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Abstract—In this paper, we apply adaptive control method to derive new results for the global chaos 
synchronization of identical hyperchaotic Lorenz systems (2007), identical hyperchaotic Chen systems 
(2010) and non-identical hyperchaotic Lorenz and hyperchaotic Chen systems. In this paper, we shall 
assume that the parameters of both master and slave systems are unknown and we devise adaptive 
synchronizing schemes using the estimates of parameters for both master and slave systems. Our adaptive 
synchronization results derived in this paper are established using Lyapunov stability theory. Since the 
Lyapunov exponents are not required for these calculations, the adaptive control method is very effective 
and convenient to synchronize identical and non-identical hyperchaotic Lorenz and hyperchaotic Chen 
systems. Numerical simulations are shown to demonstrate the effectiveness of the proposed adaptive 
synchronization schemes for the hyperchaotic systems addressed in this paper. 

Keywords-chaos;  synchronization; adaptive control; hyperchaotic Lorenz system; hyperchaotic Chen system. 

I.  INTRODUCTION   
Chaotic systems are dynamical systems that are highly sensitive to initial conditions. The sensitive nature of 

chaotic systems is commonly called as the butterfly effect [1].   Since the seminal work of Pecora and Carroll [2], 
chaos synchronization has been studied extensively in the last two decades [2-17].  Chaos theory has been applied 
to a variety of fields like physical systems [3], chemical systems [4], ecological systems [5], secure 
communications [6-8] etc.  

In the recent years, various schemes such as PC method [2], OGY method [9], active control [10-12], adaptive 
control [13-14], time-delay feedback approach [15], backstepping design method [16], sampled-data feedback 
synchronization method [17], sliding mode control [18], etc. have been successfully applied for chaos 
synchronization. 

In most of the chaos synchronization approaches, the master-slave or drive-response formalism is used. If a 
particular chaotic system is called the master or drive system and another chaotic system is called the slave or 
response system, then the idea of the synchronization is to use the output of the master system to control the 
slave system so that the output of the slave system tracks the output of the master system asymptotically. 

In this paper, we apply adaptive control method to derive new results for the global chaos synchronization of 
identical hyperchaotic Lorenz systems ([19], 2007), identical hyperchaotic Chen systems ([20], 2010) and non-
identical hyperchaotic Lorenz and hyperchaotic Chen systems. We assume that the parameters of the master and 
slave systems are unknown  
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This paper has been organized as follows.  In Section II, we discuss the adaptive synchronization of identical 
hyperchaotic Lorenz systems. In Section III, we discuss the adaptive synchronization of identical hyperchaotic 
Chen systems. In Section IV, we discuss the adaptive synchronization of hyperchaotic Lorenz and hyperchaotic 
Chen systems. In Section V, we summarize the main results obtained in this paper. 

II. ADAPTIVE SYNCHRONIZATION OF IDENTICAL HYPERCHAOTIC LORENZ SYSTEMS 

A. Theoretical Results 

In this section, we discuss the adaptive synchronization of identical hyperchaotic Lorenz systems ([19], 
2006), where the parameters of the master and slave systems are unknown. 

As the master system, we consider the hyperchaotic Lorenz dynamics described by 

           

1 2 1

2 1 2 4 1 3

3 1 2 3

4 2 3

( )x x x

x x x x x x

x x x x

x rx x

σ
ρ

β

= −
= − − −
= −
=









                                                                                                          (1) 

where 1 2 3 4, , ,x x x x are the states and , , , rσ β ρ are unknown parameters of the system. 

As the slave system, we consider the controlled hyperchaotic Lorenz dynamics described by 

           

1 2 1 1

2 1 2 4 1 3 2

3 1 2 3 3

4 2 3 4

( )y y y u

y y y y y y u

y y y y u

y ry y u

σ
ρ

β

= − +
= − − − +
= − +
= +









                                                                                               (2)                              

where 1 2 3 4, , ,y y y y are the states and 1 2 3 4, , ,u u u u are the nonlinear controllers to be designed. 

