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Abstract—This paper investigates the problem of global chaos anti-synchronization of identical 
hyperchaotic Lorenz systems (Jia, 2007) by sliding mode control. The stability results derived in this 
paper for the anti-synchronization of identical hyperchaotic Lorenz systems are established using 
Lyapunov stability theory. Since the Lyapunov exponents are not required for these calculations, the 
sliding mode control method is very effective and convenient to achieve global chaos synchronization of 
the identical hyperchaotic Lorenz systems. Numerical simulations are shown to illustrate the effectiveness 
of the synchronization schemes derived in this paper. 

Keywords-nonlinear control systems; chaos; anti-synchronization; sliding mode control; hyperchaotic Lorenz 
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I.  INTRODUCTION   
Chaotic systems are dynamical systems that are highly sensitive to initial conditions. The sensitive nature of 

chaotic systems is commonly called as the butterfly effect [1].  

 Synchronization of chaotic systems is a phenomenon which may occur when two or more chaotic oscillators 
are coupled or when a chaotic oscillator drives another chaotic oscillator. Because of the butterfly effect which 
causes the exponential divergence of the trajectories of two identical chaotic systems started with nearly the same 
initial conditions, synchronizing two chaotic systems is seemingly a very challenging problem. 

 In most of the chaos anti-synchronization approaches, the master-slave or drive-response formalism is used. 
If a particular chaotic system is called the master or drive system and another chaotic system is called the slave 
or response system, then the idea of the anti-synchronization is to use the output of the master system to control 
the slave system so that the outputs of the slave system have the same amplitude but opposite signs as the 
outputs of the master system asymptotically. In other words, the sum of the outputs of the master and slave 
systems are expected to converge to zero asymptotically when anti-synchronization appears.   

Since the pioneering work by Pecora and Carroll ([2], 1990), chaos synchronization problem has been studied 
extensively and intensively in the literature [2-17]. Chaos theory has been applied to a variety of fields such as 
physical systems [3], chemical systems [4], ecological systems [5], secure communications [6-8], etc. 

In the last two decades, various schemes have been successfully applied for chaos synchronization such as PC 
method [2], OGY method [9], active control method [10-12], adaptive control method [13-15], time-delay 
feedback method [16], backstepping design method [17], sampled-data feedback method [18], etc. Recently, 
active control has been applied to anti-synchronize identical chaotic systems [19-20] and different hyperchaotic 
systems [21].  

In this paper, we derive new control results based on the sliding mode control [22-24] for the global chaos 
anti-synchronization of identical hyperchaotic Lorenz systems (Jia, [25], 2007).  
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In robust control systems, the sliding control method is often adopted due to its inherent advantages of easy 
realization, fast response and good transient performance as well as its insensitivity to parameter uncertainties and 
external disturbances. 

This paper has been organized as follows. In Section II, we describe the problem statement and our 
methodology using sliding mode control. In Section III, we discuss the global chaos anti-synchronization of 
identical hyperchaotic Lorenz systems. In Section IV, we summarize the main results obtained in this paper. 

II. PROBLEM STATEMENT AND OUR METHODOLOGY USING SLIDING MODE CONTROL 
In this section, we describe the problem statement for the global chaos synchronization for identical chaotic 

systems and our methodology using sliding control. 

Consider the chaotic system described by 

           ( )x Ax f x= +                                                                                                                      (1) 

where nx ∈R is the state of the system, A is the n n×  matrix of the system parameters and : n nf →R R is 
the nonlinear part of the system. We consider the system (1) as the master or drive system. 

As the slave or response system, we consider the following chaotic system described by the dynamics 

        ( )y Ay f y u= + +                                                                                                                  (2) 

where ny ∈R is the state of the system and mu ∈R is the controller to be designed.  

If we define the anti-synchronization error as  

         ,e y x= +                                                                                                                                 (3) 

then the error dynamics is obtained as   

         ( , ) ,e Ae x y uη= + +                                                                                                             (4) 

where  

            ( , ) ( ) ( )x y f y f xη = +                                                                                                       (5) 

The objective of the global chaos anti-synchronization problem is to find a controller u such that 

          lim ( ) 0
t

e t
→∞

=    for all (0) .ne ∈R  

To solve this problem, we first define the control u as 

         ( , )u x y Bvη= − +                                                                                                                  (6) 

where B is a constant gain vector selected such that  ( , )A B    is controllable.  

Substituting (5) into (4), the error dynamics simplifies to 

        e Ae Bv= +                                                                                                                              (7) 

which is a linear time-invariant control system with single input .v  

Thus, the original global chaos synchronization problem can be replaced by an equivalent problem of 
stabilizing the zero solution 0e = of the system (7) by a suitable choice of the sliding control.  

