3&T (bitwise “And” operation)

(c) Replace 3rd bit of I3 with 8th bit of I3 and the remaining bits with ‘0’ with the following operations.

 I3  (I3 >> 5) & T2

Step 6:

 (a) T  127 i.e. T = 01111111 (in binary form)
T2  8 i.e. T2 = 00001000 (in binary form)

(b) Replace 1 to 7 bits of D4 with 1 to 7 bits of I4 respectively and 8th bit of D4 with 0 with the following
operations.

 D4  I4 & T (bitwise “And” operation)

(c) Replace 4th bit of I4 with 8th bit of I4 and the remaining bits with ‘0’ with the following operations.

 I4  (I4 >> 4) & T2

0 0 0 0 0 0 h6 0 I2:

0 c1 c2 c3 c4 c5 c6 c7 D3:

0 0 0 0 0 h5 0 0 I3:

0 0 0 0 h4 0 0 0 I4:

0 b1 b2 b3 b4 b5 b6 b7 D2:

0 d1 d2 d3 d4 d5 d6 d7 D:

B. Ravi Kumar et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 7 July 2011 2824

Step 7

 (a) T  127 i.e. T = 01111111 (in binary form)
T2  16 i.e. T2 = 00010000 (in binary form)

(b) Replace 1 to 7 bits of D5 with 1 to 7 bits of I5 respectively and 8th bit of D5 with 0 with the following

operations.

D5 I5 & T (bitwise “And” operation)

(c) Replace 5th bit of I5 with 8th bit of I5 and the remaining bits with ‘0’ with the following operations.

 I5  (I5 >> 3) & T2

Step 8:

(a) T  127 i.e. T = 01111111 (in binary form)
T2  32 i.e. T2 = 00100000 (in binary form)

(b) Replace 1 to 7 bits of D6 with 1 to 7 bits of I6 respectively and 8th bit of D6 with 0 with the following
operations.

 D6  I6 & T (bitwise “And” operation)

(c) Replace 6th bit of I6 with 8th bit of I6 and the remaining bits with ‘0’ with the following operations.

 I6  (I6 >> 2) & T2

Step 9:

(a) T  127 i.e. T = 01111111 (in binary form)
T2  64 i.e. T2 = 01000000 (in binary form)

(b) Replace 1 to 7 bits of D7 with 1 to 7 bits of I7 respectively and 8th bit of D7 with 0 with the following

operations.

D7 I6 & T (bitwise “And” operation)

(c) Replace 7th bit of I7 with 8th bit of I7 and the remaining bits with ‘0’ with the following operations.

I7  (I7 >> 1) & T2

Step 10:

Replace the 1 to 7 bits of D8 with the bits by doing the fallowing operation

 D8  I1 | I2 | I3 | I4 | I5 | I6 | I7 (bitwise “OR” operations)

0 0 0 h3 0 0 0 0 I5:

0 f1 f2 f3 f4 f5 f6 f7 D:

0 0 h2 0 0 0 0 0 I6:

 0 h1 0 0 0 0 0 0 I7:

0 e1 e2 e3 e4 e5 e6 e7 D5:

0 g1 g2 g3 g4 g5 g6 g7 D7:

B. Ravi Kumar et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 7 July 2011 2825

Step 11:

Write D1, D2, D3, D4, D5, D6, D7 and D8 characters to decrypted file (“ file.txt “).

Step 12:

Take next 7 characters into I1, I2, I3, I4, I5, I6, I7 and repeat the Steps 2 to 11 until the end of the encrypted
file.

Step 13: END.

IV. IMPLEMENTATION RESULTS AND DISCUSSIONS.

 We have applied this BSS system on different sizes of data to encryption and decryption

A. Sample test data

• Encryption

• Decryption

0 h1 h2 h3 h4 h5 h6 h7 D8:

Óôågaîïòáphù é tèe áò oæ sãénce
Šôát cïíínéãátéï éó båég èápðåing
Šôòoõgè ádiï, öéåï aîä ôill éíges

 Encrypted message

Decryption

 Actual message

Steganography is the art of science that
communication is being happening through
audio, video and still images

Óôågaîïòáphù é tèe áò oæ sãénce
Šôát cïíínéãátéï éó båég èápðåing
Šôòoõgè ádiï, öéåï aîä ôill éíges

 Encrypted message

Encryption

 Actual message

Steganography is the art of science that
communication is being happening
through audio, video and still images

B. Ravi Kumar et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 7 July 2011 2826

B. Analysis

 After encryption the size of the encrypted data is reduced and after decryption the size of the decrypted data
is increased, i.e original size of the actual data. The following table1 represents the variation of size of different
data sets after encryption and decryption.

TABLE I

V. CONCLUSION

In this paper we presented an implementation of BSS encryption algorithm. The main objective was to

evaluate the performance of this algorithm in terms of data size. The results showed that the BSS algorithm was
very effective in complexity and security. We extending this to our future work, we are going to provide a secret
key for authentication of the encrypted data and decrypted data.

REFERENCES

[1] Wikipedia, “Encryption”, http://en.wikipedia.org/wiki/Encryption, modified on 13 December 2006.
[2] J. Freeman, R. Neely, and L. Megalo “Developing Secure Systems: Issues and Solutions”. IEEE Journal of Computer and

Communication, Vol. 89, PP. 36-45. 1998
[3] Wayne G. Barker, "Introduction to the analysis of the Data Encryption Standard (DES)", A cryptographic Series, Vol. 55, p. viii + 190,

Aegean Park Press, 1991.
[4] N. A Kofahi, Turki Al-Somani, Khalid Al-Zamil. “Performance evaluation of three encryption/decryption algorithms” 2005 IEEE

International Symposium on Micro-NanoMechatronics and Human Science, Publication Date: 30-30 Dec. 2003. Volume: 2, pp 790-
793

[5] W. Stallings, “Cryptography and Network Security: Principles and Practice”, 2nd Edition, pgs. 102-109, 128, 1999.
[6] X. Lai, J. Massey, “A Proposal for a New Block Encryption Standard”, Proceedings, EUROCRYPT ’90, 1990.
[7] Diffie, Whitfield & Hellman, Martin E, (1976) . New Directions In Cryptography, IEEE TRANSACTIONS ON INFORMATION

THEORY, available from: http://www- ee.stanford.edu/~hellman/publications/24.pdf
[8] C.-P. Wu, C.-C. J. Kuo, “Design of integrated multimedia compression and encryption systems,” IEEE Trans. Multimedia, vol. 7, no.

5, pp. 828-839, 2005.
[9] M . J. Weiner, "Efficient DES Key Search," Advances in Cryptology—CRYPTO '93 Proceedings, Springer- Verlag, in preparation.
[10] E. Biham and A. Shamir, Differential Cryptanalysis of the Data Encryption Standard, Springer-Verlag, 1993.
[11] M. Matsui, "Linear Cryptanalysis Method for DES Cipher," Advances in Cryptology-CRYPTO '93Proceedings, Springer- Verlag,

1994, in preparation

S. No

Data Size
(bytes)

After
 Encryption

Size
(bytes)

After
Decryption

Size
(bytes)

1 3,250 2,844 3,250
2 3,254 2,848 3,254
3 9,741 8,524 9.741
4 9,746 8,528 9.746
5 9,747 8,532 9.750
6 29,161 25.516 29,161
7 29,165 25.520 29,165

B. Ravi Kumar et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 7 July 2011 2827