The four-dimensional system (1) is hyperchaotic when the parameter values are taken as 

           10,   8 / 3,   28σ β ρ= = =   and   0.1r =  

The state orbits of the hyperchaotic Lorenz system (1) are shown in Fig. 1. 
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Fig. 1 State Orbits of the Hyperchaotic Lorenz System 

The chaos synchronization error is defined by 

          ,    ( 1, 2,3, 4)i i ie y x i= − =                                                                                                    (3) 

The error dynamics is easy obtained as 

          

1 2 1 1

2 1 2 4 1 3 1 3 2

3 3 1 2 1 2 3

4 2 3 2 3 4

( )

( )

e e e u

e e e e y y x x u

e e y y x x u

e r y y x x u

σ
ρ

β

= − +
= − − − + +
= − + − +
= − +









                                                                                    (4) 

Let us now define the adaptive control functions 1 2 3( ), ( ), ( )u t u t u t and 4 ( )u t as 

          

1 2 1 1 1

2 1 2 4 1 3 1 3 2 2

3 3 1 2 1 2 3 3

4 2 3 2 3 4 4

ˆ( ) ( )
ˆ( )

ˆ( )
ˆ( ) ( )

u t e e k e

u t e e e y y x x k e

u t e y y x x k e

u t r y y x x k e

σ
ρ

β

= − − −
= − + + + − −

= − + −
= − − −

                                                                        (5) 

where ˆ ˆˆ , ,σ β ρ and r̂ are estimates of , ,σ β ρ and r respectively, and , ( 1, 2,3,4)ik i = are positive constants. 

Substituting (5) into (4), the error dynamics simplifies to 

          

1 2 1 1 1

2 1 2 2

3 3 3 3

4 2 3 2 3 4 4

ˆ( )( )
ˆ( )

ˆ( )
ˆ( )( )

e e e k e

e e k e

e e k e

e r r y y x x k e

σ σ
ρ ρ

β β

= − − −
= − −

= − − −
= − − −









                                                                                         (6) 
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Let us now define the parameter estimation errors as 

         ˆ ˆˆ ,  ,  e e eσ β ρσ σ β β ρ ρ= − = − = −   and  ˆre r r= −                                                     (7) 

Substituting (7) into (6), we obtain the error dynamics as 

          

1 2 1 1 1

2 1 2 2

3 3 3 3

4 2 3 2 3 4 4

( )

( )r

e e e e k e

e e e k e

e e e k e

e e y y x x k e

σ

ρ

β

= − −
= −

= − −

= − −









                                                                                                 (8) 

For the derivation of the update law for adjusting the estimates of the parameters, the Lyapunov approach is 
used.   

We consider the quadratic Lyapunov function defined by 

       ( ) ( )2 2 2 2 2 2 2 2
1 2 3 4 1 2 3 4

1, , , , , , ,
2r rV e e e e e e e e e e e e e e e eσ β ρ σ β ρ= + + + + + + +                       (9) 

which is a positive definite function on 8.R  

We also note that 

       ˆ ˆˆ ,   ,   e e eσ β ρσ β ρ= − = − = −      and  ˆre r= −                                                                       (10) 

Differentiating (9) along the trajectories of (8) and using (10), we obtain 

    

2 2 2 2 2
1 1 2 2 3 3 4 4 1 2 1 3

1 2 4 2 3 2 3

ˆˆ( )

ˆ ˆ        ( )r

V k e k e k e k e e e e e e e

e e e e e y y x x r

σ β

ρ

σ β

ρ

  = − − − − + − − + − −    
   + − + − −  



 
                                  (11) 

In view of Eq. (11), the estimated parameters are updated by the following law: 

     

1 2 1 5

2
3 6

1 2 7

4 2 3 2 3 8

ˆ ( )

ˆ

ˆ

ˆ ( ) r

e e e k e

e k e

e e k e

r e y y x x k e

σ

β

ρ

σ

β

ρ

= − +

= − +

= +

= − +









                                                                                                            (12) 

where 5 6 7, ,k k k and 8k are positive constants.  