In the sliding control, we define the variable 

       1 1 2 2( ) n ns e Ce c e c e c e= = + + +                                                                                         (8) 

In the sliding control, we constrain the motion of the system (7) to the sliding manifold defined by 

       { }| ( ) 0nS x s e= ∈ =R  

which is required to be invariant under the flow of the error dynamics (7). 
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When in sliding manifold ,S the system (7) satisfies the following conditions: 

         ( ) 0s e =                                                                                                                                    (9) 

which is the defining equation for the manifold S and 

          ( ) 0s e =                                                                                                                                 (10) 

which is the necessary condition for the state trajectory ( )e t  of (7) to stay on the sliding manifold .S  

Using (7) and (8), the equation (10) can be rewritten as 

        [ ]( ) 0s e C Ae Bv= + =                                                                                                          (11) 

Solving (11) for ,v we obtain the equivalent control law  

      1
eq ( ) ( )  ( )v t CB CA e t−= −                                                                                                       (12) 

where C is chosen such that 0.CB ≠  

Substituting (12) into the error dynamics (7), we obtain the closed-loop dynamics as 

          1( )e I B CB C Ae− = −                                                                                                       (13) 

The row vector C is selected such that the system matrix of the controlled dynamics 1( )I B CB C A− −  is 

Hurwitz. Then the system (13) is globally asymptotically stable.  

To design the sliding controller for (7), we apply the constant plus proportional rate reaching law 

           sgn( )  s q s k s= − −                                                                                                             (14) 

where sgn( )⋅ denotes the sign function and the gains 0,q >  0k > are determined such that the sliding 
condition is satisfied and sliding motion will occur.  

From equations (11) and (14), we can obtain the control ( )v t as 

         [ ]1( ) ( ) ( ) sgn( )v t CB C kI A e q s−= − + +                                                                            (15) 

which yields 

        
[ ]
[ ]

1

1

( ) ( ) , if ( ) 0
( )

( ) ( ) , if ( ) 0
CB C kI A e q s e

v t
CB C kI A e q s e

−

−

− + + >
=

− + − <





                                                                 (16) 

Theorem 1. The master system (1) and the slave system (2) are globally and asymptotically anti-synchronized 
for all initial conditions (0), (0) nx y R∈ by the feedback control law 

        ( ) ( , ) ( )u t x y Bv tη= − +                                                                                                        (17) 

where ( )v t is defined by (15) and B is a column vector such that ( , )A B is controllable. Also, the sliding mode 
gains ,k q are positive. 

Proof.  First, we note that substituting (17) and (15) into the error dynamics (4), we obtain the closed-loop error 
dynamics as 

       [ ]1( ) ( ) sgn( )e Ae B CB C kI A e q s−= − + +                                                                       (18) 

To prove that the error dynamics (18) is globally asymptotically stable, we consider the  Lyapunov function 
defined by the equation 

       21( ) ( )
2

V e s e=                                                                                                                        (19) 
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Clearly, V  is a positive definite function on .nR  

Differentiating V along the trajectories of (18) or the equivalent dynamics (14), we get 

      2( ) ( ) ( ) sgn( )V e s e s e ks q s s= = − −                                                                                    (20) 

which is a negative definite function on .nR   

This calculation shows that V is a globally defined, positive definite, Lyapunov function for the error 
dynamics (18), which has a globally defined, negative definite time derivative .V   

Thus, by Lyapunov stability theory [22], it is immediate that the error dynamics (18) is globally 
asymptotically stable for all initial conditions (0) .ne ∈R  

This means that for all initial conditions (0) ,ne R∈ we have 

       lim ( ) 0
t

e t
→∞

=  

Hence, it follows that the master system (1) and the slave system (2) are globally and asymptotically 
synchronized for all initial conditions (0), (0) .nx y ∈R  

This completes the proof.  

III. ANTI- SYNCHRONIZATION OF IDENTICAL HYPERCHAOTIC LORENZ SYSTEMS 

A. Theoretical Results 

In this section, we apply the sliding mode control results derived in Section 2 for the anti-synchronization of 
identical hyperchaotic Lorenz systems ([25], 2007).   

The hyperchaotic Lorenz system is one of the paradigms of the four-dimensional hyperchaotic systems 
discovered by G. Jia ([25], 2007). 

Thus, the master system is described by the hyperchaotic Lorenz dynamics 

         

1 2 1 4

2 1 3 1 2

3 1 2 3

4 1 3 4

( )x a x x x

x x x rx x

x x x bx

x x x dx

= − +
= − + −
= −
= − +









                                                                                                               (21) 

where 1 2 3 4, , ,x x x x  are state variables of the system and , , ,a b r d are positive, constant parameters of the 
system. 