Substituting (12) into (11), we obtain 

      2 2 2 2 2 2 2 2
1 1 2 2 3 3 4 4 5 6 7 8 rV k e k e k e k e k e k e k e k eσ β ρ= − − − − − − − −                                                 (13) 

which is a negative definite function on 8.R  

Thus, by Lyapunov stability theory [21], it is immediate that the synchronization error , ( 1, 2,3,4)ie i = and 

the parameter estimation error , , , re e e eσ β ρ  decay to zero exponentially with time. Thus, it follows that the 
master system (1) and the slave system (2) are completely synchronized and that the parameter estimates 
converges to the original values of the system parameters. 

Hence, we have proved the following result. 
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Theorem 1. The identical hyperchaotic Lorenz systems (1) and (2) with unknown parameters are globally and 
exponentially synchronized by the adaptive control law (5), where the update law for the parameter estimates is 
given by (12) and , ( 1, ,8)ik i =  are positive constants. 

B. Numerical Results 

For the numerical simulations, the fourth-order Runge-Kutta method with time-step 610h −= is used to 
solve the hyperchaotic systems (1) and (2) with the adaptive control law (5) and the parameter update law (12) 
using MATLAB. 

For the hyperchaotic Lorenz systems (1) and (2), the parameter values are taken as 

       10,   8 / 3,   28σ β ρ= = =   and   0.1r =  

Suppose that the initial values of the parameter estimates are 

      ˆ ˆˆ (0) 2,   (0) 20,   (0) 10σ β ρ= = =   and   ˆ(0) 5.r =  

The initial values of the master system (1) are taken as 

      1 2 3(0) 18,   (0) 24,   (0) 26x x x= = =   and 4 (0) 40.x =  

The initial values of the slave system (2) are taken as 

      1 2 3(0) 29,   (0) 6,   (0) 45y y y= = =  and 4 (0) 15.y =  

Fig. 2 depicts the complete synchronization of the identical hyperchaotic systems (1) and (2). 

Fig. 3 shows that the estimated values of the parameters, viz. ˆ ˆˆ , ,σ β ρ and r̂ converge to the system 
parameters 10,   8 / 3,   28σ β ρ= = = and 0.1,r = respectively. 

  
Fig. 2 Synchronization of the Identical Hyperchaotic Lorenz Systems 
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Fig. 3 Parameter Esimates ˆ ˆˆ ˆ( ), ( ), ( ), ( )t t t r tσ β ρ  

III. ADAPTIVE SYNCHRONIZATION OF IDENTICAL HYPERCHAOTIC CHEN SYSTEMS 

A. Theoretical Results 

In this section, we discuss the adaptive synchronization of identical hyperchaotic Chen systems ([20], 2008), 
where the parameters of the master and slave systems are unknown. 

As the master system, we consider the hyperchaotic Chen dynamics described by 

       

1 2 1

2 1 1 3 2 4
2

3 2 3

4 1

( )
4 10 4

x a x x

x x x x cx x

x x bx

x dx

= −
= − + +

= −
= −









                                                                                             (14) 

where 1 2 3 4, , ,x x x x are the states and  , , ,a b c d are unknown parameters of the system. 

As the slave system, we consider the controlled hyperchaotic Chen dynamics described by 

         

1 2 1 1

2 1 1 3 2 4 2
2

3 2 3 3

4 1 4

( )
4 10 4

y a y y u

y y y y cy y u

y y by u

y dy u

= − +
= − + + +

= − +
= − +









                                                                                (15)                              

where 1 2 3 4, , ,y y y y are the states and 1 2 3 4, , ,u u u u are the nonlinear controllers to be designed. 

The four-dimensional system (14) is hyperchaotic when the parameter values are taken as 
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            35,   3,   21a b c= = =   and    2.d =  

The state orbits of the hyperchaotic Chen system (14) are shown in Fig. 4. 

 
Fig. 4 State Orbits of the Hyperchaotic Chen System 

The chaos synchronization error is defined by 

          ,    ( 1, 2,3,4)i i ie y x i= − =                                                                                                    (16) 

The error dynamics is easy obtained as 

          

1 2 1 1

2 1 1 3 1 3 2 4 2
2 2

3 3 2 2 3

4 1 4

( )
4 10( ) 4

e a e e u

e e y y x x ce e u

e be y x u

e de u

= − +
= − − + + +

= − + − +
= − +









                                                                        (17) 

Let us now define the adaptive control functions 1 2 3( ), ( ), ( )u t u t u t and 4 ( )u t as 

          

1 2 1 1 1

2 1 1 3 1 3 2 4 2 2

2 2
3 3 2 2 3 3

4 1 4 4

ˆ( ) ( )
ˆ( ) 4 10( ) 4

ˆ( )
ˆ( )

u t a e e k e

u t e y y x x ce e k e

u t be y x k e

u t de k e

= − − −
= − + − − − −

= − + −

= −

                                                            (18) 

where ˆˆ ˆ, ,a b c and d̂ are estimates of , ,a b c and d respectively, and , ( 1,2,3,4)ik i = are positive constants. 

Substituting (18) into (17), the error dynamics simplifies to 
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1 2 1 1 1

2 2 2 2

3 3 3 3

4 1 4 4

ˆ( )( )
ˆ( )

ˆ( )
ˆ( )

e a a e e k e

e c c e k e

e b b e k e

e d d e k e

= − − −
= − −

= − − −

= − − −









                                                                                                   (19) 

Let us now define the parameter estimation errors as 

         ˆˆ ˆ,  ,  a b ce a a e b b e c c= − = − = −   and  ˆ
de d d= −                                                           (20) 

Substituting (20) into (19), we obtain the error dynamics as 

          

1 2 1 1 1

2 2 2 2

3 3 3 3

4 1 4 4

( )a

c

b

d

e e e e k e

e e e k e

e e e k e

e e e k e

= − −
= −
= − −
= − −









                                                                                                           (21) 

For the derivation of the update law for adjusting the estimates of the parameters, the Lyapunov approach is 
used.   

We consider the quadratic Lyapunov function defined by 

       ( ) ( )2 2 2 2 2 2 2 2
1 2 3 4 1 2 3 4

1, , , , , , ,
2a b c d a b c dV e e e e e e e e e e e e e e e e= + + + + + + +                       (22) 

which is a positive definite function on 8.R  

We also note that 

       ˆˆ ˆ,   ,   a b ce a e b e c= − = − = −      and  ˆ
de d= −                                                                          (23) 

Differentiating (22) along the trajectories of (21) and using (23), we obtain 

    

2 2 2 2 2
1 1 2 2 3 3 4 4 1 2 1 3

2
2 1 4

ˆˆ( )

ˆˆ        

a b

c d

V k e k e k e k e e e e e a e e b

e e c e e e d

  = − − − − + − − + − −    
  + − + − −    




                                (24) 

In view of Eq. (24), the estimated parameters are updated by the following law: 

       

1 2 1 5

2
3 6

2
2 7

1 4 8

ˆ ( )

ˆ

ˆ

ˆ

a

b

c

d

a e e e k e

b e k e

c e k e

d e e k e

= − +

= − +

= +

= − +









                                                                                                               (25) 

where 5 6 7, ,k k k and 8k are positive constants.  

Substituting (25) into (24), we obtain 

      2 2 2 2 2 2 2 2
1 1 2 2 3 3 4 4 5 6 7 8a b c dV k e k e k e k e k e k e k e k e= − − − − − − − −                                                 (26) 

which is a negative definite function on 8.R  

Thus, by Lyapunov stability theory [21], it is immediate that the synchronization error , ( 1, 2,3,4)ie i = and 

the parameter estimation error , , ,a b c de e e e  decay to zero exponentially with time.   
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Hence, we have proved the following result. 