The slave system is described by the controlled hyperchaotic Lorenz dynamics 

          

1 2 1 4 1

2 1 3 1 2 2

3 1 2 3 3

4 1 3 4 4

( )y a y y y u

y y y ry y u

y y y by u

y y y dy u

= − + +
= − + − +
= − +
= − + +









                                                                                                 (22) 

where 1 2 3 4, , ,y y y y are state variables and 1 2 3 4, , ,u u u u are the controllers to be designed.  

The four-dimensional system (21) is hyperchaotic when the parameter values are taken as 

               10,   28,   8 / 3a r b= = =   and  1.3.d =  

The hyperchaotic portrait of the Lorenz system (21) is illustrated in Fig. 1. 
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Figure 1.  State Portrait of the Hyperchaotic Lorenz System 

The anti-synchronization error is defined by 

           ,  ( 1, 2,3,4)i i ie y x i= + =                                                                                                   (23) 

The error dynamics is easily obtained as 

              

1 2 1 4 1

2 1 2 1 3 1 3 2

3 3 1 2 1 2 3

4 4 1 3 1 3 4

( )e a e e e u

e re e y y x x u

e be y y x x u

e de y y x x u

= − + +
= − − − +
= − + + +
= − − +









                                                                                      (24) 

We write the error dynamics (24) in the matrix notation as 

             ( , )e Ae x y uη= + +                                                                                                          (25) 

where 

 

     

0 1
1 0 0

,
0 0 0
0 0 0

a a

r
A

b

d

− 
 − =
 −
 
 

   1 3 1 3

1 2 1 2

1 3 1 3

0

( , )
y y x x

x y
y y x x

y y x x

η

 
 − − =
 +
 − − 

  and   

1

2

3

4

.

u

u
u

u

u

 
 
 =
 
 
 

                          (26) 

The sliding mode controller design is carried out as detailed in Section 2. 

First, we set u as 

     ( , )u x y Bvη= − +                                                                                                                       (27) 

where B is chosen such that ( , )A B is controllable. 
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We take B as 

        

1
1

.
1
1

B

 
 
 =
 
 
 

                                                                                                                                      (28) 

In the hyperchaotic case, the parameter values are  

       10,   28,   8 / 3a r b= = =   and  1.3.d =    

The sliding mode variable is selected as 

      [ ] 1 2 43 3 0 2 3 3 2s Ce e e e e= = − − = − − +                                                                      (29) 

which makes the sliding mode state equation asymptotically stable.  

We choose the sliding mode gains as 4k = and 0.1.q =  

We note that a large value of k can cause chattering and an appropriate value of q is chosen to speed up the 
time taken to reach the sliding manifold as well as to reduce the system chattering. 

From Eq. (15), we can obtain ( )v t as 

        1 2 4( ) 16.5 9.75 1.9 0.025sgn( ).v t e e e s= − − + +                                                                (30) 

Thus, the required sliding mode controller is obtained as 

         ( , )u x y Bvη= − +                                                                                                                    (31) 

where ( , ),x y Bη and ( )v t are defined as in the equations (26), (28) and (30). 

By Theorem 1, we obtain the following result. 

Theorem 2. The identical hyperchaotic Lorenz systems (21) and (22) are globally and asymptotically anti-
synchronized for all initial conditions with the sliding controller u defined by (31).  

B. Numerical Results  

For the numerical simulations, the fourth-order Runge-Kutta method with time-step 610h −= is used to 
solve the hyperchaotic Lorenz chaotic systems (21) and (22) with the sliding controller u given by (31) using 
MATLAB. 

In the hyperchaotic case, the parameter values are  

           10,   28,   8 / 3a r b= = =   and  1.3.d =       

The sliding mode gains are chosen as  

             4k =  and  0.1.q =  

 The initial values of the master system (21) are taken as 

           1 2 3 4(0) 26,   (0) 16,   (0) 32,   (0) 14x x x x= = = =  

and the initial values of the slave system (22) are taken as 

           1 2 3 4(0) 10,   (0) 25,  (0) 4,   (0) 40y y y y= = = =  

Fig. 2 illustrates the anti-synchronization of the identical hyperchaotic Lorenz systems (21) and (22). 
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Figure 2.  Anti-Synchronization of Identical Hyperchaotic Lorenz Systems 

 

IV. CONCLUSIONS 
In this paper, we have deployed sliding mode control to achieve global chaos anti-synchronization for the 

identical hyperchaotic Lorenz systems (2007). Our anti-synchronization results for the identical hyperchaotic 
Lorenz systems have been proved using Lyapunov stability theory. Since the Lyapunov exponents are not 
required for these calculations, the sliding control method is very effective and convenient to achieve global 
chaos anti-synchronization for the identical hyperchaotic Lorenz systems. Numerical simulations are also shown 
to illustrate the effectiveness of the anti-synchronization results derived in this paper using the sliding mode 
control. 
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