Theorem 2. The identical hyperchaotic Chen systems (14) and (15) with unknown parameters are globally and 
exponentially synchronized by the adaptive control law (18), where the update law for the parameter estimates is 
given by (25) and , ( 1, ,8)ik i =  are positive constants. 

B. Numerical Results 

For the numerical simulations, the fourth-order Runge-Kutta method with time-step 610h −= is used to 
solve the hyperchaotic systems (14) and (15) with the adaptive control law (18) and the parameter update law 
(25) using MATLAB. 

For the hyperchaotic Chen systems (14) and (15), the parameter values are taken as 

         35,   3,   21a b c= = =   and    2.d =  

Suppose that the initial values of the parameter estimates are 

         ˆ(0) 12,   (0) 8,   (0) 20a b c= = =   and   ˆ(0) 4.d =  

The initial values of the master system (14) are taken as 

      1 2 3(0) 26,   (0) 35,   (0) 42x x x= = =   and 4 (0) 10.x =  

The initial values of the slave system (15) are taken as 

      1 2 3(0) 19,   (0) 26,   (0) 15y y y= = =  and 4 (0) 22.y =  

Fig. 5 depicts the complete synchronization of the identical hyperchaotic systems (14) and (15). 

Fig. 6 shows that the estimated values of the parameters, viz. ˆˆ ˆ, ,a b c and d̂ converge to the system 
parameters  35,   3,   21a b c= = = and 2,d = respectively. 

 

 
Fig. 5 Synchronization of the Identical Hyperchaotic Chen Systems 
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Fig. 6 Parameter Estimates ˆ ˆˆ ˆ( ), ( ), ( ), ( )a t b t c t d t  

IV. ADAPTIVE SYNCHRONIZATION OF HYPERCHAOTIC LORENZ AND HYPERCHAOTIC CHEN SYSTEMS 

A. Theoretical Results 

In this section, we discuss the adaptive synchronization of non-identical hyperchaotic Lorenz system ([19], 
2006) and hyperchaotic Chen system ([20], 2010). We consider the hyperchaotic Lorenz system as the master 
system and the hyperchaotic Chen system as the slave system and assume that the parameters of the master and 
slave systems are unknown. 

As the master system, we consider the hyperchaotic Lorenz dynamics described by 

      

1 2 1

2 1 2 4 1 3

3 1 2 3

4 2 3

( )x x x

x x x x x x

x x x x

x rx x

σ
ρ

β

= −
= − − −
= −
=









                                                                                                          (27) 

where 1 2 3 4, , ,x x x x are the states and  , , , rσ β ρ are unknown parameters of the system. 

As the slave system, we consider the controlled hyperchaotic Chen dynamics described by 

     

1 2 1 1

2 1 1 3 2 4 2
2

3 2 3 3

4 1 4

( )
4 10 4

y a y y u

y y y y cy y u

y y by u

y dy u

= − +
= − + + +

= − +
= − +









                                                                                         (28)                              

where 1 2 3 4, , ,y y y y are the states, , , ,a b c d are unknown parameters of the system and 1 2 3 4, , ,u u u u are the 
nonlinear controllers to be designed. 
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The chaos synchronization error is defined by 

          

1 1 1

2 2 2

3 3 3

4 4 4

e y x

e y x

e y x

e y x

= −
= −
= −
= −

                                                                                                                             (29) 

The error dynamics is easy obtained as 

          

1 2 1 2 1 1

2 1 1 3 2 4 1 2 4 1 3 2
2

3 2 3 1 2 3 3

4 1 2 3 4

( ) ( )
4 10 4

e a y y x x u

e y y y cy y x x x x x u

e y by x x x u

e dy rx x u

σ
ρ

β

= − − − +
= − + + − + + + +

= − − + +
= − − +









                                                (30) 

Let us now define the adaptive control functions 1 2 3( ), ( ), ( )u t u t u t and 4 ( )u t as 

          

1 2 1 2 1 1 1

2 1 1 3 2 4 1 2 4 1 3 2 2

2
3 2 3 1 2 3 3 3

4 1 2 3 4 4

ˆ ˆ( ) ( ) ( )
ˆˆ( ) 4 10 4

ˆ ˆ( )
ˆ ˆ( )

u t a y y x x k e

u t y y y cy y x x x x x k e

u t y by x x x k e

u t dy rx x k e

σ
ρ

β

= − − + − −
= − + − − + − − − −

= − + + − −

= + −

                                     (31) 

where ˆˆ ˆˆ ˆ ˆ ˆ, , , , , ,r a b cσ β ρ and d̂ are estimates of , , , , , ,r a b cσ β ρ and d respectively, and ,ik  

( 1, 2,3,4)i = are positive constants. 

Substituting (31) into (30), the error dynamics simplifies to 

         

1 2 1 2 1 1 1

2 2 1 2 2

3 3 3 3 3

4 1 2 3 4 4

ˆ ˆ( )( ) ( )( )
ˆˆ( ) ( )

ˆ ˆ( ) ( )
ˆ ˆ( ) ( )

e a a y y x x k e

e c c y x k e

e b b y x k e

e d d y r r x x k e

σ σ
ρ ρ

β β

= − − − − − −
= − − − −

= − − + − −

= − − − − −









                                                                (32) 

Let us now define the parameter estimation errors as 

           
ˆ ˆˆ ˆ,  ,  ,  

ˆ ˆˆ ˆ,  ,  ,   
r

a b c d

e e e e r r

e a a e b b e c c e d d

σ β ρσ σ β β ρ ρ= − = − = − = −

= − = − = − = −
                                                         (33) 

Substituting (33) into (32), we obtain the error dynamics as 

           

1 2 1 2 1 1 1

2 2 1 2 2

3 3 3 3 3

4 1 2 3 4 4

( ) ( )a

c

b

d r

e e y y e x x k e

e e y e x k e

e e y e x k e

e e y e x x k e

σ

ρ

β

= − − − −
= − −

= − + −

= − − −









                                                                               (34) 

For the derivation of the update law for adjusting the estimates of the parameters, the Lyapunov approach is 
used.   

We consider the quadratic Lyapunov function defined by 

       ( )2 2 2 2 2 2 2 2 2 2 2 2
1 2 3 4

1 ,
2 r a b c dV e e e e e e e e e e e eσ β ρ= + + + + + + + + + + +                                  (35) 
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which is a positive definite function on 12.R  

We also note that 

    ˆ ˆˆ ˆˆ ˆ ˆ ˆ,   ,   ,   ,  ,   ,   ,   r a b c de e e e r e a e b e c e dσ β ρσ β ρ= − = − = − = − = − = − = − = −                            (36) 

Differentiating (35) along the trajectories of (34) and using (36), we obtain 

    

2 2 2 2
1 1 2 2 3 3 4 4 1 2 1 3 3

2 1 4 2 3 1 2 1

3 3 2 2 4 1

ˆˆ( )

ˆ ˆ ˆ        ( )

ˆ ˆˆ        

r a

b c d

V k e k e k e k e e e x x e e x

e e x e e x x r e e y y a

e e y b e e y c e e y d

σ β

ρ

σ β

ρ

  = − − − − + − − − + −    
     + − − + − − + − −    
    + − − + − + − −       



  

 

                           (37) 

In view of Eq. (24), the estimated parameters are updated by the following law: 

       

1 2 1 5 1 2 1 9

3 3 6 3 3 10

2 1 7 2 2 11

4 2 3 8 4 1 12

ˆ ˆ( ) ,    ( )

ˆˆ ,                

ˆ ˆ,              

ˆˆ ,           

a

b

c

r d

e x x k e a e y y k e

e x k e b e y k e

e x k e c e y k e

r e x x k e d e y k e

σ

β

ρ

σ

β

ρ

= − − + = − +

= + = − +

= − + = +

= − + = − +

 



 



                                                                 (38) 

where , ( 5, ,12)ik i =  are positive constants.  

Substituting (38) into (37), we obtain 
2 2 2 2 2 2 2 2 2 2 2 2

1 1 2 2 3 3 4 4 5 6 7 8 9 10 11 12r a b c dV k e k e k e k e k e k e k e k e k e k e k e k eσ β ρ= − − − − − − − − − − − −     (39)                                    

which is a negative definite function on 12.R  

Thus, by Lyapunov stability theory [21], it is immediate that the synchronization error , ( 1, 2,3,4)ie i = and 

the parameter estimation errors , , , , , , ,r a b c de e e e e e e eσ β ρ decay to zero exponentially with time.   

Hence, we have proved the following result. 

Theorem 3. The non-identical hyperchaotic Lorenz system (27) and hyperchaotic Chen system (28) with 
unknown parameters are globally and exponentially synchronized by the adaptive control law (31), where the 
update law for the parameter estimates is given by (38) and , ( 1, ,12)ik i =  are positive constants. 

B. Numerical Results 

For the numerical simulations, the fourth-order Runge-Kutta method with time-step 610h −= is used to 
solve the hyperchaotic systems (27) and (28) with the adaptive control law (31) and the parameter update law 
(38) using MATLAB. For the hyperchaotic Lorenz system (27) and hyperchaotic Chen system (28), the 
parameter values are taken as 

         10,   8 / 3,   28,  0.1,rσ β ρ= = = =  35,   3,   21a b c= = =   and   2.d =  

Suppose that the initial values of the parameter estimates are 

        ˆˆ ˆˆ ˆ ˆ ˆ(0) 5,  (0) 2,  (0) 4,  (0) 6,  (0) 10,  (0) 5,  (0) 4r a b cσ β ρ= = = = = = =    and   ˆ(0) 8.d =  

The initial values of the master system (27) are taken as 

      1 2 3(0) 19,   (0) 42,   (0) 38x x x= = =   and 4 (0) 30.x =  

The initial values of the slave system (28) are taken as 
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      1 2 3(0) 28,   (0) 12,   (0) 46y y y= = =  and 4 (0) 17.y =  

Fig. 7 depicts the complete synchronization of the non-identical hyperchaotic systems (27) and (28). 

 
Fig. 7  Synchronization of the Hyperchaotic Lorenz and Hyperchaotic Chen Systems 

Fig. 8 shows that the estimated values of the parameters, viz. ˆ ,σ ˆ,β ˆˆ ˆ ˆ ˆ, , , ,r a b cρ and d̂ converge to the 
system parameters 10,   8 / 3,   28,  0.1,  35,  3,  21r a b cσ β ρ= = = = = = = and 2,d = respectively. 
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Fig. 8  Parameter Estimates ˆ ˆˆ ˆˆ ˆ ˆ ˆ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )t t t r t a t b t c t d tσ β ρ  

V. CONCLUSIONS 
In this paper, we have applied adaptive control method for the global chaos synchronization of identical 

hyperchaotic Lorenz systems (2006), identical hyperchaotic Chen systems (2010) and non-identical 
hyperchaotic Lorenz and Chen systems with unknown parameters. The adaptive synchronization results derived 
in this paper are established using Lyapunov stability theory. Since the Lyapunov exponents are not required for 
these calculations, the adaptive nonlinear control method is very effective and convenient to achieve global 
chaos synchronization for the uncertain hyperchaotic systems discussed in this paper. Numerical simulations are 
also shown for the synchronization of identical and non-identical uncertain hyperchaotic Lorenz and 
hyperchaotic Chen systems to demonstrate the effectiveness of the adaptive synchronization schemes derived in 
this paper. 
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